DM 1st. Semester — 2021/2022

DEPARTAMENTO PrObablllty Theory 2022/02/12 — 08:00
DE MATEMATICA LMAC’ MMA '
TECNICO LISBOA Exam 1

Duration: 120 minutes
* Please justify all your answers.

* This exam has TWO PAGES and TWELVE QUESTIONS. The total of points is 20.0.

Chap. 1 — Probability spaces 3.5 points

1. A(AcQ)iscalled a co-finite setif AC is finite. Let of consist of all the finite and co-finite subsets of Q. (1.5)
Admit that Q is finite. Show that, in this case, </ is a 0 —algebra on Q.

* Requested proof

We ought to mention that a minimal set of postulates for a non-empty class of subsets <« of Q to
be a o —algebra on Q is:

(i) Qe

(i) Aeof = Ae o,
(i) Ay, Ap,---€f = U[NA;eH.
Hence, we have to prove that all these 3 postulates are true for the class of all the finite and co-finite
subsets of Q.

(i) Qis finite and QF = @ is also finite, we conclude that Q is co-finite, hence Q € «f.

(i) We know that A € & iff it is finite or co-finite and since Q is finite, then A€ = Q\ A is also finite,
thus A € of.

(iii) Note that there are 2% subsets of the finite sample space ). Moreover, u?’fl Bj[= Q] is also

finite. Consequently, if we consider A;, Ay, - € &« then U;:?A,' c U?#:QI Bj, thus U;r:‘l’Ai is also
finite and therefore it belongs to . v

2. The Borel-Cantelli lemma reads as follows. (2.0)
() IfY 7 P(Ap) < +oothen P(limsup,,_, .o, Ap) =0.
@{) If Z;Z‘i P(Ay,) =+ooand Aj, Ay, ... are (mutually) independent events then P(limsup,,_.,, An) = 1.
Now, consider Q = (0, 1), of = %((0,1)), and P the Lebesgue measure. Show that the sequence of events
{A;, =(0,1/n) : n € N} illustrates two facts.
1. In general, the converse of (i) is not true.

2. The (mutual) independence condition in (ii) is essential.

* Events

Fori,jeNand i < j,wehave P(A4;nAj) = P(A)) = ; # P(A;) x P(A)) = | x ; = . Therefore these
events are not (pairwise) independent.

* Checking fact 1.

Note that
+00
A, | = limsupA,= ﬂ Ap=9
n—+oo n=1
P(limsupA,) = P(@)=0,
n—+oo
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hence, (i) checks. However, even though P(limsup,,_., ., A,) =0, we have

+00 +00 1
Y P(Ap) = Y —=+00, (%)
n=1 n=11

thus, the converse of (i) is not true. ve

* Checking fact 2.
Looking at these dependent events, at (*), and at (ii), we can conclude that the condition
YIS P(Ay) = +oo does not imply that P(limsup, ., A,) = 1 and consequently the
independence of A;, Ay, ... is absolutely essential in (ii).

Chap. 2 — Random variables 3.5 points

3. Let X and Y be two r.v. and prove that XY isalsoar.v. (2.0)
Hint: Prove that X? is a r.v.; rewrite XY, for example, in terms of a difference between the square of a

sum and two squares; take for granted that the sum and difference of two r.v. are also r.v.

* R.w.
Let (Q, %) and (R, (R)) be two measurable spaces. Then, X : Q — R and
X'B) = (weQ:Xw)eBleF, VBeBR).

e Auxiliary result

[A function g : R — R is Borel measurable iff g‘l(B) ={xeR:gx) € B} € BR),VB € BR).
Moreover,] if

g H(~00,2z]) = (xeR:gx)<szle BR), VzeR,

then g: R — Ris Borel measurable.
Now, let us consider g(X) = X

- forz<0,
g (~00,2]) = {xeR:g(x)=x*<z}=0€eBR);
- forz=0,
g H(~00,2]) = {xEIR:g(x):xzsz}:{xER:—\/Esxs\/Z}

= (=00, VZz]\(~00,~V2) = (00, V2] N (~00,~v/2) € B(R).

As aresult, g(X) = X? is a Borel measurable function and therefore a r.v.

e Requested proof

Since we just proved that X2 is a r.v. and we can take for granted that the sum and difference of
two r.v. are r.v., we conclude that Y2, (X + Y), and (X + Y)? are also r.v., and so is
—X?-Y?+(X+Y)?

XY = . v g
2

4. Let: X, Y, and Z be r.v. such that X and Y are identically distributed; g : R — R be a Borel measurable (1.5)
function.

Show that g(X) and g(Y) are identically distributed and give a simple example to show that XZ and Y Z
can have different distributions.

Hint: Consider X a discrete r.v., with values in Rx = Z\{0} and a symmetric p.f.
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e R.w.
X~Y,

g(X), g(Y), where g: R — Ris a Borel measurable function

* Requested proof

Since g is a Borel measurable function, we can add that g(X) and g(Y) are both r.v. Furthermore,

Plg(Y)=zl=P[Ye{xeR:g(x) =2}l "= P[Xe{xeR:g(x) =z} =Plg(X) <z
= Fg(X)(Z), ZER)

Fg(v)(2)

we conclude that g(X) and g(Y) are identically distributed r.v. Ve

* Requested example

X a discrete r.v., with values in Rx = Z\{0} and a symmetric p.f., i.e., P(X = x) = P(X = —x), for
x € Z\{0}

Y=-X, Z=Y
XZ=-X? Rxz=2Z", YZ=(-X?=X% Ryz=2"

It suffices to note that the r.v. XZ and Y Z have different ranges to conclude that they cannot
possibly have the same distribution.

¢ [Note
The trivial case of X such that P(X =0) =1 is of no interest.]

Chap. 3 — Independence 4.5 points
5. Let0O<e< % and A, B, and C be events such that: (1.0)
o P(ANBNC)=P(ANBNCY =g;

[e]
—

P(ANBNC)=P(A°NBNC) =3 -¢;
P(ANB°NCY=P(A°NBNCY) =} +¢;
P(A°NB°NC) = § +2¢;
P(A°NB°NCY = ¢ —2e.

[e]

[e]

[¢]

Show that the events A, B, and C are not mutually independent.

¢ Events and probabilities

1 1 1 1 1
PA) = P(AanC)+P(AanC”)+P(AmBCmC)+P(AnBCmCC):§+§+§—e+§+e:5
. . . e 111 1 1
PB) = PANBNC)+P(ANBNC*)+PA°"NnBNC)+P(A mBmC)=§+§+§—e+§+e=5
¢ c c c 1 1 1 1
P(C) = PANBNC)+PANB*NC)+PA*NnBNnC)+P(A*NnB ﬂC):§+§—€+§—€+§+2€
B 1
2
* Requested proof
Note that:
e 111
P(AnB) = P(AanC)+P(AﬂBﬂC)=§+§=ZEP(A)><P(B);
. 11 1
P(AnC) = PANBNnC)+P(AnB mC):§+§—€=Z—€¢P(A)><P(C).

Hence, events A and C are not pairwise independent and therefore events A, B, and C cannot be
mutually independent. v
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6. Let X and Y be two independent r.v. with common p.d.f. f(x) = x2x1] [1,+00) (X). (2.0)

Derive (directly) the c.d.f. of Z = v XY and describe a method to generate pseudorandom numbers from
the distribution of Z.

Note: There is no explicit expression for the quantile function of Z.

* Random vector and range

X% x=1

Rxy = [1,+00)?
0, otherwise, Xy =1, +o0)

X,Y), XUy, X~Y, fX(X)=fy(x)=f(x)={

e Transformation of (X, Y) and its range
Z=gX,Y)=vXY, Rz =gRx,y) =[1,+00)

e Cdf.of Z
Fy(z) = P(\/ﬁs z)

= f/ fxyx,y)dydx
{(x,y)€[1,+00)?: \/Xy<2z}

XlLdY
= , f0)x f()dydx
{epen roozy=2}

_ (_l_ln(x))

z2-2In(z) -1
= -5 z=1.
V2

1

¢ Generation of a pseudorandom number from Z

There is no explicit expression for the quantile function of Z but there is one for the common
quantile function of X and Y. Indeed:

Fx) = P(X<x)—{0’ x<l
= =X)= x 1 11X _ 1 .
lt_Zdt__?|1_1_;’ x=1;
1 . 1
Fx) = u © 1-—-=u & F (Wy=——, O<ux<l.
X 1-u

Furthermore, by resorting to the quantile transformation, we know that if U ~ uniform(0, 1) then
1 = 1

F (U) = m ~ X ~ Y

Consequently, to generate a pseudorandom number from Z, z, we have to:
— independently generate two pseudorandom numbers, u; and up, from the uniform(0,1)

distribution;

- assignx=—,y= 1_1 and, finally, z = \/xy.

1-u’ u’

7. Admit that jobs arrive to a workstation according to a non-homogeneous Poisson process with intensity (1.5)
function A() =1+ e~ %, t = 0 (time in hours).

Suppose two jobs arrived during the first hour. What is the probability that both jobs arrived during the
first 20 minutes?
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¢ Stochastic process
{N():t>0} ~NHPP(A(?))
N(t) = number of jobs arrived to the workstation until time ¢

¢ Intensity and mean value functions

AMt) = 1+ef, t=20
t t
m(t) = fA(s)ds:f(1+e_s)ds:t+1—e_t, t=0
0 0
Requested probability
Since

(N(s) | N(t) =n) ~ binomial(n, m(s)/m(t)), 0<s<t,
s=1/3,t=1,n=2,and

m(s) 1/3+1—¢1/3
= —— —  ~0.377914,
m(t) 1+1—e¢!

we get

2
P[N(1/3)=2|N(1)=2] = (2) x (0.377914)% x (1 —0.377914)>72 =~ (0.377914)% ~ 0.142819.

Chap. 4 — Expectation 3.5 points
8. Let X and Y be a two i.i.d. r.v. with standard normal distribution. Show that E(max{X,Y}) = \/Lﬁ (2.0)
e R.w.
X "4y < normal(0,1), = A e Gl = D, —so e e
PO =72
* Requested expected value
XY +00 +00
E(max{X,Y}) = f f max{x, y} x fx(x) x fy(y)dydx
i s
= f max{x, y} x d(x) x p(y)dydx
—00 —00
+00 +00 +00 +0oo
= f [f xx p(x)dx x¢(y)dy+f f yxoy)dy| xp(x)dx
—00 y —00 x
+00 +00o
_ 2><f f xx g dx| x p(y) dy
—oo LJy
x2
+00 +00 xe_T
= 2 xf f dx| xp(y)d
. [ ’ o b(y)dy
+0o 1 22
= 2xf ———ez| |x¢(d
- o ) Py ay
+00 1 yz 1 yz
= 2 f e 2 x e 2d
-00 V2T V2n d
2
2 [+oo 1 Y
= 27:(1/\/2) f e 207 gy
L\ Jon(1/v2)°
1 +00
= 7L om0
_ 1
a b
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9. Admit that (X,Y) ~ normal,(y,X), where ¢ and X are such that: ux = 55.57, uy = 75.86; 03( =7.6735, (1.5)
0% =35.5510, cov(X,Y) =13.6531.

Compute P(Y > X +10).

¢ Random vector (X,Y)
55.57
75.86

7.6735 13.6531
13.6531 35.5510 |

)

(X,Y) ~normaly(y,%), where: pu=

* Requested probability and auxiliary r.v.
P(Y>X+10)=P(W=Y-X>10)

W=Y-X=Cx +b, where: C=[-1 1]; b=]I0].

w Th. 4216 normal(E(W), V(W)), where:
E(W) = Cu+b-5557+75.86+0=20.29;
7.6735 13.6531 -1
V(W) = C=C'=[-1 1]x x
13.6531 35.5510 1
-1
= [-7.6735+13.6531 —13.6531+ 35.5510] x =15.9183.
Hence,
PW>100 = 1 q)[lo_E(W)
VV(W)
( 10— 20.29)
= 1-o| ——
Vv15.9183
= 1-®(-2.58)
= D(2.58)
rabtes 0.9951.
Chap. 5 — Stochastic convergence concepts and classical limit theorems 5.0 points
10. Prove that complete convergence of sequences of r.v. is stronger than almost sure convergence. (1.5)

Hint: Without loss of generality, assume that { X}, : n € N} is completely convergent to 0 (X, 5 0) and use
an alternative criterion when it comes to almost sure convergence of {X;, : n € N} to zero (X, g 0).

* Sequence of r.v.
{X,:neN}

¢ Requested proof

Without loss of generality, let us assume that {X,, : n € N} is completely convergent to 0 (X,, — 0),
ie, Y% P(1X,l>e€) < +oo, Ve > 0. Equivalently,

+00
nEIPm kgnpu)m >e)=0, Ve>D0. (%)

In order to relate this mode of convergence with a.s. convergence, recall that
X, 0 o P(w: lim X,(@=0})=1
n—+o0o
< lim P(sup|Xg|>€)=0, Ve>0
n—-+oo

k=n
& lim PUpsp{l Xkl >€) =0, Ve>O0.
n—+oo
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Since the probability P is semi-additive, we obtain, for every e > 0,

+00
lim P(Uezp {IXkl>€e) < lim ZP(IXk|>€) Yo,
n—+oo

=n

Hence, X;, 23 o. v

11. Let {X,, : n € N} be a sequence of i.i.d. r.v. with common p.d.f. fx(x) = &5 x I|q,241(x), where a is an (2.0)
unknown positive constant.

After having derived the c.d.f. of ¥;, = ”’” , where X(;;.,) = max;=,. , X;, show that ¥, 4 a.

* Sequence of r.v.

{X, :neN}
X, "X, neN
2x
, a<x<2a (a>0)

X 3a?

fxx) = { 0, otherwise
¢ Another sequence of r.v.

{Y,,:neN}
Yn = X(n:n)

2

e Requested c.d.f.

For y €[4, a], we have

) " 2y 2.76 n xz 2y n
F = P|Y,= — <y|=P|Xun =<=2y|=|Fx|(2 = —dx| =|—
v, () n [ X < 2y] = [Fx (2y)] (fa 302 ) (saga)
B (4y2 1)
3a2 3
Moreover,
0, ys%
2 n
Fy,(y) = (%—%), S<y<a
1, y=a.
* Requested proof
Since gi -3 €(0,1), when y € (%, a), we have
0, y=%
0, y<a
. _ @ _
lim Fy() = {0, $<y<a {1, e a,
1, yza

which coincides with c.d.f. of a degenerate r.v. at a, Fy(y) = Ijq,+00) (), for all x € R, thus, for all
points at which F,(y) is continuous. Hence, Y, 4 a. v

12. Let: {Xn : n € N} be a sequence of i.i.d. r.v. to X ~ beta(a, 1), where a is an unknown positive constant; (1.5)
Z ln(Xl

P _
Prove that U,, — a~!

Note: Z,,=2na x U, ~ 7((2”)
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Sequence of r.v.

{X,:neN;}

X, " X ~beta(a,1), neN (a>0)

Another sequence of r.v.
{Up:neN}

Up=-+ %2 In(X))
Rewriting U}, in terms of Z,,
Zp=2naxUy, ~)(%2n)

Up =52

~ 2na

Expected value and variance of U,

Zn 1 5 qform 1 _1
E(U, = /5 =——xE = x2n=a
(Un) (Zna) 2na [X(Z”] 2na
Zn 1 2 qform 1 1
V (U, =V =——=xV = ——x4dn=——=
(Un) (2na) 2na)? [X(Z"] 4n? na?
Requested proof

The application of the definition of convergence in probability and Chebyshev-Bienaymé’s
inequality leads to

Vv V(Up)

. -1
nEerP(IUn —a |>¢)

lim P||U,-EWU,)|=
n—+0oo

€
VV(Un)
1

€/\/1/(l’la2)]2

1 . 1

IA

im
n—+oo

—— lim
€2 a2 n—+oo p
= 0, Ve>O0.

P _
Hence, U, — a~'. ve
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