Duration: **120** minutes

- Please justify all your answers.
- This exam has TWO PAGES and TWELVE QUESTIONS. The total of points is 20.0.

Chan.	I — Probability spaces	
Onup.		

3.5 points

(2.0)

1. $A (A \subset \Omega)$ is called a *co-finite set* if A^c is finite. Let \mathscr{A} consist of all the finite and co-finite subsets of Ω . (1.5) Admit that Ω is finite. Show that, in this case, \mathscr{A} is a σ -algebra on Ω .

• Requested proof

We ought to mention that a minimal set of postulates for a non-empty class of subsets \mathscr{A} of Ω to be a σ – algebra on Ω is:

- (i) $\Omega \in \mathcal{A}$;
- (ii) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A};$
- (iii) $A_1, A_2, \dots \in \mathscr{A} \Rightarrow \bigcup_{i=1}^{+\infty} A_i \in \mathscr{A}$.

Hence, we have to prove that all these 3 postulates are true for the class of all the finite and co-finite subsets of Ω .

- (i) Ω is finite and $\Omega^c = \emptyset$ is also finite, we conclude that Ω is *co-finite*, hence $\Omega \in \mathcal{A}$.
- (ii) We know that $A \in \mathcal{A}$ iff it is finite or co-finite and since Ω is finite, then $A^c = \Omega \setminus A$ is also finite, thus $A^c \in \mathcal{A}$.
- (iii) Note that there are $2^{\#\Omega}$ subsets of the finite sample space Ω . Moreover, $\bigcup_{j=1}^{2^{\#\Omega}} B_j [=\Omega]$ is also finite. Consequently, if we consider $A_1, A_2, \dots \in \mathscr{A}$ then $\bigcup_{i=1}^{+\infty} A_i \subseteq \bigcup_{j=1}^{2^{\#\Omega}} B_j$, thus $\bigcup_{i=1}^{+\infty} A_i$ is also finite and therefore it belongs to \mathscr{A} .
- 2. The Borel-Cantelli lemma reads as follows.
 - (i) If $\sum_{n=1}^{+\infty} P(A_n) < +\infty$ then $P(\limsup_{n \to +\infty} A_n) = 0$.
 - (ii) If $\sum_{n=1}^{+\infty} P(A_n) = +\infty$ and A_1, A_2, \dots are (mutually) independent events then $P(\limsup_{n \to +\infty} A_n) = 1$.

Now, consider $\Omega = (0, 1)$, $\mathscr{A} = \mathscr{B}((0, 1))$, and *P* the Lebesgue measure. Show that the sequence of events $\{A_n = (0, 1/n) : n \in \mathbb{N}\}$ illustrates two facts.

- 1. In general, the converse of (i) is not true.
- 2. The (mutual) independence condition in (ii) is essential.

• Events

 $A_n = (0, 1/n), \qquad P(A_n) = 1/n, \qquad A_n \downarrow$

For $i, j \in \mathbb{N}$ and i < j, we have $P(A_i \cap A_j) = P(A_j) = \frac{1}{j} \neq P(A_i) \times P(A_j) = \frac{1}{i} \times \frac{1}{j} = \frac{1}{ij}$. Therefore these events are not (pairwise) independent.

• Checking fact 1.

Note that

$$A_n \downarrow \implies \limsup_{n \to +\infty} A_n = \bigcap_{n=1}^{+\infty} A_n = \emptyset$$
$$P(\limsup_{n \to +\infty} A_n) = P(\emptyset) = 0,$$

hence, (i) checks. However, even though $P(\limsup_{n \to +\infty} A_n) = 0$, we have

$$\sum_{n=1}^{+\infty} P(A_n) = \sum_{n=1}^{+\infty} \frac{1}{n} = +\infty, \quad (*$$

thus, the converse of (i) is not true.

• Checking fact 2.

Looking at these dependent events, at (*), and at (ii), we can conclude that the condition $\sum_{n=1}^{+\infty} P(A_n) = +\infty$ does not imply that $P(\limsup_{n \to +\infty} A_n) = 1$ and consequently the independence of A_1, A_2, \ldots is absolutely essential in (ii).

Chap. 2 — Random variables

3.5 points

(2.0)

3. Let *X* and *Y* be two r.v. and prove that *XY* is also a r.v.

Hint: Prove that X^2 is a r.v.; rewrite *XY*, for example, in terms of a difference between the square of a sum and two squares; take for granted that the sum and difference of two r.v. are also r.v.

• R.v.

Let (Ω, \mathscr{F}) and $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ be two measurable spaces. Then, $X : \Omega \to \mathbb{R}$ and

 $X^{-1}(B) = \{ \omega \in \Omega : X(\omega) \in B \} \in \mathcal{F}, \quad \forall B \in \mathcal{B}(\mathbb{R}).$

• Auxiliary result

[A function $g : \mathbb{R} \to \mathbb{R}$ is Borel measurable iff $g^{-1}(B) = \{x \in \mathbb{R} : g(x) \in B\} \in \mathscr{B}(\mathbb{R}), \forall B \in \mathscr{B}(\mathbb{R}).$ Moreover,] if

$$g^{-1}((-\infty, z]) = \{x \in \mathbb{R} : g(x) \le z\} \in \mathscr{B}(\mathbb{R}), \quad \forall z \in \mathbb{R},$$

then $g : \mathbb{R} \to \mathbb{R}$ is Borel measurable. Now, let us consider $g(X) = X^2$.

$$\begin{array}{ll} - \mbox{ for } z < 0, & g^{-1}((-\infty, z]) &= \{ x \in \mathbb{R} : g(x) = x^2 \le z \} = \phi \in \mathscr{B}(\mathbb{R}); \\ - \mbox{ for } z \ge 0, & \\ & g^{-1}((-\infty, z]) &= \{ x \in \mathbb{R} : g(x) = x^2 \le z \} = \{ x \in \mathbb{R} : -\sqrt{z} \le x \le \sqrt{z} \} \\ & = & (-\infty, \sqrt{z}] \setminus (-\infty, -\sqrt{z}) = (-\infty, \sqrt{z}] \cap (-\infty, -\sqrt{z})^c \in \mathscr{B}(\mathbb{R}). \end{array}$$

As a result, $g(X) = X^2$ is a Borel measurable function and therefore a r.v.

• Requested proof

Since we just proved that X^2 is a r.v. and we can take for granted that the sum and difference of two r.v. are r.v., we conclude that Y^2 , (X + Y), and $(X + Y)^2$ are also r.v., and so is

$$XY = \frac{-X^2 - Y^2 + (X+Y)^2}{2}.$$

4. Let: *X*, *Y*, and *Z* be r.v. such that *X* and *Y* are identically distributed; $g : \mathbb{R} \to \mathbb{R}$ be a Borel measurable (1.5) function.

Show that g(X) and g(Y) are identically distributed and give a simple example to show that XZ and YZ can have different distributions.

Hint: Consider *X* a discrete r.v., with values in $\mathbb{R}_X = \mathbb{Z} \setminus \{0\}$ and a symmetric p.f.

• R.v.

 $X \sim Y$,

g(X), g(Y), where $g : \mathbb{R} \to \mathbb{R}$ is a Borel measurable function

Requested proof

Since g is a Borel measurable function, we can add that g(X) and g(Y) are both r.v. Furthermore,

$$\begin{aligned} F_{g(Y)}(z) &= P[g(Y) \le z] = P[Y \in \{x \in \mathbb{R} : g(x) \le z\}] \stackrel{X \sim Y}{=} P[X \in \{x \in \mathbb{R} : g(x) \le z\}] = P[g(X) \le z] \\ &= F_{g(X)}(z), \quad z \in \mathbb{R}, \end{aligned}$$

we conclude that g(X) and g(Y) are identically distributed r.v. \checkmark

• Requested example

X a discrete r.v., with values in $\mathbb{R}_X = \mathbb{Z} \setminus \{0\}$ and a symmetric p.f., i.e., P(X = x) = P(X = -x), for $x \in \mathbb{Z} \setminus \{0\}$

$$Y = -X, \qquad Z = Y$$

$$XZ = -X^2$$
, $R_{XZ} = \mathbb{Z}^-$, $YZ = (-X)^2 = X^2$, $R_{YZ} = \mathbb{Z}^+$

It suffices to note that the r.v. XZ and YZ have different ranges to conclude that they cannot possibly have the same distribution.

• [Note

The trivial case of *X* such that P(X = 0) = 1 is of no interest.]

Chap. 3 — Independence

5. Let $0 < \epsilon \le \frac{1}{16}$ and *A*, *B*, and *C* be events such that:

•
$$P(A \cap B \cap C) = P(A \cap B \cap C^{c}) = \frac{1}{8};$$

•
$$P(A \cap B^c \cap C) = P(A^c \cap B \cap C) = \frac{1}{8} - \epsilon;$$

- $P(A \cap B^c \cap C^c) = P(A^c \cap B \cap C^c) = \frac{1}{8} + \epsilon;$
- $\circ \ P(A^c \cap B^c \cap C) = \tfrac{1}{8} + 2\epsilon;$
- $P(A^c \cap B^c \cap C^c) = \frac{1}{8} 2\epsilon$.

Show that the events A, B, and C are not mutually independent.

• Events and probabilities

$$P(A) = P(A \cap B \cap C) + P(A \cap B \cap C^{c}) + P(A \cap B^{c} \cap C) + P(A \cap B^{c} \cap C^{c}) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} - \epsilon + \frac{1}{8} + \epsilon = \frac{1}{2}$$

$$P(B) = P(A \cap B \cap C) + P(A \cap B \cap C^{c}) + P(A^{c} \cap B \cap C) + P(A^{c} \cap B \cap C^{c}) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} - \epsilon + \frac{1}{8} + \epsilon = \frac{1}{2}$$

$$P(C) = P(A \cap B \cap C) + P(A \cap B^{c} \cap C) + P(A^{c} \cap B \cap C) + P(A^{c} \cap B^{c} \cap C) = \frac{1}{8} + \frac{1}{8} - \epsilon + \frac{1}{8} - \epsilon + \frac{1}{8} + 2\epsilon$$

$$= \frac{1}{2}$$

Requested proof

Note that:

$$P(A \cap B) = P(A \cap B \cap C) + P(A \cap B \cap C^{c}) = \frac{1}{8} + \frac{1}{8} = \frac{1}{4} \equiv P(A) \times P(B);$$

$$P(A \cap C) = P(A \cap B \cap C) + P(A \cap B^{c} \cap C) = \frac{1}{8} + \frac{1}{8} - \epsilon = \frac{1}{4} - \epsilon \neq P(A) \times P(C).$$

Hence, events *A* and *C* are not pairwise independent and therefore events *A*, *B*, and *C* cannot be mutually independent. \checkmark

(1.0)

4.5 points

6. Let *X* and *Y* be two independent r.v. with common p.d.f. $f(x) = x^{-2} \times I_{[1,+\infty)}(x)$.

Derive (directly) the c.d.f. of $Z = \sqrt{XY}$ and describe a method to generate pseudorandom numbers from the distribution of *Z*.

Note: There is no explicit expression for the quantile function of *Z*.

• Random vector and range

$$(X, Y), \quad X \perp Y, \quad X \sim Y, \quad f_X(x) = f_Y(x) = f(x) = \begin{cases} x^{-2}, & x \ge 1 \\ 0, & \text{otherwise,} \end{cases} \quad \mathbb{R}_{X,Y} = [1, +\infty)^2$$

- Transformation of (X, Y) and its range $Z = g(X, Y) = \sqrt{XY}, \qquad \mathbb{R}_Z = g(\mathbb{R}_{X,Y}) = [1, +\infty)$
- **C.d.f.** of *Z*

$$\begin{aligned} F_{Z}(z) &= P\left(\sqrt{XY} \le z\right) \\ &= \int \int_{\{(x,y)\in[1,+\infty)^{2}:\sqrt{xy}\le z\}} f_{X,Y}(x,y) \, dy \, dx \\ x \stackrel{i.i.d.}{=} Y &\int \int_{\{(x,y)\in[1,+\infty)^{2}:y\le \frac{z^{2}}{x}\}} f(x) \times f(y) \, dy \, dx \\ &= \int_{1}^{z^{2}} \int_{1}^{\frac{z^{2}}{x}} \frac{1}{x^{2}} \times \frac{1}{y^{2}} \, dy \, dx \\ &= \int_{1}^{z^{2}} \frac{1}{x^{2}} \times \left(-\frac{1}{y}\right) \frac{z^{2}}{x} \, dx \\ &= \int_{1}^{z^{2}} \frac{1}{x^{2}} \times \left(1 - \frac{x}{z^{2}}\right) \, dx \\ &= \left(-\frac{1}{x} - \frac{\ln(x)}{z^{2}}\right) \Big|_{1}^{z^{2}} \\ &= \frac{z^{2} - 2\ln(z) - 1}{z^{2}}, \quad z \ge 1. \end{aligned}$$

• Generation of a pseudorandom number from Z

There is no explicit expression for the quantile function of Z but there is one for the common quantile function of X and Y. Indeed:

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 1\\ \int_1^x \frac{1}{t^2} dt = -\frac{1}{t} \Big|_1^x = 1 - \frac{1}{x}, & x \ge 1; \end{cases}$$

$$F(x) = u \iff 1 - \frac{1}{x} = u \iff F^{-1}(u) = \frac{1}{1 - u}, & 0 < u < 1.$$

Furthermore, by resorting to the quantile transformation, we know that if $U \sim uniform(0, 1)$ then $F^{-1}(U) \equiv \frac{1}{1-U} \sim X \sim Y$.

Consequently, to generate a pseudorandom number from Z, z, we have to:

- independently generate two pseudorandom numbers, u_1 and u_2 , from the uniform(0,1) distribution;
- assign $x = \frac{1}{1-u}$, $y = \frac{1}{1-u_2}$, and, finally, $z = \sqrt{xy}$.
- **7.** Admit that jobs arrive to a workstation according to a non-homogeneous Poisson process with intensity (1.5) function $\lambda(t) = 1 + e^{-t}$, $t \ge 0$ (time in hours).

Suppose two jobs arrived during the first hour. What is the probability that both jobs arrived during the first 20 minutes?

Stochastic process

 $\{N(t):t>0\}\sim NHPP(\lambda(t))$

N(t) = number of jobs arrived to the workstation until time t

• Intensity and mean value functions

$$\lambda(t) = 1 + e^{-t}, \quad t \ge 0$$

$$m(t) = \int_0^t \lambda(s) \, ds = \int_0^t (1 + e^{-s}) \, ds = t + 1 - e^{-t}, \quad t \ge 0$$

Requested probability

Since

$$(N(s) | N(t) = n) \sim \text{binomial}(n, m(s)/m(t)), \quad 0 < s < t,$$

s = 1/3, *t* = 1, *n* = 2, and

$$\frac{m(s)}{m(t)} = \frac{1/3 + 1 - e^{-1/3}}{1 + 1 - e^{-1}} \simeq 0.377914,$$

we get

$$P[N(1/3) = 2 | N(1) = 2] \simeq {\binom{2}{2}} \times (0.377914)^2 \times (1 - 0.377914)^{2-2} \simeq (0.377914)^2 \simeq 0.142819.$$

3.5 points

(2.0)

Chap. 4 — Expectation

8. Let *X* and *Y* be a two i.i.d. r.v. with standard normal distribution. Show that $E(\max\{X, Y\}) = \frac{1}{\sqrt{\pi}}$.

• R.v.

$$X^{1:\underline{i},\underline{d}.} Y \sim \operatorname{normal}(0,1), \quad f_X(x) = f_Y(x) = \phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad -\infty < x < +\infty$$
• Requested expected value

$$E(\max\{X,Y\}) \xrightarrow{X \perp Y} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \max\{x,y\} \times f_X(x) \times f_Y(y) \, dy \, dx$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \max\{x,y\} \times \phi(x) \, dx = \int_{-\infty}^{+\infty} \left[\int_{y}^{+\infty} x \times \phi(x) \, dx\right] \times \phi(y) \, dy + \int_{-\infty}^{+\infty} \left[\int_{x}^{+\infty} y \times \phi(y) \, dy\right] \times \phi(x) \, dx$$

$$= 2 \times \int_{-\infty}^{+\infty} \left[\int_{y}^{+\infty} x \times \phi(x) \, dx\right] \times \phi(y) \, dy$$

$$= 2 \times \int_{-\infty}^{+\infty} \left[\int_{y}^{+\infty} \frac{x \, e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \, dx\right] \times \phi(y) \, dy$$

$$= 2 \times \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} \frac{x \, e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \, dx\right] \times \phi(y) \, dy$$

$$= 2 \times \int_{-\infty}^{+\infty} \left[\int_{\sqrt{2\pi}}^{+\infty} \frac{x \, e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \, dx\right] \times \phi(y) \, dy$$

$$= 2 \times \int_{-\infty}^{+\infty} \left[\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \right]_{y}^{\infty} \times \phi(y) \, dy$$

$$= \frac{1}{\pi} \sqrt{2\pi} (1/\sqrt{2})^2 \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi} (1/\sqrt{2})^2} e^{-\frac{y^2}{2(1/\sqrt{2})^2}} \, dy$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} f_N[_{0,(1/\sqrt{2})^2}](y) \, dy$$

9. Admit that $(X, Y) \sim \text{normal}_2(\mu, \Sigma)$, where μ and Σ are such that: $\mu_X = 55.57$, $\mu_Y = 75.86$; $\sigma_X^2 = 7.6735$, (1.5) $\sigma_V^2 = 35.5510, cov(X, Y) = 13.\overline{6531}.$ Compute P(Y > X + 10).

• Random vector
$$(X, Y)$$

 $(X, Y) \sim \operatorname{normal}_{2}(\underline{\mu}, \Sigma)$, where: $\underline{\mu} = \begin{bmatrix} 55.57\\ 75.86 \end{bmatrix}$; $\Sigma = \begin{bmatrix} 7.6735 & 13.6531\\ 13.6531 & 35.5510 \end{bmatrix}$.
• Requested probability and auxiliary r.v.
 $P(Y > X + 10) = P(W = Y - X > 10)$
 $W = Y - X = \mathbb{C} \times \begin{bmatrix} X\\ Y \end{bmatrix} + \underline{b}$, where: $\mathbb{C} = [-1 \ 1]; \ \underline{b} = [0].$
 $W^{Th. \underline{4}.216} \operatorname{normal}(E(W), V(W))$, where:
 $E(W) = \mathbb{C}\underline{\mu} + \underline{b} - 55.57 + 75.86 + 0 = 20.29;$
 $V(W) = \mathbb{C}\Sigma\mathbb{C}^{\mathsf{T}} = [-1 \ 1] \times \begin{bmatrix} 7.6735 & 13.6531\\ 13.6531 & 35.5510 \end{bmatrix} \times \begin{bmatrix} -1\\ 1 \end{bmatrix}$
 $= [-7.6735 + 13.6531 - 13.6531 + 35.5510] \times \begin{bmatrix} -1\\ 1 \end{bmatrix} = 15.9183.$
Hence,
 $P(W > 10) = 1 - \Phi \begin{bmatrix} 10 - E(W)\\ \sqrt{V(W)} \end{bmatrix}$

$$= 1 - \Phi\left(\frac{10 - 20.29}{\sqrt{15.9183}}\right)$$

$$\approx 1 - \Phi(-2.58)$$

$$= \Phi(2.58)$$

$$\overset{tables}{=} 0.9951.$$

Chap. 5 — Stochastic convergence concepts and classical limit theorems 5.0 points

10. Prove that complete convergence of sequences of r.v. is stronger than almost sure convergence.

Hint: Without loss of generality, assume that $\{X_n : n \in \mathbb{N}\}$ is completely convergent to 0 $(X_n \xrightarrow{c} 0)$ and use an alternative criterion when it comes to almost sure convergence of $\{X_n : n \in \mathbb{N}\}$ to zero $(X_n \xrightarrow{a.s.} 0)$.

(1.5)

• Sequence of r.v.

 $\{X_n:n\in\mathbb{N}\}$

• Requested proof

3

Without loss of generality, let us assume that $\{X_n : n \in \mathbb{N}\}$ is completely convergent to 0 $(X_n \xrightarrow{c} 0)$, i.e., $\sum_{n=1}^{+\infty} P(|X_n| > \epsilon) < +\infty, \forall \epsilon > 0$. Equivalently,

$$\lim_{n \to +\infty} \sum_{k=n}^{+\infty} P(|X_k| > \epsilon) = 0, \quad \forall \epsilon > 0.$$
(*)

In order to relate this mode of convergence with a.s. convergence, recall that

$$\begin{aligned} X_n &\xrightarrow{\text{d.s.}} 0 &\Leftrightarrow P(\{\omega : \lim_{n \to +\infty} X_n(\omega) = 0\}) = 1 \\ &\Leftrightarrow \lim_{n \to +\infty} P(\sup_{k \ge n} |X_k| > \epsilon) = 0, \quad \forall \epsilon > 0 \\ &\Leftrightarrow \lim_{n \to +\infty} P(\bigcup_{k \ge n} \{|X_k| > \epsilon\}) = 0, \quad \forall \epsilon > 0. \end{aligned}$$

Since the probability *P* is semi-additive, we obtain, for every $\epsilon > 0$,

$$\lim_{n \to +\infty} P\left(\bigcup_{k \ge n} \{ |X_k| > \epsilon \}\right) \leq \lim_{n \to +\infty} \sum_{k=n}^{+\infty} P(|X_k| > \epsilon) \stackrel{(\star)}{=} 0.$$

Hence, $X_n \xrightarrow{a.s.} 0$.

11. Let $\{X_n : n \in \mathbb{N}\}$ be a sequence of i.i.d. r.v. with common p.d.f. $f_X(x) = \frac{2x}{3\alpha^2} \times I_{[\alpha,2\alpha]}(x)$, where α is an (2.0) unknown positive constant.

After having derived the c.d.f. of $Y_n = \frac{X_{(n:n)}}{2}$, where $X_{(n:n)} = \max_{i=1,...,n} X_i$, show that $Y_n \xrightarrow{d} \alpha$.

• Sequence of r.v. $\{X_n : n \in \mathbb{N}\}$

 $X_n \stackrel{i.i.d.}{\sim} X, \quad n \in \mathbb{N}$ $f_X(x) = \begin{cases} \frac{2x}{3\alpha^2}, & \alpha \le x \le 2\alpha \quad (\alpha > 0) \\ 0, & \text{otherwise} \end{cases}$

• Another sequence of r.v.

 $\{Y_n : n \in \mathbb{N}\}$

$$Y_n = \frac{X_{(n:n)}}{2}$$

• Requested c.d.f.

For $y \in \left[\frac{\alpha}{2}, \alpha\right]$, we have

$$F_{Y_n}(y) = P\left[Y_n = \frac{X_{(n:n)}}{2} \le y\right] = P\left[X_{(n:n)} \le 2y\right] = \left[F_X\left(2y\right)\right]^n = \left(\int_{\alpha}^{2y} \frac{2x}{3\alpha^2} \, dx\right)^n = \left(\frac{x^2}{3\alpha^2}\Big|_{\alpha}^{2y}\right)^n$$
$$= \left(\frac{4y^2}{3\alpha^2} - \frac{1}{3}\right)^n.$$

Moreover,

$$F_{Y_n}(y) = \begin{cases} 0, & y \le \frac{\alpha}{2} \\ \left(\frac{4y^2}{3\alpha^2} - \frac{1}{3}\right)^n, & \frac{\alpha}{2} < y < \alpha \\ 1, & y \ge \alpha. \end{cases}$$

Requested proof

Since $\frac{4y^2}{3\alpha^2} - \frac{1}{3} \in (0, 1)$, when $y \in (\frac{\alpha}{2}, \alpha)$, we have

$$\lim_{n \to +\infty} F_{Y_n}(y) = \begin{cases} 0, & y \le \frac{\alpha}{2} \\ 0, & \frac{\alpha}{2} < y < \alpha \\ 1, & y \ge \alpha \end{cases} = \begin{cases} 0, & y < \alpha \\ 1, & y \ge \alpha, \end{cases}$$

which coincides with c.d.f. of a degenerate r.v. at α , $F_{\alpha}(y) = I_{[\alpha, +\infty)}(y)$, for all $x \in \mathbb{R}$, thus, for all points at which $F_{\alpha}(y)$ is continuous. Hence, $Y_n \xrightarrow{d} \alpha$.

12. Let: $\{X_n : n \in \mathbb{N}\}$ be a sequence of i.i.d. r.v. to $X \sim \text{beta}(\alpha, 1)$, where α is an unknown positive constant; (1.5) $U_n = -\frac{1}{n} \sum_{i=1}^n \ln(X_i)$.

Prove that $U_n \xrightarrow{P} \alpha^{-1}$. **Note**: $Z_n = 2n \alpha \times U_n \sim \chi^2_{(2n)}$.

• Sequence of r.v.

 $\{X_n : n \in \mathbb{N}\}$

 $X_n \stackrel{i.i.d.}{\sim} X \sim \text{beta}(\alpha, 1), \quad n \in \mathbb{N} \quad (\alpha > 0)$

• Another sequence of r.v.

 $\{U_n : n \in \mathbb{N}\}$ $U_n = -\frac{1}{n} \sum_{i=1}^n \ln(X_i)$

• **Rewriting** U_n in terms of Z_n

$$Z_n = 2n \alpha \times U_n \sim \chi^2_{(2n)}$$
$$U_n = \frac{Z}{2n\alpha}$$

• Expected value and variance of U_n

$$E(U_n) = E\left(\frac{Z_n}{2n\alpha}\right) = \frac{1}{2n\alpha} \times E\left[\chi^2_{(2n)}\right] \stackrel{form}{=} \frac{1}{2n\alpha} \times 2n = \alpha^{-1}$$
$$V(U_n) = V\left(\frac{Z_n}{2n\alpha}\right) = \frac{1}{(2n\alpha)^2} \times V\left[\chi^2_{(2n)}\right] \stackrel{form}{=} \frac{1}{4n^2\alpha^2} \times 4n = \frac{1}{n\alpha^2}$$

• Requested proof

The application of the definition of convergence in probability and Chebyshev-Bienaymé's inequality leads to

$$\begin{split} \lim_{n \to +\infty} P\left(|U_n - \alpha^{-1}| > \epsilon\right) &= \lim_{n \to +\infty} P\left[|U_n - E(U_n)| \ge \frac{\epsilon}{\sqrt{V(U_n)}} \sqrt{V(U_n)}\right] \\ &\leq \lim_{n \to +\infty} \frac{1}{\left[\epsilon/\sqrt{1/(n\alpha^2)}\right]^2} \\ &= \frac{1}{\epsilon^2 \alpha^2} \lim_{n \to +\infty} \frac{1}{n} \\ &= 0, \quad \forall \epsilon > 0. \end{split}$$

Hence, $U_n \xrightarrow{P} \alpha^{-1}$.