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Syllabus 

1. Dynamic optimization problems 

2. Pontryagin’s principle 

3. Exercises with free end state. 

4. Proof of Pontryagin’s principle 

5. Equality constraints on the final state 

6. The Linear Quadratic problem 
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Objectives 

 

Objective: Introduce a novel class of optimization problems, that are solved 

with respect to infinite dimensional variables – Optimal Control. 

 

[JML-CEE2019] cap. 10   
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A classical problem: The brachistochrone curve 
 

What is the shape of the curve that connects points A and B such data a point 

mass, under the force of gravity alone, slides (frictionless) from A to B in 

minimum time? 

 

  

x

y

A (0, 0)

B (x , y )
2 2

P=mg

Which function y(x) 

minimizes the 

travel time between 

A and B? 
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Computing the travel time assuming y x x x( ) 0 2   known 

Without friction, the increase of kinetic energy is equal to the loss of potential 

energy, and 
1

2

2mv mgy=  or 

v x gy x( ) ( )= 2  

Let 𝑠 be the arclength. From Pythagoras theorem we get the kinematics 

relation 

( )( )v x
ds

dt

dx dy

dt

dy

dx

dx

dt
y x

dx

dt
( ) . .= =

+
= +









 = + 

2 2 2
2

1 1
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Energy balance: 

v x gy x( ) ( )= 2  

Kynematics: 

( )( )v x y x
dx

dt
( ) .= + 1

2

 

Eliminate 𝑣 by equating the r.h.s.: 

( )( )2 1
2

gy x y x
dx

dt
( ) .= + 
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( )( )2 1
2

gy x y x
dx

dt
( ) .= + 

 

or 

( )( )
( )

dt

dx

y x

gy x
=

+ 1

2

2

 

The traveling time is obtained by integration 

( )( )
T

y x

gy x
dx

x

=
+ 


1

2

2

0

2

( )  
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If we know the function 𝑦(𝑥), we can compute the travel time  

( )( )
T

y x

gy x
dx

x

=
+ 


1

2

2

0

2

( )  
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For instance, if the path to follow is a straight line between A and B, 

y x x( ) =   with  =
y

x
2

2
 

 

 

 

 

The travel time for the rectilinear path is 

( )( )
T

y x

gy x
dx

g
x dx

g
x

x x

=
+ 

=
+

=
+

 
−1

2

1

2

1

2
2

2

0

2

0

1
2

2

2

1 2
2 2

( )
. . /





  

 

 

x

y

A (0, 0)

B (x , y )
2 2
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If we want to compare the travel time for the rectilinear path with the one of 

another curve (for instance an arc of circle), we can do it, and decide which 

one leads to the pastest path. 
 

However, the point is that we don’t know the shape of the optimal curve. 

 

We want to optimize with respect to the curve and this is an infinite 

dimensional problem, because it depends on the position of the points on the 

curve (that are infinitely many). 
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The expression 

( )( )
T

y x

gy x
dx

x

=
+ 


1

2

2

0

2

( )  

defines the functional to minimize. 

To each differentiable function y x( ) defined 

on  0 2,x  that satisfies the boundary 

conditions y( )0 0=  and y x y( )2 2=  

if associates a real number (the 

travel time).  

 
  

 

x

y

J(y)=T R

A

B
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The Brachistochrone problem was published in 1 January 

1667 by Johann Bernouilli, as a challenge to the scientific 

community: Nothing is more attractive to intelligent persons 

than an honest problem that challenges them and which 

solution brings fame and stays as a lasting monument.  

60 years before, Galileo new already that the minimum time 

trajectory could not be a straight line, although he thought, 

erroneously, that it was a circumference arc. 

 

This challenge was tackled by six of the most brilliant minds of the time: His elder 

broither Jacob, Leibniz, Tschirnhaus, l'Hopital and Newton (who published his solution 

anonymously). 
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An historical perspective (with technical content) of the Brachistochrone 

problem and of its relations with Optimal Control may be seen in 
 

Sussmann, H. J. e J. C. Willems (1997). 300 Years of Optimal Control: From 

the Brachystochrone to the Maximum Principle. IEEE Control Systems, 

17(3):32-44. 

 

You may access this paper from eduroam using IEEEXPLORE 
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A machine to exemplify the 

brachistochrone, Museu de Física da 

Universida de Coimbra, Portugal. 

http://Nautilus.fis.uc.pt/museu/index.htm 

The challenge of J. Bernouilli as 

published in Acta Eroditorum 

http://nautilus.fis.uc.pt/museu/index.htm
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Optimal Control problems 

 

Need for a new tool: Pontryagin’s Maximum Principle (1956). 
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Example:  Control approach to therapy design in cancer 
 

 

Compute the therapy along time that yields the best compromise between  

• maximizing the therapeutic effect (minimize tumor size) 

• minimizing a measure of toxic effects (minimize total treatment) 
  

"Disturbances"
Variables imposed
externally

"Output"
Observed reaction
(e. g. Tumour size)

"Manipulated
input"
Imposed actions
(e. g. drug dose)

Internal state
dynamics
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Controlled Gompertz model 

 

Associated control problem 
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A basic class of optimal control problems 

(Fixed final time, no state constraints) 
 

Let 𝑥 be the state of a system with manipulated input 𝑢, that satisfies 

 Ttxxuxfx ,0)0(),( 0 ==   T fixed  u t U( )   

 

Find the function u , defined in  0, T  that maximizes 

J u x T L x u dt

T

( ) ( ( )) ( , )= + 
0

 

𝐿 is the lagrangian or running cost 

Ψ is the terminal cost penalty 

 

  



CMNO – Optimal Control  19 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Pontriagyn’s Maximum Principle 

Along an optimal trajectory of 𝑥, 𝑢, and 𝜆, the following necessary conditions 

for the maximization of 𝐽 are verified: 

  ( , ) ( ) ,x f x u x x t T= = 0 00  u t U( )   

( ) ( )( ) ( ) ( )( )−  =  + ( ) ( ) , , t t f x t u t L x t u tx x  

( ) ( ) =
=

 T xx x x T


( )  

At each 𝑡, the Hamiltonian function 𝐻 defined by 

),(),(),,( vxLvxfvxH +=   

Is maximum for 𝑣 = 𝑢 (the optimal control). 

  

Terminal condition 

on the co-state 
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Notation: 


 

x x x T

x x T n x x T

x
x

x

x

x
( )

( ) ( )
( )

( ) ( )

=

= =

=




















1


     

L x u
L

x

L

x
x

n

( , ) =
















1


 

  

f

f
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f
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x

f

x
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x

f

x

f

x

f

x

f

x

x

n

n

n n n

n

=






























































1

1

1

2

1

2

1

2

2

2

1 2





   


 

  

The vector   is called co-state, 

and its equation is the adjoint 

equation. 



CMNO – Optimal Control  21 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Other optimal control problems 

• More general problems 

o Free terminal time and minimum time problems 

o Final state constraints 

o Other state constraints 

• Important special cases 

o Linear dynamics and quadratic constraints 

• Bang-bang control and singular arcs 
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Bibliographic references on OC for the impatient students 

• [L1979] Ch. 11, pp. 394 – 435. This a quick and beautiful introduction to 

the main points of optimal control and dynamic programming, with a 

justification using calculus of variations – like arguments of the version of 

the Pontryagin Principle presented above. The whole book is also a very 

good, easy to read, and sometimes exhilarant,  introduction to dynamic 

systems and control that is strongly suggested to the students with a lack 

of background on this subjects.  

• [R2015] An introduction to the correct formulation of optimal control 

problems and solving them with Pontryagin Principle. The emphasis is not 

on mathematical profs, but on developing skills to correctly formulate OC 
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problems in such a way that they can be solved with numerical packages 

such as DIDO, for which a free (limited) version is available. The author, I. 

M. Ross was one of the developers of a class of numerical methods to 

solve OC problems known as pseudo-spectral methods. 

 

[L1979] D. G. Luenberger. Introduction to dynamic Systems. Wiley, 1979. 

 

[R2015] I. M. Ross. A primer on Pontryagin’s Principle . in Optimal Control. 

Collegiate Publishers, 2015.  
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Exercise 1 (Just to warm up) 

Design a curve x t( )  that starts at x( )0 0= , with a maximum slope of 1 and 

that reaches the maximum height for Tt = . 
 

The problem may be formulated as an optimal control problem with dynamics 

( ) ( )x t u t=     x( )0 0=     U u u= | 1  

and cost functional to be maximized 

J x T= ( )  

Use Pontryagin’s Principle to find the optimal solution. 
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( ) ( )( ) ( ) ( )( )−  =  + ( ) ( ) , , t t f x t u t L x t u tx x    ( ) ( ) =
=

 T xx x x T


( )  

Since 

f x ux ( , ) = 0      and       L x u( , ) = 0  

The adjoint equation is 

− =( ) t 0  

With terminal condition 

( )T = 1     since    ( ( )) ( )x T x T=  

Hence 

( )t t T=  1 0  
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The Hamiltonian is 

H f L u u=  + = =   

At each t the value of u that maximes H in the set U is thus 

u topt ( ) = 1 

x(t)

T t

x(T)

0

Curva óptima

Curvas possíveis

mas não óptimas
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Example: Minimum drag shape of a shell 
 

What is the shape of a shell that leads to a minimum drag? 

 

This problem was solved by Newton in 1686 (10 years before Johann 

Bernouilli’s challenge on the brachistochrone). Newton  was aiming an 

application to ship design but the model he used for the drag force was valid 

only for very low density atmosphere at a hipersonic velocity. 
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r

a

r(L)

L

r(x)

x



At hypersonic velocities the drag force D is 

approximately given by 

( )D q C rdrp

x

x L

= −
=

=

2
0

 
 

where q  is the dynamic pressure assumed 

to be constant and 








=

00

0sin2 2





for

for
C p
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Each shell shape corresponds to a drag force. 

D

"Espaço" das formas possíveis

Dimensão infinita
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D g rdr
x

x L

= −
=

=

2 2 2

0

 sin
      

Can be formulated as an Optimal Control problem: 

 Minimize: 

 
D

q
r L

ru

u
dx

L

4

1

2 1

2
3

2

0


= +
+( )

 

 Subject to the "dynamics" 

dr

dx
u=  

r

a

r(L)

L

r(x)

x


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The previous problem illustrates two significant issues: 

• A shape optimization problem of a planar curve may be transformed into 

an Optimal Control problem by using a dynamic equation that generates 

the family of curves considered. 

• The problem may be formulated as an Calculus of Variation problem. 

However, it is readily transformed into an Optimal Control problem by 

using the dynamic equation 

𝑑𝑦

𝑑𝑡
= 𝑢 

 where 𝑦 = 𝑟 in the shell problem and 𝑢 is the control variable. 

 This technique can be applied to transform a CV problem into an 

equivalent OC problem. 



CMNO – Optimal Control  32 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Exercise 2 – Push cart 

z=0

zu

 

Objective: find the function u t t T( ) 0    that maximizes  

−=

T

dttuTxuJ
0

2

1 )(
2

1
)()(

,    (𝑥1: = 𝑧) 

sendo a dinâmica do carro dada por (condições iniciais nulas): 

d z

dt
u

2

2
=

    or   





x x

x u

1 2

2

=

=          




( , )

x

x
f

x

x
u

1

2

1

2









 =









      

 



CMNO – Optimal Control  33 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Solution: 

 

f x u

f x u

x

u

1

2

2( , )

( , )









 =











 

f

f

x

f

x

f

x

f

x

x =



















=

























1

1

1

2

2

1

2

2

0 1

0 0
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J u x T u t dt

T

( ) ( ) ( )= − 1

2

0

1

2  

( ) x T x T( ) ( )= 1   and hence  ( )  x x T( ) = 1 0  

L x u u t( , ) ( )= −
1

2

2

   and hence    L x ux ( , ) = 0 0  

The adjoint equation is −  =  +  f Lx x  or 

   − − =










    1 2 1 2

0 1

0 0      






 

1

2 1

0=

= −





            1 2 1 0( ) ( )T T =  
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




 

1

2 1

0=

= −





        1 2 1 0( ) ( )T T =  

In this case, the adjoint equation can be solved independently of the state and 

optimal control. Usually it is not so. 
 

Since 

 ( )1 0t =    we conclude that   1( )t C te=  

From the terminal condition 1 1( )T =  it is concluded that 

1 1( )t =  
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The equation for 2 ( )t  is 

 ( ) 2 1t = −  

Since 1 1( )t = , this equation becomes 

 ( )2 1t = −  

And hence 

2 ( )t C tte= −  

From the terminal condition 2 0( )T =  we get 

2 ( )t T t= −  
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Hamiltonian: 

( )H x u x u u  , , = + −1 2 2

21

2  

In this case there are no control constraints (𝑢 may assume values everywhere 

on ℝ) and the maximum condition for the Hamiltonian is 





H

u
= 0

   or    2 0− =u   for each time 𝑡 

The optimal control is thus 

u t t T topt ( ) ( )= = −2  

  

 
0

T

T t

u(t)
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Exercise 3 – Push cart with minimum fuel 

maximize   −=

T

dttuTxuJ
0

1 )()()(
 

s. t.      





x x

x u

1 2

2

=

=     and     0 ≤ 𝑢 ≤ 𝑢̅ 

 

Assume 𝑇 > 1. 
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Solution 

The co-state is as before: 

𝜆1(𝑡) = 1,  𝜆2(𝑡) = 𝑇 − 𝑡 

The Hamiltonian is now 

𝐻 = [𝜆1 𝜆2] [
𝑥2
𝑢
] − 𝑢 = 𝜆1𝑥2 + (𝜆2 − 1)𝑢 

Since the Hamiltonian is linear in 𝑢, its maximum is attained at the boundary of 

the interval of the acceptable values for 𝑢. 
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H

u
0 u

u*

2 > 1 H

u
0 u

u*

2 < 1

T

T

1

2

t

t
T

u

u

ts

𝜆2(𝑡𝑠) − 1 = 0 

𝑇 − 𝑡𝑠 − 1 = 0 

𝑡𝑠 = 𝑇 − 1 
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Penicillin Fermentation reactor 

X – Quantity of fungi per 

 unit volume 

P – Quantity of penicilin 

 per unit volume 

u – Manipulated variable, substract 

 rate (sugar) 

  

Fungi produce penicillin. 
  

 

u

água

fria

água

aquecida

ar

agitador

X, P
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A very simplified model of the fermentation 

 

 

 

X buX X= −   

 ( )P c u X= −1  

 

 

 
  

Growth due to 

“food 

Mortality 

Fungi 

production 

Production inibition due 

to substract 



CMNO – Optimal Control  43 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Fermentation Optimal Control Problem 

Model and initial conditions: 

XuXX 5,0−=
 

XuP )1( −=
 

Objective: 

Find u t t T( ) 0   , T fixed, so that J P T= ( ) is maximum given the 

constraint 

0 1 u  

Write the adjoint equation 
  

   Initial conditions: 

X

P

( )

( )

0 1

0 0

=

=  
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The cost functional is  

( )J x T L x u dt
T

= +  ( ) ( , )
0  

In this case 

)(TPJ fermenter =  

Therefore  L x u( , ) = 0  

and   ( ( )) ( )x T P T= , and thus 

 







x

x x T

x T
x x

( ( )

( )

=








 =

=1 2

0 1
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The co-state has two components 

   ' ( ) ( ) ( )t t t= 1 2  

Since the Lagrangian is zero: 

 00),( =uxLx  

Since   








−

−
=








=

1

1

212

211

)1(

)5.0(

),,(

),,(
),(

xu

xu

uxxf

uxxf
uxf

   it is   
f x u

u

u
x ( , )

.
=

−

−











05 0

1 0  
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Adjoint equation 

− = +' ' ( , ) ( , )  f x u L x ux x  

f x u
u

u
x ( , )

.
=

−

−











05 0

1 0      L x ux ( , ) = 0        

In this case the adjoint equation is 

 − = − + − ( . ) ( )  1 1 205 1u u  

− =2 0  

With terminal condition 

 1 20 1( ) ( )T T= =  
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− = − + − ( . ) ( )  1 1 205 1u u                − =2 0  

 1 20 1( ) ( )T T= =  

Considering the terminal conditions 

2 1( )t =      0  t T  

And the equation for the 1st component of the co-state becomes 

e a equação para a primeira componente do co-estado reduz-se a 

− = − + − ( . ) 1 105 1u u  

Dificulty: The equation depends on u t( )  and u t( )  depends on  ( )t … 
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Hints 

a) Write the Hamiltonian for this special case. Remember that 

H x u f L( , , ) ' = +  

b) Assume that you know  ( )t . Find u t( )  that maximizes H for each t .  

   Remember the constraint 0 1 u  and assume that X  0  

c) From b) you know the shape of u t( )  as a function of t . In particular, what is 

the value of u t( )  for t  close to T ? And the corresponding equation for 1( )t  

during thgis time period? 

d) Go “backwards” in time. What happens to 1( )t ? And )(tuoptim ? 
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H f L= + '  

H f X P f X P= + + 1 1 2 2 0( , ) ( , )  

H u X u X= − + −1 05 1( . ) ( )  

Can be written as 

 H u X= − + −( ) ( . ) 1 11 1 05  

The Hamiltonian H  is a linear function of u . 

Assuming X  0 , H  growing or decreasing depends just on 1 1− . 
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 H u X= − + −( ) ( . ) 1 11 1 05  

 

 

 
  

Intervalo de valores

admissíveis para u

0 1 u u10

Neste caso

u   =0
opt

Neste caso

u   =1
opt

H(u)
H(u)

1 1
 

1 1
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Since 

1 0( )T =  

for t  close to T , 1 0( )t = . Thus, since 1 1( )T  , the corresponding 

optimal control is 

u topt ( ) = 0  

Close to 𝑇, the adjoint equation becomes 

− = − + − ( . ) 1 105 1u u  

 

 ( ) . 1 105 1t = −  

  

=0 =0 
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Near the end of the optimization interval the adjoint equation becomes 

 ( ) . ( ) 1 105 1t t= −         1 0( )T =  

It has the solution 

( )1

0 51

05
1( )

.

. ( )t e t T= − −

 

 

 

u  =0 T
t

(t)
1

(t)
1

opt
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u  =0 T
t

(t)
1

(t)
1

opt

 

  "Moving" in this sense u 

becomes 1 at instant ts  in which 

1 1( )ts =  

( )
1

05
1 1

05

05 05

2 5 139

0 5

0 5
.

.

log . . ( )

log . .

. ( )

. ( )

− =

=

= −

= +  −

−

−

e

e

t T

t T o T

t T

t T

s

s

s

s
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Example for the situation in which T=5 

 

  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1

2

3

4

5

6

7

t

Lambda

uopt
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

Tempo

X

P
uoptimo 

uoptimo 

 

The optimal solution admits the 

following interpretation: Initially, 

all the effort is to make the 

fungi colony to grow. Due to 

the inhibition effect of the 

substrate there is no penicillin 

production. After the switching 

instant, the control variable is 

adjusted to maximize the 

penicillin production. 
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

ts

P
(T

)

 

 

Assuming a bang-bang shape for the 

control function, the switching instant 

corresponds to the maximum. 

It is remarked that Pontryagin’s 

Principle yields not only the switching 

instant but also the shape of the 

control function. 
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Proof of Pontryagin’s Principle 
 

Objective: 

Proof of Pontryagin’s Principle necessary conditions for fixed time problems 

with free end state, using a variational method. 
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The optimal control problem 

Let 𝑥 be the state of a system with manipulated input 𝑢, that satisfies 

 Ttxxuxfx ,0)0(),( 0 ==   T fixed  u t U( )   

 

Find the function u , defined in  0, T  that maximizes 

J u x T L x u dt

T

( ) ( ( )) ( , )= + 
0
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Proof strategy 

If uopt  is a function that maximizes J u( ) , any “small” u  of the control function 

leads to a decrease on J u( ) : 

 J J u u J uopt opt= + − ( ) ( ) 0  
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Passos na demonstração do Princípio de Pontryagin 

• Modificação do funcional de custo através de uma funcional de custo por 

forma a simplificar o cálculo da sua variação quando o controlo é 

perturbado 

• Cálculo da relação existente entre uma variação "pequena" no controlo 

óptimo e a correspondente variação no funcional. Retêm-se apenas 

termos de 1ª ordem 

• Exprimir a condição de que a variação do funcional é negativa através de 

uma condição de máximo na Hamiltoniana para cada instante de 

tempo. 
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Modified objective function 

 J J t x t f x t u t dt

T

= −  −  ( ) ( ) ( ( ), ( ))
0

 

Along the plant trajectories, the term inside the square brackets is zero and 

J J= , and hence the u  that optimizes J  is the same that optimizes J . 
 

Therefore, we can select    such as to simplify the problem. 
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The Hamiltonian 

Define the Hamiltonian by 

( ) ( ) ( )H x u f x u L x u , , , ,=  +  

With this definition 

  ( ) ( ) J J t x t f x t u t dt x T L x u f x u x dt

T T

= −  − = + +  −    ( ) ( ) ( ( ), ( )) ( ( ) , , 
0 0


 

or 

( ) ( ) J x T H t x t u t t x t dt

T

= + −  ( ) ( ), ( ), ( ) ( ) ( ) 
0
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The optimal profile 
 

Let  u t t T( ), 0    be the optimal control function 

Together with the initial condition, it determines the state function along the 

optimal profile  x t t T( ), 0   . 

 
  

T T0 0t

u(t)
x(t)

t
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Optimal control variation 

Perturb the optimal control 𝑢 to obtain a perturbed control 𝑣 

 

The perturbatuion is small in the sense that for all the components ui  and vi   

u t v t dti i

T

( ) ( )− 
0


 

where   is a small positive real number. 
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The state trajectory that corresponds to 𝑣 deviates little from the optimal one 

Let x t( ) be this state variation. 

 

Let J  be the corresponding variation in the objective function 

J J v J u= −( ) ( )  

If 𝑢 is optimal, this variation is negative. 

  

T T0 0t

u(t)
x(t)

t

v(t)
x(t)+x(t)
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Computation of the functional variation 

Remember that 

( ) ( ) J x T H t x t u t t x t dt

T

= + −  ( ) ( ), ( ), ( ) ( ) ( ) 
0

 

The variation is thus 

( ) ( ) ( ) ( )       J x T x T x T H x x v H x u x dt

T

= + − + + − −  ( ) ( ) ( ) , , , , 
0
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Integration by parts formula: 

Since     ( )
d

dt
ab ab ab= + 

    it is        
( ) ( ) ( ) ab dt ab ab dt

T
T

T

0
0

0

 = −
 

Apply this rule with 

a x=         b =   

 =  −  −          ( ) ( ) ( ) ( ) xdt T x T x xdt

T T

0 0

0 0
 

Remark that x( )0 0=  because the control variation does not change the initial 

condition. 
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 =  −        ( ) ( ) xdt T x T xdt

T T

0 0
 

We have concluded that 

( ) ( ) ( ) ( )       J x T x T x T H x x v H x u x dt

T

= + − + + − −  ( ) ( ) ( ) , , , , 
0

 

Therefore: 

( ) ( ) ( ) ( )         J x T x T x T T x T H x x v H x u x dt

T

= + − −  + + − +  ( ) ( ) ( ) ( ) ( ) , , , , 

0
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( ) ( ) ( ) ( )         J x T x T x T T x T H x x v H x u x dt

T

= + − −  + + − +  ( ) ( ) ( ) ( ) ( ) , , , , 

0

 

 

Make 1st orderTaylor series approximations: 

( ) ( ) ( )  x T x T x T x T x Tx( ) ( ) ( ) ( ) ( )+  +   

( ) ( ) ( )H x x v H x v H x v xx    , , , , , ,+  +  
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Up to 1st order terms: 

( )  ( )  ( ) ( )        J x T T x T H x u xdt H x v H x u dtx x

T T

= −  + +  + −  ( ) ( ) ( ) , ,  , , , ,
0 0

 

If   is selected to satisfy 

( )−  = ( ) ( ), ( ), ( ) t H t x t u tx  

With the final condition 

( ) = ( ) ( )T x Tx  

The expression for the variation of the functional becomes 

( ) ( )   J H t x t v t H t x t u t dt

T

= − ( ), ( ), ( ) ( ), ( ), ( )
0
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( ) ( )   J H t x t v t H t x t u t dt

T

= − ( ), ( ), ( ) ( ), ( ), ( )
0

 

 

 

This expression shows the effect of a control variation on the objective 

function. 

Remark that  , x  and u  are known and independent of the perturbed control 

v . 

In particular, x  and   are computed by integrating the state and co-state 

equations with the optimal control u . 
  

Perturbed Optimal 
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( ) ( )   J H t x t v t H t x t u t dt

T

= − ( ), ( ), ( ) ( ), ( ), ( )
0

 

If u  is optimal, at any instant t: 

( ) ( )H t x t v H t x t u t ( ), ( ), ( ), ( ), ( )  

 v U  

This statement must be proved. 

The proof is possible because if happens for an arbitrary control perturbation. 
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( ) ( )   J H t x t v t H t x t u t dt

T

= − ( ), ( ), ( ) ( ), ( ), ( )
0

 

Assume that there is an instant t1  and a function   such that 

( ) ( )H t x t t H t x t u t  ( ), ( ), ( ) ( ), ( ), ( )1 1 1 1 1 1  

Since H  is a continuous function, there exists an interval  t t1 1− + ,  in 

which this property holds. Let v t u t( ) ( )=  except in this interval in which we 

select v t t( ) ( )=  . For this perturbed function 

( ) ( )   




J H t x t v t H t x t u t dt
t

t

= − 
−

+

 ( ), ( ), ( ) ( ), ( ), ( )

1

1

0  

Where the inequality results from the integrand function being always positive. 

This fact contradicts the assumption that u  is the optimal control. 
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Problems with equality constraints on the terminal state 

Let 𝑥 be the state of a plant with input 𝑢 defined by 

  ( , ) ( ) ,x f x u x x t T= = 0 00    u t U( )   

𝑇  given 

Find the function u , defined in the time interval  0, T  that maximizes 

J u x T L x u dt

T

( ) ( ( )) ( , )= + 
0

 

Subject to the equality constraints in the terminal state 

x T xi i( ) =     i r n= 1 2, , ,  
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Maximum Principle (Equality constraints on the terminal state) 

Alomng the optimal trajectory for x, u and  the following necessary conditions 

for the maximization of J are verified 

  ( , ) ( ) ,x f x u x x t T= = 0 00  u t U( )   

x T xi i( ) =     i r n= 1 2, , ,  

( ) ( )( ) ( ) ( )( )−  =  + ( ) ( ) , , t t f x t u t L x t u tx x  

( ) ( ) = = + +i x i
T x T i r r n ( ) , , ,1 2   

For each t, the Hamiltonian H x u f x u L x u( , , ) ( , ) ( , ) =  +  is maximum for the 

optimal value of 𝑢(𝑡). 
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Free terminal time problems 

In addition to the conditions of the Maximum Principle, the following condition 

must hold: 

( )H T x T u T ( ), ( ), ( ) = 0  
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The Linear Quadratic Problem 

Dynamics: 

( ) ( ) ( )x t Ax t bu t= +  

x x( )0 0=          u t Rm( )   

Cost functional: 

 J x t Qx t u Ru dt

T

=  + 
1

2
0

( ) ( )
       Q Q=   0      R R=   0  

Since we want to minimize J  the Lagrangian is 

L x u x Qx u Ru( , ) ( )= −  + 
1

2   

T fixo 
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Adjoint equation 

−  =  +  f Lx x  

−  =  −  ( ) ( ) ( ) t t A x t Q      subject to the terminal condition    ( )T = 0  

 

Hamiltonian 

H x u f x u L x u( , , ) ( , ) ( , ) =  +  

H x u t Ax t t bu t x t Qx t u t Ru t( , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  =  +  −  − 
1

2

1

2  
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Minimum condition on the Hamiltoniana 

The Hamiltonian 

H x u t Ax t t bu t x t Qx t u t Ru t( , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  =  +  −  − 
1

2

1

2  

Is a quadratic function. A necessary condition of minimum is therefore 





H

u
= 0  

or 

 −  = ( ) ( )t b u t R 0  

Thus, the optimal control verifies 

u t R b t( ) ( )= 
−1    
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Thus, the optimal trajectory verifies 

( ) ( ) ( )x t Ax t bR b t= + 
−1   

( ) ( ) ( ) t Qx t A t= −   

Subject to 

x x( )0 0=       ( )T = 0  

This is a problem in which the unknowns (𝑥 and ) are specified at two points 

(0 and 𝑇). It is said to be a Two point boundary value problem. 

How to solve it? 

  

u topt ( )
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State and co-state equations with optimal control 

x Ax bR b= + 
−1   

 = − Qx A  

Assume that there is a matrix P t( )  such that 

 = −Px  

Under this assumption, the state and co-state equations can be written as 

 x A bR b P x= − 
−1

 

  = + Q A P x  
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Let’s try to get an equation for P t( ) . We have 

 = −Px  

Differentiate 

   = − −Px Px  

Use the state and co-state equations 

( ) ( )Q A P x Px P A bR b P x+  = − − − 
− 1

 

Factorize x  

 P PA A P PbR b P Q x+ +  −  + =−1 0  
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 P PA A P PbR b P Q x+ +  −  + =−1 0  

In order that this identity holds for all x , the term between brackets must 

vanish. 
 

In this way, we arrive at the Riccati differential equation: 

− = +  −  +−P PA A P PbR b P Q1

 

P T( ) = 0               (why?) 
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Linear Quadratic (LQ) Problem 

Given a system with linear dynamics 

( ) ( ) ( )x t Ax t bu t= +         x x( )0 0=          u t Rm( )   

The control that minimizes the quadratic cost over an infinite horizon 

 J x t Qx t u Ru dt

T

=  + 
1

2
0

( ) ( )        Q Q=   0     R R=   0  

Is given by the state feedback with time varying gain: 

u t K t x t( ) ( ) ( )= −       K t R B P t( ) ' ( )= −1
 

Where 𝑃(𝑡) is a symmetric positive definite matrix that satisfies the Riccati 

differential equation  

− = +  −  +−P PA A P PbR b P Q1
   P T( ) = 0   
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Example (LQ Control of a 1st order system) 

Consider the 1st order, open loop unstable system 

( ) ( ) ( )x t x t u t= +       x( )0 1=  

Find the control law that minimizes 

 J u x t ru t dt
T

( ) ( ) ( )= +
1

2

2 2

0      T r 0 0,  

The solution is given by 

 ( ) ( ) ( )p t p t
r

p t= − + −2
1

12

          p T( ) = 0  

u t K t x t( ) ( ) ( )= −       K t
r

p t( ) ( )=
1
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When the weight in the control action, 𝑟, decreases: 

• The closed-loop becomes faster 

• The controller gain increases 
 

Increasing the horizon, 𝑇, the solution of the Riccati equation is initially a 

constant and there is a transient close to the end of 𝑇. 

 

This suggests that, when T →   the solution of the Riccati equation becomes 

connsatnt for all times and the optimal control is a constant feedback of the 

state. 

  



CMNO – Optimal Control  88 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

The previous example suggests the consideration of the problem that consists 

in minimizing a cost over an infinite horizon 

 J x t Qx t u t Ru t dtLQ



= + ' ( ) ( ) ' ( ) ( )
0  

The solution is given by the constant state feedback ciontrol law 

u t Kx t( ) ( )= −      K R B P= −1 '  

where P  is the solution of the algebraic Riccati equation, given by 

PA A P PbR b P Q+  −  + =−1 0  
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If the system 

( ) ( ) ( )x t Ax t bu t= +  

Is stabilizable, i. e., if there is a vector if gains 𝐹 such that the closed-loop 

system 

( )( ) ( )x t A bF x t= −  

Is stable, then the solution of the algebraic Riccati equation is positive 

semidefinite (at least) and corresponds to the limit of the solution of the Riccati 

differential equation when 𝑇 increases. 
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Problem: Given the system defined by the block diagram 

 

 find the values of k1  and k2  that minimize 

 J x Qx t u Ru t dt= +


 ' ( ) ' ( )
0      

Q =










1 0

0 01.      R = 1 

  

1

s+1

1

s

xxu0

k k

2 1

2 1

-

+

+
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State model of the open-loop system 

X s
s

X s1 2

1
( ) ( )=

   and hence    ( ) ( )x t x1 2=  

X s
s

U s2

1

1
( ) ( )=

+  or sX s X s U s2 2( ) ( ) ( )= − +  and hence  ( ) ( ) ( )x t x t u t2 2= − +  

The open-loop state model is thus 





x

x

x

x
u

1

2

1

2

0 1

0 1

0

1









 = −


















 +








  
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In this case, the algebraic Riccati equation 

PA A P PBR C P Q+ − + =−' '1 0  

becomes 

 
p p

p p

p p

p p

p p

p p

p p

p p

11 12

12 22

11 12

12 22

11 12

12 22

11 12

12 22

0 1

0 1

0 0

1 1

0

1

1

1
0 1

1 0

0 01

0 0

0 0









 −









 + −


















 −



























 +









 =









.  

or 

0

0

0 0 1 0

0 01

0 0

0 0

11 12

12 22 11 12 12 22

12

2

12 22

12 22 22

2

p p

p p p p p p

p p p

p p p

−

−









 + − −









 −









 +









 =









.  
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0

0

0 0 1 0

0 01

0 0

0 0

11 12

12 22 11 12 12 22

12

2

12 22

12 22 22

2

p p

p p p p p p

p p p

p p p

−

−









 + − −









 −









 +









 =









.  

Equating the entries of the matrices in both members yields: 

p12

2 1=  

p p p p11 12 12 22 0− − =  

( )2 01 012 22 22

2p p p− − + =.  

The equation p12

2 1=  is verified by p12 1=  . However, only the positive root 

leads to a positive definite matrix 𝑃. Therefore, p12 1= . 
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p p p p11 12 12 22 0− − =  

( )2 01 012 22 22

2p p p− − + =.  

Being p12 1= , these equations become 

p p11 22 1− =  

p p22

2

222 19 0+ − =.  

The 2nd equation has roots − 1 2 9. . Again, only the positive root leads to a 

positive definite 𝑃. Thus: 

P =










17 1

1 0 7

.

.   
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P =










17 1

1 0 7

.

.  

The vector of optimal gains is given by  

K R B P= −1 '  

   K =








 =0 1

17 1

1 0 7
1 0 7

.

.
.

 

The optimal LQ control law is therefore 

( )u t x x( ) .= − +1 20 76  

This computation may also be performed with MATLAB (Control Systems 

Toolbox) using the function lqr (continuous time) or dlqr (discrete time). 
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Output quadratic regulation with infinite horizon 

Model: 

( ) ( ) ( )x t Ax t bu t= +                  y t Cx t( ) ( )=  

Cost functional 

 J y t u t dt



= +
2 2

0
( ) ( )  

Since 

y t x t C Cx t2 ( ) ' ( ) ' ( )=  

This problem reduces to the previous one by selecting Q  as 

Q C C= '  
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The solution of the problem that consists of minimizing 

 J y t u t dt



= +
2 2

0
( ) ( )  

where the system is modelled by 

( ) ( ) ( )x t Ax t bu t= +                  y t Cx t( ) ( )=  

Is given by 

u t Kx t( ) ( )= −      K R B P= −1 '  

where P  is the unique positive definite solution of the algebraic Riccati 

equation 

PA A P Pbb P C C+  −  + =
1

0


'  
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In relation to this controil law, we have the following theorem: 
 

If the pair (A, B) is stabilizable, and the pair (A, C) is observable, the positive 

definite solution of the algebraic Rioccati equation exists and is unique, and 

the closed loop system is asymptotically stable. 
 

The pair (A,C) is observable if 

car

C

CA

CA

n n x

n


−



















= =

1

dim( )
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Definition 

A matrix P  is positive definite if 

x Px'  0                 x 0  

Is said to be positive semidefinite if 

x Px'  0                 x 0  
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Problem: What is the place of the closed-loop poles that corresponds to 

minimize J  (for SISO systems)? 

 

Answer [Chang/Letov]: The poles of the optimal closed-loop system (with 

=T ) are the n  stable roots of the degree 𝟐𝒏 polynomial )(s  

)()(
1

)()()( sbsbsasas −+−=
  

where 

BAsIadjCsb )()( −=  

)det()( AsIsa −=  

  

Open-loop zeros 

Open-loop poles 
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)()(
1

)()()( sbsbsasas −+−=
  

If 1ss =  is a root of )(s , then: 

0)()(
1

)()()( 11111 =−+−= sbsbsasas
  

Hence, for 1ss −= : 

0)()(
1

)()()( 11111 =−+−=− sbsbsasas
  

Meaning that if 1ss =  is a root of )(s , then 1ss −=  is also a root. 
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The roots of )(s  are symmetric with respect to the imaginary axis. 

 

 

Since the poles of the controlled system are given by the roots of )(s  on the 

left-hand plane, then the system controlled with the LQ law with an infinite 

horizon is asymptotically stable. 
  

We can always 

select n  stable 

poles 
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Solution of the LQ ( =T ) problem by pole placement  

The solution of the infinite horizon LQ problem may be done as follows: 

1. Compute the polynomial 

)()(
1

)()()( sbsbsasas −+−=
  

2. Compute the )(san =  roots of )(s on the left half-plane. 

3. Compute the vector of controller gains such that the closed loop system has 

the poles coincident with the roots found in step 2.  
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Example 

Given the system 

uxx 








−
+








=

1

0

04

10


         xy 01=  

find the state feedback control law that minimizes 

  10)()(
0

22 =+= 


  dttutyJ  
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State equations 

21 xx =  

uxx −= 12 4  

Equivalent block diagram 

 

  



CMNO – Optimal Control  106 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

           

Us

s

sY )1(
4

1

1

2

2

+

−

−

=
                

U
s

s
Y

4

1
2 −

+
−=

 

 

)1()( ssb +−=  

4)( 2 −= ssa  
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The optimal poles are the stable roots of 

)()(
1

)()()( sbsbsasas −+−=
  

4)( 2 −= ssa           )1()( ssb +−=  

)1)(1(
1

)4()( 22 ssss −++−=
  

2sz =                     0)1(
1

)4( 2 =−+− zz
  

01.161.82 =+− zz       6.41 =z       5.32 =z  

14.21 =s      14.22 −=s      87.13 =s       87.14 −=s  

  

21 s−=
 

Change of 

variable 
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The optimal gain vector is computed such that the closed-loop poles are         

–2.14 and –1.87 
 

The desired closed-loop polynomial is thus 

401.4)87.1)(14.2()( 2 ++=++= sssss  
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Block diagram of the closed-loop system with generic state feedback: 

     
  

u
y

4

1 1
s s

+

-
1+s

kk

xx

1

21

2

-

+

+
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Closed-loop characteristic equation 

( ) 04
1

1 212
=++− ksk

s  

Closed-loop characteristic polynomial 

4)( 21

2 +++= kskssK  

Compare with the desired characteristic polynomial  

 ( ) .s s s= + +2 4 01 4  

The optimal gains are 

001,4 21 == optopt kk  
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Root square locus 

The optimal closed-loop poles are the stable roots of  

a s a s b s b s( ) ( ) ( ) ( )− + − =
1

0
  

This equation may be written as 

1
1




−

−
= −

b s b s

a s a s

( ) ( )

( ) ( )  

What happens to the roots of this equation when   varies? 
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a s a s b s b s( ) ( ) ( ) ( )− + − =
1

0
  

For   very big, the equation becomes approximatively 

a s a s( ) ( )− = 0  

Thus, for   very big, the optimal poles are either the open loop poles if they 

are stable, or their symmetric if they are not. 
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a s a s b s b s( ) ( ) ( ) ( )− + − =
1

0
  

What happens for   very little? 
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Root square locus - example 


.

x x u=








 +

−











0 1

0 25 0

0

1  

 y = 1 1  

The corresponding transfer function is 

b s

a s

s

s

( )

( ) .
=

+

−

1

0 252  
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The root square locus is 
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Relative stability of the LQ controller 

( ) ( ) ( )x t Ax t bu t= +  

)()( tCxty =  

 

Laplace  transform of the open loop state transition matrix: 

( ) 1
)(

−
−= AsIs  
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Loop gain: 

Intrrupt the loop and multiply all the gains. 

               bsksL )()( =  

Kalman inequality: 

1)(1 + jL  

  

(sI-A)  b
-1

-

k

u x
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A consequence of the Kalman inequality: 

1)1()(1)(1 −−+  jLjL  

 

1

|L(j   )-(-1)|

Re

Im

L(j  )

-1



Conclusion: The Nyquist dyagram 

of )( jL  never enters the circle 

of radius 1, with centre in –1. 
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-2

Re

Im

-1

In the worst case, for open-loop 

unstable plants, the LQ controller 

allows a gain reduction of  ½ before 

the loop gain crosses –1. 

 

The gain margin is at least 0.5. 

For open-loop stable plants the gain 

margin is ∞. 
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Re

Im

-1

60 o

In the worst case, there can be a 

reduction of 60o before –1 is reached. 

 

The phase margin of the LQ is at 

least 60o. 
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The Kalman-Bucy filter 

Objective: Optimize the observer gains. 
 

Process model: 

)()()()( twtbutAxtx ++=  

)()()( tvtCxty +=  

v  and w  are Gaussian and such that 

  )()()(  o

T QtwtwE =+             )()()(  o

T RtvtvE =+  

  

White gaussian 

noise 
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The Kalman-Bucy filter propagates in a recursive way the state estimate x̂ that is: 

 

Unbiased (centrada): 

  0)(ˆ)( =− txtxE  

Minimizes: 




−
0

2
)(ˆ)( dttxtx

 

The estimation error has minimum energy. 
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Kalman-Bucy filter equations 

The estimate x̂  is obtained by solving the differential equation: 

))(ˆ)(()()(ˆ)(ˆ txCtyLtbutxAtx o −++=
 

Optimal gain vector (Kalman gain) 

1−= o

T

o RCL  

The matrix    is the symmetric and positive semidefinte solution of the algebraic 

Riccati equation 

01 =−++ − CRCQAA o

T

o

T
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Linear Quadratic Gaussian Regulator (LQG) 

Combines: 

 The state estimation with a Kalman-Bucy filter 

With 

 The feedback of the state estimate x̂  with an optimal LQ, 

Controller, designed assuming that there is acess to the state. 

 

 The Separation Theorem is valid for the LQG controller. 
  

Processo

Filtro K-B k

yu

-
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Rudolph Kalman nasceu em 1930, em Budapest na Hungria. 

Emigrou para os U.S.A., onde estudou no MIT e, posterior- 

mente, na Universidade de Colúmbia, onde fez o seu 

doutoramento. No início dos anos 60, o seu nome ficou 

ligado aos artigos que estabeleceram os fundamentos do 

Controlo LQ e LQG e à filtragem óptima linear com base no 

modelo de estado, que desenvolveu em conjunto com Richard Bucy. 

Foi Kalman que “trouxe” para a comunidade do Controlo os métodos 

desenvolvidos por Lyapunov 70 anos antes e que os aplicou ao estudo da 

estabilidade de sistemas descritos por modelos de estado lineares. 
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LQG regulator equations 

Estimator: 

))(ˆ)(()()(ˆ)(ˆ txCtyLtbutxAtx o −++=
 

1−= o

T

o RCL  

01 =−++ − CRCQAA o

T

o

T

                 0= T
 

Controller 

)(ˆ)( txKtu −=        
PBK T



1
=

       
0

1
=+−+ QPPBBPAPA TT

  
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Transfer function of the LQG regulator 

( ) ooCLQG LCLBKAsIKsG
1

)(
−

++−=  

It is like the RLVE controller transfer function. 

 

The difference is the way in which the controller and estimation gains are 

computed. 
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Loop Transfer Recovery (LTR) 

There is no warranty on the stability margins of LQG due to the inclusion of the 

Kalman-Bucy filter. These margins may be arbitrarily low, depending on the 

characteristics of the noise level. 

Idea: Use the parameters that define the noise statistics, oR and oQ  as design 

knobs to recover the loop-gain of the LQ. 

This is LQG-LTR (LQG loop gain recovery). 
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Pode demonstrar-se que se: 

 1) )(sG  é de fase mínima; 

 2) 10 =R     e    
TBBqQ 2

0 =  

Então 

)()(lim sLsL LQLQG
q

=
→  

Isto sugere que se projecte um filtro de Kalman-Bucy em que o parâmetro q  

é muito elevado. 
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Exemplo: Controlo de um integrador duplo 

 

Este e outros sistemas podem ser modelados como um integrador duplo, 

tomando como variáveis de estado 

zx =1           zx =2  
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Modelo do integrador duplo 

Modelo de estado do integrador duplo: 

 xy

u
x

x

x

x
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



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
+
















=













 

 

Função de transferência do integrador duplo: 

2

1
)(

s
sG =
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Integrador duplo com regulador LQ 

 

Pretende-se esciolher os ganhos 1k  e 2k  por forma a minimizar o custo 

quadrático de horizonte inifinito: 

 


+=
0

22 )()(
2

1
dttutyJLQ 

 

Assume-se que se tem acesso directo à medida de 1x  e 2x . 

  

-
1/s 1/s

k k1

2 xx
1

2
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Equação Algébrica de Riccati (ARE): 

0'
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A ARE fica: 
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Ganho óptimo: 

PBKLQ '
1


=

 

Como 

 10'=B                  








=

21

12
P

 

Vem 

 21=LQK  
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Com os ganhos óptimos, a dinâmica do sistema em cadeia fechada fica: 










−−
=−

21

10
LQBKA

 

Equação característica da cadeia fechada: 

( ) 012det 2 =++=+− ssBKAsI LQ  

Pólos da cadeia fechada 

)1(
2

2
2,1 js −=

 

O sistema em cadeia fechada fica estável e com um coeficiente de 

amortecimento 707.0= . 
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Resposta ao escalão do sistema com controlo LQ 
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Ganho de malha com controlo LQ: 

( ) BAsIKBsKsLLQ

1
)()(

−
−==        →        2

12
)(

s

s
sL

+
=

 

      

Como esperado, o ganho de malha não entra no círculo de raio 1. 
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Modelo do integrador duplo com ruído: 
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
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Os sinais v , 1w  e 2w  são sinais estocásticos mutuamente independentes, 

cujas características estatísticas são usadas para ajustar o ganho de malha: 

  oQtwtw
tw

tw
E =










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
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  oRtvE =)(2
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Diagrama de blocos do integrador duplo com ruído: 

 

Vamos assumir 
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Integrador duplo com controlador LQG 
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1k , 2k  projectados tal 

como no regulador LQ. 

 

1L , 2L  projectados de 

acordo com o 

dimensionamento do 

filtro de Kalman-Bucy 
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Cálculo dos ganhos do filtro de Kalman-Bucy 

Equação de Riccati para o filtro: 

01 =−++ − CRCQAA o

T

o

T

 

Assumindo 








=

32

21





e usando o método dos coeficientes 

indeterminados obtém-se a solução definida positiva: 
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Ganhos óptimos do filtro: 









== −

1
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Função de transferência do compensador LQG: 

LLCBKAsIKG LQLQCLQG
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Pólos da cadeia fechada do integrador duplo com LQG: 

( )j−1
2

2

                 2

3 j−

 

 

 

 

 

 
  

Pólos do sistema 

controlado com LQ, 

supondo acesso ao estado 

 

Pólos do filtro 
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Comparação dos reguladores LQ e LQG 

1. O LQ tem maiores margens de estabilidade. 

2. Nas baixa frequência o ganho de malha do LQ é maior do que o do LQG. 

Isto implica que o LQ tem melhores propriedades de seguimento do que o 

LQG. 

3. A frequência de corte é maior no LQ do que no LQG 

a. O LQ é mais susceptível ao ruído 

b. O LQ é mais rápido a responder 

4. Na alta frequência, a inclinação da curva de ganho é –20dB/déc no LQ e –

60db/déc no LQG. O LQ é mais susceptível ao ruído do que o LQG, mas 

tem melhor estabilidade relativa. 
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Recuperação do ganho de malha no integrador duplo com controlo LQG 

1000,100,1=q  
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