
Probability Theory
LMAC, MMA

1st. Semester – 2021/2022
2022/02/12 — 08:00

Exam 1

Duration: 120 minutes

• Please justify all your answers.

• This exam has TWO PAGES and TWELVE QUESTIONS. The total of points is 20.0.

Chap. 1 — Probability spaces 3.5 points

1. A (A ⊂Ω) is called a co-finite set if Ac is finite. Let A consist of all the finite and co-finite subsets ofΩ. (1.5)

Admit thatΩ is finite. Show that, in this case, A is a σ−algebra onΩ.

• Requested proof

We ought to mention that a minimal set of postulates for a non-empty class of subsets A of Ω to
be a σ−algebra onΩ is:

(i) Ω ∈A ;

(ii) A ∈A ⇒ Ac ∈A ;

(iii) A1, A2, · · · ∈A ⇒ ∪+∞
i=1 Ai ∈A .

Hence, we have to prove that all these 3 postulates are true for the class of all the finite and co-finite
subsets ofΩ.

(i) Ω is finite andΩc =; is also finite, we conclude thatΩ is co-finite, henceΩ ∈A .

(ii) We know that A ∈A iff it is finite or co-finite and sinceΩ is finite, then Ac =Ω\A is also finite,
thus Ac ∈A .

(iii) Note that there are 2#Ω subsets of the finite sample space Ω. Moreover, ∪2#Ω

j=1B j [= Ω] is also

finite. Consequently, if we consider A1, A2, · · · ∈A then ∪+∞
i=1 Ai ⊆∪2#Ω

j=1B j , thus ∪+∞
i=1 Ai is also

finite and therefore it belongs to A . X

2. The Borel-Cantelli lemma reads as follows. (2.0)

(i) If
∑+∞

n=1 P (An) <+∞ then P (limsupn→+∞ An) = 0.

(ii) If
∑+∞

n=1 P (An) =+∞ and A1, A2, . . . are (mutually) independent events then P (limsupn→+∞ An) = 1.

Now, consider Ω= (0,1), A = B((0,1)), and P the Lebesgue measure. Show that the sequence of events
{An = (0,1/n) : n ∈N} illustrates two facts.

1. In general, the converse of (i) is not true.

2. The (mutual) independence condition in (ii) is essential.

• Events

An = (0,1/n), P (An) = 1/n, An ↓
For i , j ∈N and i < j , we have P (Ai ∩A j ) = P (A j ) = 1

j 6= P (Ai )×P (A j ) = 1
i × 1

j = 1
i j . Therefore these

events are not (pairwise) independent.

• Checking fact 1.

Note that

An ↓ ⇒ limsup
n→+∞

An =
+∞⋂
n=1

An =;
P (limsup

n→+∞
An) = P (;) = 0,
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hence, (i) checks. However, even though P (limsupn→+∞ An) = 0, we have

+∞∑
n=1

P (An) =
+∞∑
n=1

1

n
=+∞, (∗)

thus, the converse of (i) is not true. X

• Checking fact 2.

Looking at these dependent events, at (*), and at (ii), we can conclude that the condition∑+∞
n=1 P (An) = +∞ does not imply that P (limsupn→+∞ An) = 1 and consequently the

independence of A1, A2, . . . is absolutely essential in (ii).

Chap. 2 — Random variables 3.5 points

3. Let X and Y be two r.v. and prove that X Y is also a r.v. (2.0)

Hint: Prove that X 2 is a r.v.; rewrite X Y , for example, in terms of a difference between the square of a
sum and two squares; take for granted that the sum and difference of two r.v. are also r.v.

• R.v.

Let (Ω,F ) and (R,B(R)) be two measurable spaces. Then, X :Ω→R and

X −1(B) = {ω ∈Ω : X (ω) ∈ B} ∈F , ∀B ∈B(R).

• Auxiliary result

[A function g : R → R is Borel measurable iff g−1(B) = {x ∈ R : g (x) ∈ B} ∈ B(R), ∀B ∈ B(R).
Moreover,] if

g−1((−∞, z]) = {x ∈R : g (x) ≤ z} ∈B(R), ∀z ∈R,

then g :R→R is Borel measurable.

Now, let us consider g (X ) = X 2.

– for z < 0,

g−1((−∞, z]) = {x ∈R : g (x) = x2 ≤ z} =;∈B(R);

– for z ≥ 0,

g−1((−∞, z]) = {
x ∈R : g (x) = x2 ≤ z

}= {
x ∈R : −pz ≤ x ≤p

z
}

= (−∞,
p

z]\(−∞,−pz) = (−∞,
p

z]∩ (−∞,−pz)c ∈B(R).

As a result, g (X ) = X 2 is a Borel measurable function and therefore a r.v.

• Requested proof

Since we just proved that X 2 is a r.v. and we can take for granted that the sum and difference of
two r.v. are r.v., we conclude that Y 2, (X +Y ), and (X +Y )2 are also r.v., and so is

X Y = −X 2 −Y 2 + (X +Y )2

2
. X ä

4. Let: X , Y , and Z be r.v. such that X and Y are identically distributed; g : R→ R be a Borel measurable (1.5)

function.

Show that g (X ) and g (Y ) are identically distributed and give a simple example to show that X Z and Y Z
can have different distributions.

Hint: Consider X a discrete r.v., with values in RX =Z\{0} and a symmetric p.f.
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• R.v.

X ∼ Y ,

g (X ), g (Y ), where g :R→R is a Borel measurable function

• Requested proof

Since g is a Borel measurable function, we can add that g (X ) and g (Y ) are both r.v. Furthermore,

Fg (Y )(z) = P [g (Y ) ≤ z] = P [Y ∈ {x ∈R : g (x) ≤ z}]
X∼Y= P [X ∈ {x ∈R : g (x) ≤ z}] = P [g (X ) ≤ z]

= Fg (X )(z), z ∈R,

we conclude that g (X ) and g (Y ) are identically distributed r.v. X

• Requested example

X a discrete r.v., with values in RX = Z\{0} and a symmetric p.f., i.e., P (X = x) = P (X = −x), for
x ∈Z\{0}

Y =−X , Z = Y

X Z =−X 2, RX Z =Z−, Y Z = (−X )2 = X 2, RY Z =Z+

It suffices to note that the r.v. X Z and Y Z have different ranges to conclude that they cannot
possibly have the same distribution.

• [Note

The trivial case of X such that P (X = 0) = 1 is of no interest.]

Chap. 3 — Independence 4.5 points

5. Let 0 < ε≤ 1
16 and A, B , and C be events such that: (1.0)

◦ P (A∩B ∩C ) = P (A∩B ∩C c ) = 1
8 ;

◦ P (A∩B c ∩C ) = P (Ac ∩B ∩C ) = 1
8 −ε;

◦ P (A∩B c ∩C c ) = P (Ac ∩B ∩C c ) = 1
8 +ε;

◦ P (Ac ∩B c ∩C ) = 1
8 +2ε;

◦ P (Ac ∩B c ∩C c ) = 1
8 −2ε.

Show that the events A, B , and C are not mutually independent.

• Events and probabilities

P (A) = P (A∩B ∩C )+P (A∩B ∩C c )+P (A∩B c ∩C )+P (A∩B c ∩C c ) = 1

8
+ 1

8
+ 1

8
−ε+ 1

8
+ε= 1

2

P (B) = P (A∩B ∩C )+P (A∩B ∩C c )+P (Ac ∩B ∩C )+P (Ac ∩B ∩C c ) = 1

8
+ 1

8
+ 1

8
−ε+ 1

8
+ε= 1

2

P (C ) = P (A∩B ∩C )+P (A∩B c ∩C )+P (Ac ∩B ∩C )+P (Ac ∩B c ∩C ) = 1

8
+ 1

8
−ε+ 1

8
−ε+ 1

8
+2ε

= 1

2

• Requested proof

Note that:

P (A∩B) = P (A∩B ∩C )+P (A∩B ∩C c ) = 1

8
+ 1

8
= 1

4
≡ P (A)×P (B);

P (A∩C ) = P (A∩B ∩C )+P (A∩B c ∩C ) = 1

8
+ 1

8
−ε= 1

4
−ε 6= P (A)×P (C ).

Hence, events A and C are not pairwise independent and therefore events A, B , and C cannot be
mutually independent. X
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6. Let X and Y be two independent r.v. with common p.d.f. f (x) = x−2 × I[1,+∞)(x). (2.0)

Derive (directly) the c.d.f. of Z =p
X Y and describe a method to generate pseudorandom numbers from

the distribution of Z .

Note: There is no explicit expression for the quantile function of Z .

• Random vector and range

(X ,Y ), X⊥⊥Y , X ∼ Y , fX (x) = fY (x) = f (x) =
{

x−2, x ≥ 1
0, otherwise,

RX ,Y = [1,+∞)2

• Transformation of (X ,Y ) and its range

Z = g (X ,Y ) =p
X Y , RZ = g (RX ,Y ) = [1,+∞)

• C.d.f. of Z

FZ (z) = P
(p

X Y ≤ z
)

=
∫ ∫

{(x,y)∈[1,+∞)2:
p

x y≤z}
fX ,Y (x, y)d y d x

X i .i .d .∼ Y=
∫ ∫{

(x,y)∈[1,+∞)2: y≤ z2

x

} f (x)× f (y)d y d x

=
∫ z2

1

∫ z2

x

1

1

x2 × 1

y2 d y d x

=
∫ z2

1

1

x2 ×
− 1

y

∣∣∣∣ z2

x

1

 d x

=
∫ z2

1

1

x2 ×
(
1− x

z2

)
d x

=
(
−1

x
− ln(x)

z2

)∣∣∣∣z2

1

= z2 −2ln(z)−1

z2 , z ≥ 1.

• Generation of a pseudorandom number from Z

There is no explicit expression for the quantile function of Z but there is one for the common
quantile function of X and Y . Indeed:

F (x) = P (X ≤ x) =
{

0, x < 1∫ x
1

1
t 2 d t = −1

t

∣∣x
1 = 1− 1

x , x ≥ 1;

F (x) = u ⇔ 1− 1

x
= u ⇔ F−1(u) = 1

1−u
, 0 < u < 1.

Furthermore, by resorting to the quantile transformation, we know that if U ∼ uniform(0,1) then
F−1(U ) ≡ 1

1−U ∼ X ∼ Y .

Consequently, to generate a pseudorandom number from Z , z, we have to:

– independently generate two pseudorandom numbers, u1 and u2, from the uniform(0,1)
distribution;

– assign x = 1
1−u , y = 1

1−u2
, and, finally, z =p

x y .

7. Admit that jobs arrive to a workstation according to a non-homogeneous Poisson process with intensity (1.5)

function λ(t ) = 1+e−t , t ≥ 0 (time in hours).

Suppose two jobs arrived during the first hour. What is the probability that both jobs arrived during the
first 20 minutes?
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• Stochastic process

{N (t ) : t > 0} ∼ N HPP (λ(t ))

N (t ) = number of jobs arrived to the workstation until time t

• Intensity and mean value functions

λ(t ) = 1+e−t , t ≥ 0

m(t ) =
∫ t

0
λ(s)d s =

∫ t

0
(1+e−s)d s = t +1−e−t , t ≥ 0

Requested probability

Since

(N (s) | N (t ) = n) ∼ binomial(n,m(s)/m(t )), 0 < s < t ,

s = 1/3, t = 1, n = 2, and

m(s)

m(t )
= 1/3+1−e−1/3

1+1−e−1 ' 0.377914,

we get

P [N (1/3) = 2 | N (1) = 2] '
(

2

2

)
× (0.377914)2 × (1−0.377914)2−2 ' (0.377914)2 ' 0.142819.

Chap. 4 — Expectation 3.5 points

8. Let X and Y be a two i.i.d. r.v. with standard normal distribution. Show that E(max{X ,Y }) = 1p
π

. (2.0)

• R.v.

X i .i .d .∼ Y ∼ normal(0,1), fX (x) = fY (x) =φ(x) = 1p
2π

e−
x2

2 , −∞< x <+∞
• Requested expected value

E(max{X ,Y })
X⊥⊥Y=

∫ +∞

−∞

∫ +∞

−∞
max{x, y}× fX (x)× fY (y)d y d x

=
∫ +∞

−∞

∫ +∞

−∞
max{x, y}×φ(x)×φ(y)d y d x

=
∫ +∞

−∞

[∫ +∞

y
x ×φ(x)d x

]
×φ(y)d y +

∫ +∞

−∞

[∫ +∞

x
y ×φ(y)d y

]
×φ(x)d x

= 2×
∫ +∞

−∞

[∫ +∞

y
x ×φ(x)d x

]
×φ(y)d y

= 2×
∫ +∞

−∞

∫ +∞

y

x e−
x2

2p
2π

d x

×φ(y)d y

= 2×
∫ +∞

−∞

(
− 1p

2π
e−

x2

2

∣∣∣∣∞
y

)
×φ(y)d y

= 2×
∫ +∞

−∞
1p
2π

e−
y2

2 × 1p
2π

e−
y2

2 d y

= 1

π

√
2π

(
1/
p

2
)2

∫ +∞

−∞
1√

2π
(
1/
p

2
)2

e
− y2

2(1/
p

2)2
d y

= 1p
π

∫ +∞

−∞
f

N
(
0,

(
1/
p

2
)2

)(y)d y

= 1p
π

.
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9. Admit that (X ,Y ) ∼ normal2(µ,Σ), where µ and Σ are such that: µX = 55.57, µY = 75.86; σ2
X = 7.6735, (1.5)

σ2
Y = 35.5510, cov(X ,Y ) = 13.6531.

Compute P (Y > X +10).

• Random vector (X ,Y )

(X ,Y ) ∼ normal2(µ,Σ), where: µ=
[

55.57
75.86

]
; Σ=

[
7.6735 13.6531

13.6531 35.5510

]
.

• Requested probability and auxiliary r.v.

P (Y > X +10) = P (W = Y −X > 10)

W = Y −X = C×
[

X
Y

]
+b, where: C = [−1 1]; b = [0].

W T h. 4.216∼ normal(E(W ),V (W )), where:

E(W ) = Cµ+b −55.57+75.86+0 = 20.29;

V (W ) = CΣC> = [−1 1]×
[

7.6735 13.6531
13.6531 35.5510

]
×

[
−1
1

]

= [−7.6735+13.6531 −13.6531+35.5510]×
[

−1
1

]
= 15.9183.

Hence,

P (W > 10) = 1−Φ
[

10−E(W )p
V (W )

]
= 1−Φ

(
10−20.29p

15.9183

)
' 1−Φ(−2.58)

= Φ(2.58)
t ables= 0.9951.

Chap. 5 — Stochastic convergence concepts and classical limit theorems 5.0 points

10. Prove that complete convergence of sequences of r.v. is stronger than almost sure convergence. (1.5)

Hint: Without loss of generality, assume that {Xn : n ∈N} is completely convergent to 0 (Xn
c→ 0) and use

an alternative criterion when it comes to almost sure convergence of {Xn : n ∈N} to zero (Xn
a.s.→ 0).

• Sequence of r.v.

{Xn : n ∈N}

• Requested proof

Without loss of generality, let us assume that {Xn : n ∈N} is completely convergent to 0 (Xn
c→ 0),

i.e.,
∑+∞

n=1 P (|Xn | > ε) <+∞, ∀ε> 0. Equivalently,

lim
n→+∞

+∞∑
k=n

P (|Xk | > ε) = 0, ∀ε> 0. (?)

In order to relate this mode of convergence with a.s. convergence, recall that

Xn
a.s.→ 0 ⇔ P ({ω : lim

n→+∞ Xn(ω) = 0}) = 1

⇔ lim
n→+∞ P (sup

k≥n
|Xk | > ε) = 0, ∀ε> 0

⇔ lim
n→+∞ P (∪k≥n {|Xk | > ε}) = 0, ∀ε> 0.
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Since the probability P is semi-additive, we obtain, for every ε> 0,

lim
n→+∞ P (∪k≥n {|Xk | > ε}) ≤ lim

n→+∞
+∞∑
k=n

P (|Xk | > ε)
(?)= 0.

Hence, Xn
a.s.→ 0. X

11. Let {Xn : n ∈ N} be a sequence of i.i.d. r.v. with common p.d.f. fX (x) = 2x
3α2 × I[α,2α](x), where α is an (2.0)

unknown positive constant.

After having derived the c.d.f. of Yn = X(n:n)

2 , where X(n:n) = maxi=1,...,n Xi , show that Yn
d→α.

• Sequence of r.v.

{Xn : n ∈N}

Xn
i .i .d .∼ X , n ∈N

fX (x) =
{

2x
3α2 , α≤ x ≤ 2α (α> 0)
0, otherwise

• Another sequence of r.v.

{Yn : n ∈N}

Yn = X(n:n)

2

• Requested c.d.f.

For y ∈ [
α
2 , α

]
, we have

FYn (y) = P

[
Yn = X(n:n)

2
≤ y

]
= P

[
X(n:n) ≤ 2y

]= [
FX

(
2y

)]n =
(∫ 2y

α

2x

3α2 d x

)n

=
(

x2

3α2

∣∣∣∣2y

α

)n

=
(

4y2

3α2 − 1

3

)n

.

Moreover,

FYn (y) =


0, y ≤ α

2(
4y2

3α2 − 1
3

)n
, α

2 < y <α
1, y ≥α.

• Requested proof

Since 4y2

3α2 − 1
3 ∈ (0,1), when y ∈ (

α
2 , α

)
, we have

lim
n→+∞FYn (y) =


0, y ≤ α

2
0, α

2 < y <α
1, y ≥α

=
{

0, y <α
1, y ≥α,

which coincides with c.d.f. of a degenerate r.v. at α, Fα(y) = I[α,+∞)(y), for all x ∈ R, thus, for all

points at which Fα(y) is continuous. Hence, Yn
d→α. X

12. Let: {Xn : n ∈ N} be a sequence of i.i.d. r.v. to X ∼ beta(α,1), where α is an unknown positive constant; (1.5)

Un =− 1
n

∑n
i=1 ln(Xi ).

Prove that Un
P→α−1.

Note: Zn = 2nα×Un ∼χ2
(2n).

Page 7 de 8



• Sequence of r.v.

{Xn : n ∈N}

Xn
i .i .d .∼ X ∼ beta(α,1), n ∈N (α> 0)

• Another sequence of r.v.

{Un : n ∈N}

Un =− 1
n

∑n
i=1 ln(Xi )

• Rewriting Un in terms of Zn

Zn = 2nα×Un ∼χ2
(2n)

Un = Z
2nα

• Expected value and variance of Un

E(Un) = E

(
Zn

2nα

)
= 1

2nα
×E

[
χ2

(2n

] f or m= 1

2nα
×2n =α−1

V (Un) = V

(
Zn

2nα

)
= 1

(2nα)2 ×V
[
χ2

(2n

] f or m= 1

4n2α2 ×4n = 1

nα2

• Requested proof

The application of the definition of convergence in probability and Chebyshev-Bienaymé’s
inequality leads to

lim
n→+∞P

(|Un −α−1| > ε) = lim
n→+∞P

[
|Un −E(Un)| ≥ εp

V (Un)

√
V (Un)

]
≤ lim

n→+∞
1[

ε/
√

1/(nα2)
]2

= 1

ε2α2 lim
n→+∞

1

n
= 0, ∀ε> 0.

Hence, Un
P→α−1. X
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