- Please justify all your answers.
- This exam has two pages and twelve questions. The total of points is 20.0.

Chap. 1 - Probability spaces

1. $A(A \subset \Omega)$ is called a co-finite set if A^{c} is finite. Let \mathscr{A} consist of all the finite and co-finite subsets of Ω.

Admit that Ω is finite. Show that, in this case, \mathscr{A} is a σ-algebra on Ω.

- Requested proof

We ought to mention that a minimal set of postulates for a non-empty class of subsets \mathscr{A} of Ω to be a σ - algebra on Ω is:
(i) $\Omega \in \mathscr{A}$;
(ii) $A \in \mathscr{A} \Rightarrow A^{c} \in \mathscr{A}$;
(iii) $A_{1}, A_{2}, \cdots \in \mathscr{A} \Rightarrow \cup_{i=1}^{+\infty} A_{i} \in \mathscr{A}$.

Hence, we have to prove that all these 3 postulates are true for the class of all the finite and co-finite subsets of Ω.
(i) Ω is finite and $\Omega^{c}=\varnothing$ is also finite, we conclude that Ω is co-finite, hence $\Omega \in \mathscr{A}$.
(ii) We know that $A \in \mathscr{A}$ iff it is finite or co-finite and since Ω is finite, then $A^{c}=\Omega \backslash A$ is also finite, thus $A^{c} \in \mathscr{A}$.
(iii) Note that there are $2^{\# \Omega}$ subsets of the finite sample space Ω. Moreover, $\cup_{j=1}^{2 \# \Omega} B_{j}[=\Omega]$ is also finite. Consequently, if we consider $A_{1}, A_{2}, \cdots \in \mathscr{A}$ then $\cup_{i=1}^{+\infty} A_{i} \subseteq \cup_{j=1}^{2^{* \Omega}} B_{j}$, thus $\cup_{i=1}^{+\infty} A_{i}$ is also finite and therefore it belongs to \mathscr{A}.
2. The Borel-Cantelli lemma reads as follows.
(i) If $\sum_{n=1}^{+\infty} P\left(A_{n}\right)<+\infty$ then $P\left(\limsup \lim _{n \rightarrow+\infty} A_{n}\right)=0$.
(ii) If $\sum_{n=1}^{+\infty} P\left(A_{n}\right)=+\infty$ and A_{1}, A_{2}, \ldots are (mutually) independent events then $P\left(\limsup _{n \rightarrow+\infty} A_{n}\right)=1$.

Now, consider $\Omega=(0,1), \mathscr{A}=\mathscr{B}((0,1))$, and P the Lebesgue measure. Show that the sequence of events $\left\{A_{n}=(0,1 / n): n \in \mathbb{N}\right\}$ illustrates two facts.

1. In general, the converse of (i) is not true.
2. The (mutual) independence condition in (ii) is essential.

- Events

$A_{n}=(0,1 / n), \quad P\left(A_{n}\right)=1 / n, \quad A_{n} \downarrow$
For $i, j \in \mathbb{N}$ and $i<j$, we have $P\left(A_{i} \cap A_{j}\right)=P\left(A_{j}\right)=\frac{1}{j} \neq P\left(A_{i}\right) \times P\left(A_{j}\right)=\frac{1}{i} \times \frac{1}{j}=\frac{1}{i j}$. Therefore these events are not (pairwise) independent.

- Checking fact $\mathbf{1}$.

Note that

$$
\begin{aligned}
A_{n} \downarrow & \Rightarrow \limsup _{n \rightarrow+\infty} A_{n}=\bigcap_{n=1}^{+\infty} A_{n}=\varnothing \\
P\left(\limsup _{n \rightarrow+\infty} A_{n}\right) & =P(\varnothing)=0,
\end{aligned}
$$

hence, (i) checks. However, even though $P\left(\limsup { }_{n \rightarrow+\infty} A_{n}\right)=0$, we have

$$
\sum_{n=1}^{+\infty} P\left(A_{n}\right)=\sum_{n=1}^{+\infty} \frac{1}{n}=+\infty
$$

thus, the converse of (i) is not true.

- Checking fact 2.

Looking at these dependent events, at (*), and at (ii), we can conclude that the condition $\sum_{n=1}^{+\infty} P\left(A_{n}\right)=+\infty$ does not imply that $P\left(\limsup { }_{n \rightarrow+\infty} A_{n}\right)=1$ and consequently the independence of A_{1}, A_{2}, \ldots is absolutely essential in (ii).

Chap. 2 - Random variables

3. Let X and Y be two r.v. and prove that $X Y$ is also a r.v.

Hint: Prove that X^{2} is a r.v.; rewrite $X Y$, for example, in terms of a difference between the square of a sum and two squares; take for granted that the sum and difference of two r.v. are also r.v.

- R.v.

Let (Ω, \mathscr{F}) and $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ be two measurable spaces. Then, $X: \Omega \rightarrow \mathbb{R}$ and

$$
X^{-1}(B)=\{\omega \in \Omega: X(\omega) \in B\} \in \mathscr{F}, \quad \forall B \in \mathscr{B}(\mathbb{R}) .
$$

- Auxiliary result

[A function $g: \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable iff $g^{-1}(B)=\{x \in \mathbb{R}: g(x) \in B\} \in \mathscr{B}(\mathbb{R}), \forall B \in \mathscr{B}(\mathbb{R})$. Moreover,] if

$$
g^{-1}((-\infty, z])=\{x \in \mathbb{R}: g(x) \leq z\} \in \mathscr{B}(\mathbb{R}), \quad \forall z \in \mathbb{R},
$$

then $g: \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable.
Now, let us consider $g(X)=X^{2}$.

- for $z<0$,

$$
g^{-1}((-\infty, z])=\left\{x \in \mathbb{R}: g(x)=x^{2} \leq z\right\}=\varnothing \in \mathscr{B}(\mathbb{R}) ;
$$

- for $z \geq 0$,

$$
\begin{aligned}
g^{-1}((-\infty, z]) & =\left\{x \in \mathbb{R}: g(x)=x^{2} \leq z\right\}=\{x \in \mathbb{R}:-\sqrt{z} \leq x \leq \sqrt{z}\} \\
& =(-\infty, \sqrt{z}] \backslash(-\infty,-\sqrt{z})=(-\infty, \sqrt{z}] \cap(-\infty,-\sqrt{z})^{c} \in \mathscr{B}(\mathbb{R}) .
\end{aligned}
$$

As a result, $g(X)=X^{2}$ is a Borel measurable function and therefore a r.v.

- Requested proof

Since we just proved that X^{2} is a r.v. and we can take for granted that the sum and difference of two r.v. are r.v., we conclude that $Y^{2},(X+Y)$, and $(X+Y)^{2}$ are also r.v., and so is

$$
X Y=\frac{-X^{2}-Y^{2}+(X+Y)^{2}}{2}
$$

4. Let: X, Y, and Z be r.v. such that X and Y are identically distributed; $g: \mathbb{R} \rightarrow \mathbb{R}$ be a Borel measurable function.

Show that $g(X)$ and $g(Y)$ are identically distributed and give a simple example to show that $X Z$ and $Y Z$ can have different distributions.

Hint: Consider X a discrete r.v., with values in $\mathbb{R}_{X}=\mathbb{Z} \backslash\{0\}$ and a symmetric p.f.

- R.v.
$X \sim Y$,
$g(X), g(Y)$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a Borel measurable function

- Requested proof

Since g is a Borel measurable function, we can add that $g(X)$ and $g(Y)$ are both r.v. Furthermore,

$$
\begin{aligned}
F_{g(Y)}(z) & =P[g(Y) \leq z]=P[Y \in\{x \in \mathbb{R}: g(x) \leq z\}] \stackrel{X \approx Y}{=} P[X \in\{x \in \mathbb{R}: g(x) \leq z\}]=P[g(X) \leq z] \\
& =F_{g(X)}(z), \quad z \in \mathbb{R},
\end{aligned}
$$

we conclude that $g(X)$ and $g(Y)$ are identically distributed r.v.

- Requested example

X a discrete r.v., with values in $\mathbb{R}_{X}=\mathbb{Z} \backslash\{0\}$ and a symmetric p.f., i.e., $P(X=x)=P(X=-x)$, for $x \in \mathbb{Z} \backslash\{0\}$
$Y=-X, \quad Z=Y$
$X Z=-X^{2}, \quad R_{X Z}=\mathbb{Z}^{-}, \quad Y Z=(-X)^{2}=X^{2}, \quad R_{Y Z}=\mathbb{Z}^{+}$
It suffices to note that the r.v. $X Z$ and $Y Z$ have different ranges to conclude that they cannot possibly have the same distribution.

- [Note

The trivial case of X such that $P(X=0)=1$ is of no interest.]
5. Let $0<\epsilon \leq \frac{1}{16}$ and A, B, and C be events such that:

- $P(A \cap B \cap C)=P\left(A \cap B \cap C^{c}\right)=\frac{1}{8} ;$
- $P\left(A \cap B^{c} \cap C\right)=P\left(A^{c} \cap B \cap C\right)=\frac{1}{8}-\epsilon$;
- $P\left(A \cap B^{c} \cap C^{c}\right)=P\left(A^{c} \cap B \cap C^{c}\right)=\frac{1}{8}+\epsilon$;
- $P\left(A^{c} \cap B^{c} \cap C\right)=\frac{1}{8}+2 \epsilon$;
- $P\left(A^{c} \cap B^{c} \cap C^{c}\right)=\frac{1}{8}-2 \epsilon$.

Show that the events A, B, and C are not mutually independent.

- Events and probabilities

$$
\begin{aligned}
P(A) & =P(A \cap B \cap C)+P\left(A \cap B \cap C^{c}\right)+P\left(A \cap B^{c} \cap C\right)+P\left(A \cap B^{c} \cap C^{c}\right)=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}-\epsilon+\frac{1}{8}+\epsilon=\frac{1}{2} \\
P(B) & =P(A \cap B \cap C)+P\left(A \cap B \cap C^{c}\right)+P\left(A^{c} \cap B \cap C\right)+P\left(A^{c} \cap B \cap C^{c}\right)=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}-\epsilon+\frac{1}{8}+\epsilon=\frac{1}{2} \\
P(C) & =P(A \cap B \cap C)+P\left(A \cap B^{c} \cap C\right)+P\left(A^{c} \cap B \cap C\right)+P\left(A^{c} \cap B^{c} \cap C\right)=\frac{1}{8}+\frac{1}{8}-\epsilon+\frac{1}{8}-\epsilon+\frac{1}{8}+2 \epsilon \\
& =\frac{1}{2}
\end{aligned}
$$

- Requested proof

Note that:

$$
\begin{aligned}
& P(A \cap B)=P(A \cap B \cap C)+P\left(A \cap B \cap C^{c}\right)=\frac{1}{8}+\frac{1}{8}=\frac{1}{4} \equiv P(A) \times P(B) ; \\
& P(A \cap C)=P(A \cap B \cap C)+P\left(A \cap B^{c} \cap C\right)=\frac{1}{8}+\frac{1}{8}-\epsilon=\frac{1}{4}-\epsilon \neq P(A) \times P(C) .
\end{aligned}
$$

Hence, events A and C are not pairwise independent and therefore events A, B, and C cannot be mutually independent.
6. Let X and Y be two independent r.v. with common p.d.f. $f(x)=x^{-2} \times I_{[1,+\infty)}(x)$.

Derive (directly) the c.d.f. of $Z=\sqrt{X Y}$ and describe a method to generate pseudorandom numbers from the distribution of Z.

Note: There is no explicit expression for the quantile function of Z.

- Random vector and range
$(X, Y), \quad X \Perp Y, \quad X \sim Y, \quad f_{X}(x)=f_{Y}(x)=f(x)=\left\{\begin{array}{ll}x^{-2}, & x \geq 1 \\ 0, & \text { otherwise },\end{array} \quad \mathbb{R}_{X, Y}=[1,+\infty)^{2}\right.$
- Transformation of (X, Y) and its range

$$
Z=g(X, Y)=\sqrt{X Y}, \quad \mathbb{R}_{Z}=g\left(\mathbb{R}_{X, Y}\right)=[1,+\infty)
$$

- C.d.f. of Z

$$
\begin{aligned}
F_{Z}(z) & =P(\sqrt{X Y} \leq z) \\
& =\iint_{\left\{(x, y) \in[1,+\infty)^{2}: \sqrt{x y} \leq z\right\}} f_{X, Y}(x, y) d y d x \\
& =\iint_{\left\{(x, y) \in[1,+\infty)^{2}: y \leq \frac{z^{2}}{x}\right\}} f(x) \times f(y) d y d x \\
& =\int_{1}^{i^{i . d} \cdot}=Y \int_{1}^{\frac{z^{2}}{x}} \frac{1}{x^{2}} \times \frac{1}{y^{2}} d y d x \\
& =\int_{1}^{z^{2}} \frac{1}{x^{2}} \times\left(-\left.\frac{1}{y}\right|_{1} ^{\frac{z^{2}}{x}}\right) d x \\
& =\int_{1}^{z^{2}} \frac{1}{x^{2}} \times\left(1-\frac{x}{z^{2}}\right) d x \\
& =\left.\left(-\frac{1}{x}-\frac{\ln (x)}{z^{2}}\right)\right|_{1} ^{z^{2}} \\
& =\frac{z^{2}-2 \ln (z)-1}{z^{2}}, z \geq 1 .
\end{aligned}
$$

- Generation of a pseudorandom number from Z

There is no explicit expression for the quantile function of Z but there is one for the common quantile function of X and Y. Indeed:

$$
\begin{aligned}
& F(x)=P(X \leq x)= \begin{cases}0, & x<1 \\
\int_{1}^{x} \frac{1}{t^{2}} d t=-\left.\frac{1}{t}\right|_{1} ^{x}=1-\frac{1}{x}, & x \geq 1\end{cases} \\
& F(x)=u \Leftrightarrow 1-\frac{1}{x}=u \Leftrightarrow F^{-1}(u)=\frac{1}{1-u}, \quad 0<u<1 .
\end{aligned}
$$

Furthermore, by resorting to the quantile transformation, we know that if $U \sim$ uniform $(0,1)$ then $F^{-1}(U) \equiv \frac{1}{1-U} \sim X \sim Y$.
Consequently, to generate a pseudorandom number from Z, z, we have to:

- independently generate two pseudorandom numbers, u_{1} and u_{2}, from the uniform $(0,1)$ distribution;
- assign $x=\frac{1}{1-u}, y=\frac{1}{1-u_{2}}$, and, finally, $z=\sqrt{x y}$.

7. Admit that jobs arrive to a workstation according to a non-homogeneous Poisson process with intensity function $\lambda(t)=1+e^{-t}, t \geq 0$ (time in hours).

Suppose two jobs arrived during the first hour. What is the probability that both jobs arrived during the first 20 minutes?

- Stochastic process

$\{N(t): t>0\} \sim N H P P(\lambda(t))$
$N(t)=$ number of jobs arrived to the workstation until time t

- Intensity and mean value functions

$$
\begin{aligned}
\lambda(t) & =1+e^{-t}, \quad t \geq 0 \\
m(t) & =\int_{0}^{t} \lambda(s) d s=\int_{0}^{t}\left(1+e^{-s}\right) d s=t+1-e^{-t}, \quad t \geq 0
\end{aligned}
$$

Requested probability

Since

$$
(N(s) \mid N(t)=n) \quad \sim \quad \operatorname{binomial}(n, m(s) / m(t)), \quad 0<s<t
$$

$s=1 / 3, t=1, n=2$, and

$$
\frac{m(s)}{m(t)}=\frac{1 / 3+1-e^{-1 / 3}}{1+1-e^{-1}} \simeq 0.377914
$$

we get

$$
P[N(1 / 3)=2 \mid N(1)=2] \simeq\binom{2}{2} \times(0.377914)^{2} \times(1-0.377914)^{2-2} \simeq(0.377914)^{2} \simeq 0.142819
$$

Chap. 4 - Expectation

8. Let X and Y be a two i.i.d. r.v. with standard normal distribution. Show that $E(\max \{X, Y\})=\frac{1}{\sqrt{\pi}}$.

- R.v.
$X \stackrel{i . i . d .}{\sim} Y \sim \operatorname{normal}(0,1), \quad f_{X}(x)=f_{Y}(x)=\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, \quad-\infty<x<+\infty$
- Requested expected value

$$
\begin{aligned}
E(\max \{X, Y\}) \quad & \stackrel{X}{=} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \max \{x, y\} \times f_{X}(x) \times f_{Y}(y) d y d x \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \max \{x, y\} \times \phi(x) \times \phi(y) d y d x \\
& =\int_{-\infty}^{+\infty}\left[\int_{y}^{+\infty} x \times \phi(x) d x\right] \times \phi(y) d y+\int_{-\infty}^{+\infty}\left[\int_{x}^{+\infty} y \times \phi(y) d y\right] \times \phi(x) d x \\
& =2 \times \int_{-\infty}^{+\infty}\left[\int_{y}^{+\infty} x \times \phi(x) d x\right] \times \phi(y) d y \\
& =2 \times \int_{-\infty}^{+\infty}\left[\int_{y}^{+\infty} \frac{x e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}} d x\right] \times \phi(y) d y \\
& =2 \times \int_{-\infty}^{+\infty}\left(-\left.\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}\right|_{y} ^{\infty}\right) \times \phi(y) d y \\
& =2 \times \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} \times \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y \\
& =\frac{1}{\pi} \sqrt{2 \pi(1 / \sqrt{2})^{2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi(1 / \sqrt{2})^{2}}} e^{-\frac{y^{2}}{2(1 / \sqrt{2})^{2}}} d y \\
& =\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} f_{N\left(0,(1 / \sqrt{2})^{2}\right)}^{(y) d y} \\
& =\frac{1}{\sqrt{\pi}} .
\end{aligned}
$$

9. Admit that $(X, Y) \sim \operatorname{normal}_{2}(\underline{\mu}, \Sigma)$, where $\underline{\mu}$ and Σ are such that: $\mu_{X}=55.57, \mu_{Y}=75.86 ; \sigma_{X}^{2}=7.6735$, $\sigma_{Y}^{2}=35.5510, \operatorname{cov}(X, Y)=13.6531$.
Compute $P(Y>X+10)$.

- Random vector (X, Y)
$(X, Y) \sim \operatorname{normal}_{2}(\underline{\mu}, \Sigma), \quad$ where: $\quad \underline{\mu}=\left[\begin{array}{l}55.57 \\ 75.86\end{array}\right] ; \quad \Sigma=\left[\begin{array}{rr}7.6735 & 13.6531 \\ 13.6531 & 35.5510\end{array}\right]$.
- Requested probability and auxiliary r.v.
$P(Y>X+10)=P(W=Y-X>10)$
$W=Y-X=\mathbf{C} \times\left[\begin{array}{l}X \\ Y\end{array}\right]+\underline{b}, \quad$ where: $\quad \mathbf{C}=\left[\begin{array}{ll}-1 & 1\end{array}\right] ; \quad \underline{b}=[0]$.
$W^{T h .} \stackrel{4.216}{\sim} \operatorname{normal}(E(W), V(W))$, where:

$$
\left.\begin{array}{rl}
E(W) & =\mathbf{C} \underline{\mu}+\underline{b}-55.57+75.86+0=20.29 \\
V(W) & =\mathbf{C} \Sigma \mathbf{C}^{\top}=\left[\begin{array}{ll}
-1 & 1
\end{array}\right] \times\left[\begin{array}{rr}
7.6735 & 13.6531 \\
13.6531 & 35.5510
\end{array}\right] \times\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& =[-7.6735+13.6531-13.6531+35.5510
\end{array}\right] \times\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=15.9183 .
$$

Hence,

$$
\begin{aligned}
P(W>10) & =1-\Phi\left[\frac{10-E(W)}{\sqrt{V(W)}}\right] \\
& =1-\Phi\left(\frac{10-20.29}{\sqrt{15.9183}}\right) \\
& \simeq 1-\Phi(-2.58) \\
& =\Phi(2.58) \\
& \stackrel{\text { tables }}{=}
\end{aligned} 0.9951 .
$$

10. Prove that complete convergence of sequences of r.v. is stronger than almost sure convergence.

Hint: Without loss of generality, assume that $\left\{X_{n}: n \in \mathbb{N}\right\}$ is completely convergent to $0\left(X_{n} \xrightarrow{c} 0\right)$ and use an alternative criterion when it comes to almost sure convergence of $\left\{X_{n}: n \in \mathbb{N}\right\}$ to zero ($X_{n} \xrightarrow{\text { a.s. }} 0$).

- Sequence of r.v.
$\left\{X_{n}: n \in \mathbb{N}\right\}$
- Requested proof

Without loss of generality, let us assume that $\left\{X_{n}: n \in \mathbb{N}\right\}$ is completely convergent to $0\left(X_{n} \xrightarrow{c} 0\right)$, i.e., $\sum_{n=1}^{+\infty} P\left(\left|X_{n}\right|>\epsilon\right)<+\infty, \forall \epsilon>0$. Equivalently,

$$
\lim _{n \rightarrow+\infty} \sum_{k=n}^{+\infty} P\left(\left|X_{k}\right|>\epsilon\right)=0, \quad \forall \epsilon>0
$$

In order to relate this mode of convergence with a.s. convergence, recall that

$$
\begin{aligned}
X_{n} \xrightarrow{\text { a.s. } 0} & \Leftrightarrow P\left(\left\{\omega: \lim _{n \rightarrow+\infty} X_{n}(\omega)=0\right\}\right)=1 \\
& \Leftrightarrow \lim _{n \rightarrow+\infty} P\left(\sup _{k \geq n}\left|X_{k}\right|>\epsilon\right)=0, \quad \forall \epsilon>0 \\
& \Leftrightarrow \lim _{n \rightarrow+\infty} P\left(\cup_{k \geq n}\left\{\left|X_{k}\right|>\epsilon\right\}\right)=0, \quad \forall \epsilon>0 .
\end{aligned}
$$

Since the probability P is semi-additive, we obtain, for every $\epsilon>0$,

$$
\lim _{n \rightarrow+\infty} P\left(\cup_{k \geq n}\left\{\left|X_{k}\right|>\epsilon\right\}\right) \leq \lim _{n \rightarrow+\infty} \sum_{k=n}^{+\infty} P\left(\left|X_{k}\right|>\epsilon\right) \stackrel{(\star)}{=} 0 .
$$

Hence, $X_{n} \xrightarrow{\text { a.s. }} 0$.
11. Let $\left\{X_{n}: n \in \mathbb{N}\right\}$ be a sequence of i.i.d. r.v. with common p.d.f. $f_{X}(x)=\frac{2 x}{3 \alpha^{2}} \times I_{[\alpha, 2 \alpha]}(x)$, where α is an unknown positive constant.
After having derived the c.d.f. of $Y_{n}=\frac{X_{(n: n)}}{2}$, where $X_{(n: n)}=\max _{i=1, \ldots, n} X_{i}$, show that $Y_{n} \xrightarrow{d} \alpha$.

- Sequence of r.v.
$\left\{X_{n}: n \in \mathbb{N}\right\}$
$X_{n} \stackrel{i . i . d .}{\sim} X, \quad n \in \mathbb{N}$
$f_{X}(x)= \begin{cases}\frac{2 x}{3 \alpha^{2}}, & \alpha \leq x \leq 2 \alpha \quad(\alpha>0) \\ 0, & \text { otherwise }\end{cases}$
- Another sequence of r.v.
$\left\{Y_{n}: n \in \mathbb{N}\right\}$
$Y_{n}=\frac{X_{(n: n)}}{2}$

- Requested c.d.f.

For $y \in\left[\frac{\alpha}{2}, \alpha\right]$, we have

$$
\begin{aligned}
F_{Y_{n}}(y) & =P\left[Y_{n}=\frac{X_{(n: n)}}{2} \leq y\right]=P\left[X_{(n: n)} \leq 2 y\right]=\left[F_{X}(2 y)\right]^{n}=\left(\int_{\alpha}^{2 y} \frac{2 x}{3 \alpha^{2}} d x\right)^{n}=\left(\left.\frac{x^{2}}{3 \alpha^{2}}\right|_{\alpha} ^{2 y}\right)^{n} \\
& =\left(\frac{4 y^{2}}{3 \alpha^{2}}-\frac{1}{3}\right)^{n}
\end{aligned}
$$

Moreover,

$$
F_{Y_{n}}(y)= \begin{cases}0, & y \leq \frac{\alpha}{2} \\ \left(\frac{4 y^{2}}{3 \alpha^{2}}-\frac{1}{3}\right)^{n}, & \frac{\alpha}{2}<y<\alpha \\ 1, & y \geq \alpha\end{cases}
$$

- Requested proof

Since $\frac{4 y^{2}}{3 \alpha^{2}}-\frac{1}{3} \in(0,1)$, when $y \in\left(\frac{\alpha}{2}, \alpha\right)$, we have

$$
\lim _{n \rightarrow+\infty} F_{Y_{n}}(y)=\left\{\begin{array}{ll}
0, & y \leq \frac{\alpha}{2} \\
0, & \frac{\alpha}{2}<y<\alpha \\
1, & y \geq \alpha
\end{array}= \begin{cases}0, & y<\alpha \\
1, & y \geq \alpha\end{cases}\right.
$$

which coincides with c.d.f. of a degenerate r.v. at $\alpha, F_{\alpha}(y)=I_{[\alpha,+\infty)}(y)$, for all $x \in \mathbb{R}$, thus, for all points at which $F_{\alpha}(y)$ is continuous. Hence, $Y_{n} \xrightarrow{d} \alpha$.
12. Let: $\left\{X_{n}: n \in \mathbb{N}\right\}$ be a sequence of i.i.d. r.v. to $X \sim \operatorname{beta}(\alpha, 1)$, where α is an unknown positive constant; $U_{n}=-\frac{1}{n} \sum_{i=1}^{n} \ln \left(X_{i}\right)$.
Prove that $U_{n} \xrightarrow{P} \alpha^{-1}$.
Note: $Z_{n}=2 n \alpha \times U_{n} \sim \chi_{(2 n)}^{2}$.

- Sequence of r.v.
$\left\{X_{n}: n \in \mathbb{N}\right\}$
$X_{n} \stackrel{i . i . d .}{\sim} X \sim \operatorname{beta}(\alpha, 1), \quad n \in \mathbb{N} \quad(\alpha>0)$
- Another sequence of r.v.
$\left\{U_{n}: n \in \mathbb{N}\right\}$
$U_{n}=-\frac{1}{n} \sum_{i=1}^{n} \ln \left(X_{i}\right)$
- Rewriting U_{n} in terms of Z_{n}
$Z_{n}=2 n \alpha \times U_{n} \sim \chi_{(2 n)}^{2}$
$U_{n}=\frac{Z}{2 n \alpha}$
- Expected value and variance of U_{n}

$$
\begin{aligned}
& E\left(U_{n}\right)=E\left(\frac{Z_{n}}{2 n \alpha}\right)=\frac{1}{2 n \alpha} \times E\left[\chi_{(2 n}^{2}\right] \stackrel{\text { form }}{=} \frac{1}{2 n \alpha} \times 2 n=\alpha^{-1} \\
& V\left(U_{n}\right)=V\left(\frac{Z_{n}}{2 n \alpha}\right)=\frac{1}{(2 n \alpha)^{2}} \times V\left[\chi_{(2 n}^{2}\right] \stackrel{\text { form }}{=} \frac{1}{4 n^{2} \alpha^{2}} \times 4 n=\frac{1}{n \alpha^{2}}
\end{aligned}
$$

- Requested proof

The application of the definition of convergence in probability and Chebyshev-Bienaymés inequality leads to

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} P\left(\left|U_{n}-\alpha^{-1}\right|>\epsilon\right) & =\lim _{n \rightarrow+\infty} P\left[\left|U_{n}-E\left(U_{n}\right)\right| \geq \frac{\epsilon}{\sqrt{V\left(U_{n}\right)}} \sqrt{V\left(U_{n}\right)}\right] \\
& \leq \lim _{n \rightarrow+\infty} \frac{1}{\left[\epsilon / \sqrt{1 /\left(n \alpha^{2}\right)}\right]^{2}} \\
& =\frac{1}{\epsilon^{2} \alpha^{2}} \lim _{n \rightarrow+\infty} \frac{1}{n} \\
& =0, \quad \forall \epsilon>0 .
\end{aligned}
$$

Hence, $U_{n} \xrightarrow{P} \alpha^{-1}$.

