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Deep Learning Course

• A new MSc-level course

• Offered jointly by DEEC and DEI

• MSc programs: MEEC, MECD, MEIC-A, MEIC-T

• 475 students enrolled this year!!! (264 DEEC, 211 DEI).
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Course Website(s)

https://fenix.tecnico.ulisboa.pt/disciplinas/AProf-2/

2021-2022/1-semestre (DEEC)
https://fenix.tecnico.ulisboa.pt/disciplinas/AP-Dei/

2021-2022/1-semestre (DEI)

There we’ll post:

• Syllabus

• Lecture slides

• Literature pointers

• Practical assignments

• Homework assignments

• Announcements

• ...
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Instructors

• Main instructors: André Martins (DEI Alameda), Francisco Melo
(DEI Tagus), Mário Figueiredo (DEEC)

• Practical classes: Andreas Wichert, Ben Peters, Gonçalo Faria, João
Santinha, José Moreira, Pedro Balage, Rita Ramos, Taisiya
Glushkova, Tomás Costa

• Location & schedule: see course webpage in Fenix

• Office hours: see information in Fenix

• Communication:
piazza.com/tecnico.ulisboa.pt/fall2021/c88

Please register in Piazza!!!
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What is “‘Deep Learning”?

• Neural networks?

• Neural networks with many hidden layers?

• Anything beyond shallow (linear) models for machine learning?

• Anything that learns representations?

• A form of learning that is really intense and profound?
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Why Did Deep Learning Become Mainstream?

Lots of recent breakthroughs:

• Object recognition

• Speech and language processing (Transformers, BERT, GPT-3)

• Machine translation

• Chatbots and dialog systems

• Self-driving cars

• Solving games (Atari, Go, StartCraft II)

• Protein design (AlphaFold)

No signs of slowing down...
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Why Now?

Why does deep learning work now, but not 30 years ago?

Many of the core ideas were there, after all.

But now we have:

• more data

• more computing power

• (much) better software engineering (e.g. auto-diff)

• some algorithmic innovations (many layers, ReLUs, better learning
rates, dropout, CNNs, LSTMs, transformers, etc.)
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“But It’s Non-Convex”

For many years (2000–2010), NNs weren’t popular in machine learning
because they were hard to learn (e.g. initialization was important)

Why does gradient-based optimization work at all in NNs despite the
non-convexity?

One possible, partial answer (this is an open research topic)

• there are generally many hidden units

• there are many ways a neural net can approximate the desired
input-output relationship

• we only need to find one
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One turning point: AlexNet

• Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton; 2012

• ImageNet: Large Scale Visual Recognition Challenge (14 million
images, 20000 categories)

• Large CNN, much deeper than anything else at the time

• Used parallel processing (one of the first uses of GPUs in NNs)

• Convinced many people that deep learning would change the field.
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Recommended Books

Main book:

• Deep Learning. Ian Goodfellow,
Yoshua Bengio, and Aaron Courville.
MIT Press, 2016. Chapters available at
http://deeplearningbook.org
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Recommended Books

Secondary books:

• Artificial Intelligence Engines: A Tutorial Introduction to the
Mathematics of Deep Learning. James Stone. Sebtel Press, 2019.

• Dive into Deep Learning. Aston Zhang, Zach Lipton, Mu Li, Alex
Smola (https://d2l.ai/)

• Deep Learning with Python. François Chollet. Manning
Publications, 2017.

• Machine Learning – A Journey to Deep Learning with Exercises
and Answers. Andreas Wichert and Luis Sa-Couto, 2021

• Machine Learning: a Probabilistic Perspective. Kevin P. Murphy.
MIT Press, 2013.
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Tentative Syllabus

Week 1 Introduction and Course Description
Basic Machine Learning

Week 2 Linear Classifiers I (linear regression, perceptron)
Linear Classifiers II (logistic regression, regularization)

Week 3 Neural Networks I
Neural Networks II

Week 4 Representation Learning and Auto-Encoders
Convolutional Networks

Week 5 Recurrent Neural Networks and LSTMs
Sequence-to-Sequence Models and Attention Mechanisms

Week 6 Transformers
Self-Supervised Learning (BERT, GPT3, etc.)

Week 7 Deep Generative Models (VAEs, GANs)
Interpretability and Fairness
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What This Class Is About

• Introduction to deep learning (DL)

• Goal: after finishing this class, you should be able to:

X Understand how DL works (it’s not magic)

X Understand the math and intuition behind DL models

X Apply DL on practical problems (language, vision, ...)

• Target audience:

X MSc students with basic background in: probability theory, linear
algebra, and programming

X Preferred (not required): basic background in machine learning.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 1 DL, IST Fall 2021 24 / 55



What This Class Is Not About

It’s not about:

• Just playing with a DL toolkit without learning the fundamental
concepts

• Introduction to machine learning (other courses offered by DEEC and
DEI)

• Natural language processing (another course offered by DEI)

• Computer vision (another course offered by DEEC)

• Optimization (other courses by DEEC and DEI)

• ...
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Prerequisites

• Calculus and basic linear algebra

• Basic probability theory

• Basic knowledge of machine learning (preferred, but not required)

• Programming (Python & PyTorch, preferred but not required)
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Course Information

• Main instructors: André Martins (DEI Alameda), Francisco Melo
(DEI Tagus), Mário Figueiredo (DEEC)

• Practical classes: Andreas Wichert, Ben Peters, Gonçalo Faria, João
Santinha, José Moreira, Pedro Balage, Rita Ramos, Taisiya
Glushkova, Tomás Costa

• Location & schedule: see course webpage in Fenix

• Office hours: see information in Fenix

• Communication:
piazza.com/tecnico.ulisboa.pt/fall2021/c88

Please register in Piazza!!!
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Schedule (DEI Alameda/Tagus)

Each week:

• 2 theoretical classes (first Mon-Wed, second Thu-Fri)
• 2 practical classes (first Mon-Wed, second Thu-Fri) – pick your slots

and register as a group! (more later)
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Schedule (DEEC Alameda)

Each week:

• Lecture shifts (shift 1: Mon & Fri; shift 2: Tue & Thu)

• Practical shifts: pick your slots and register as a group! (more later!)
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Grading

• 2 homework assignments: 50%
• Minimal grade: 9.5
• Theoretical questions & implementation
• Groups of 3 – you need to register your group in Fenix!
• Some of the practicals will be Q&A about these assignments, so please

join the practicals as a group
• Submission through Fenix
• No late days allowed

• Final exam: 50%
• Minimal grade: 9.5
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Registering Your Group in Fenix

• Pick a group of 3

• Register in Fenix

• Deadline: Sunday, December 5

• Use Piazza to find group mates

• If you can’t find a group, let the instructors know by December 6 (in
Piazza), and we’ll find a solution.
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Collaboration Policy

• Assignments should be done within each group

• Students may discuss the questions across groups, as long as they
write their own answers and their own code

• If this happens, acknowledge with whom you collaborate!

• Zero tolerance on plagiarism!!

• Always credit your sources!!!
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Caveat

• This is the first year we’re teaching this class

• Also the first year with trimesters

• ... which means you’re the first batch of students taking it :)

• Constructive feedback will be highly appreciated!
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Questions?
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Notation: Matrices and Vectors

• A ∈ Rm×n is a matrix with m rows and n columns.

A =

 A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

 .
• x ∈ Rn is a vector with n components,

x =

 x1
...
xn

 .
• A (column) vector is a matrix with n rows and 1 column.

• A matrix with 1 row and n columns is called a row vector.
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Matrix Transpose and Matrix Products
• Given matrix A ∈ Rm×n, its transpose AT is such that (AT )i ,j = Aj ,i .

• Matrix A is symmetric if AT = A.

• Given matrices A ∈ Rm×n and B ∈ Rn×p, their product is

C = AB ∈ Rm×p where Ci ,j =
n∑

k=1

Ai ,k Bk,j

• Inner product between vectors x , y ∈ Rn:

〈x , y〉 = xT y = yT x =
n∑

i=1

xiyi

 x1
...
xn


T  y1

...
yn

 = [x1, ..., xn]

 y1
...
yn

 =
n∑

i=1

xiyi
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Outer and Hadamard Products

• Outer product between vectors x ∈ Rn and y ∈ Rm:

x yT ∈ Rn×m, where (x yT )i ,j = xi yj

x yT =

 x1
...
xn

 [y1, ..., ym] =

x1y1 · · · x1ym
...

. . .
...

xny1 · · · xnym


• Hadamard/Schur product between vectors x , y ∈ Rn: (x � y)i = xiyi , x1

...
xn

�
 y1

...
yn

 =

 x1 y1
...

xn yn
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Properties of Matrix Products and Transposes

• Given matrices A ∈ Rm×n and B ∈ Rn×p, their product is

C = AB ∈ Rm×p where Ci ,j =
n∑

k=1

Ai ,k Bk,j

• Matrix product is associative: (AB)C = A(BC ).

• In general, matrix product is not commutative: AB 6= BA.

• Transpose of product: (AB)T = BTAT .

• Transpose of sum: (A + B)T = AT + BT .
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Norms

• The norm of a vector is (informally) its “magnitude.” Euclidean norm:

‖x‖2 =
√
〈x , x〉 =

√
xT x =

√√√√ n∑
i=1

x2i .

• More generally, the `p norm of a vector x ∈ Rn, where p ≥ 1,

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

.

• Notable case: the `1 norm, ‖x‖1 =
∑

i |xi |.

• Notable case: the `∞ norm, ‖x‖∞ = max{|x1|, ..., |xn|}.
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Special Matrices

• The identity matrix I ∈ Rn×n is a square matrix such that

Iij =

{
1 i = j
0 i 6= j

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


• Neutral element of matrix product: A I = I A = A.

• Diagonal matrix: A ∈ Rn×n is diagonal if (i 6= j)⇒ Ai ,j = 0.

• Upper triangular matrix: (j < i)⇒ Ai ,j = 0.

• Lower triangular matrix: (j > i)⇒ Ai ,j = 0.
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Eigenvalues, eigenvectors, determinant, trace
• A vector x ∈ Rn is an eigenvector of matrix A ∈ Rn×n if

Ax = λ x ,

where λ ∈ R is the corresponding eigenvalue.

• The eigenvalues of a diagonal matrix are the elements in the diagonal.

• Matrix trace:
trace(A) =

∑
i

Ai ,i =
∑
i

λi

• Matrix determinant:

|A| = det(A) =
∏
i

λi

• Properties: |AB| = |A||B|, |AT | = |A|, |αA| = αn|A|
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Matrix Inverse

• Matrix A ∈ Rn×n in invertible if there is B ∈ Rn×n s.t. AB = BA = I .

• ...matrix B, such that AB = BA = I , denoted B = A−1.

• Matrix A ∈ Rn×n is invertible ⇔ det(A) 6= 0.

• Determinant of inverse: det(A−1) =
1

det(A)
.

• Solving system Ax = b, if A is invertible: x = A−1b.

• Properties: (A−1)−1 = A, (A−1)T = (AT )−1, (AB)−1 = B−1A−1

• There are many algorithms to compute A−1; general case,
computational cost O(n3).
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Quadratic Forms and Positive (Semi-)Definite Matrices

• Given matrix A ∈ Rn×n and vector x ∈ Rn,

xTAx =
n∑

i=1

n∑
j=1

Ai , j xi xj ∈ R

is called a quadratic form.

• A symmetric matrix A ∈ Rn×n is positive semi-definite (PSD) if, for
any x ∈ Rn, xTAx ≥ 0.

• A symmetric matrix A ∈ Rn×n is positive definite (PD) if, for any
x ∈ Rn, (x 6= 0)⇒ xTAx > 0.

• Matrix A ∈ Rn×n is PSD ⇔ all λi (A) ≥ 0.

• Matrix A ∈ Rn×n is PD ⇔ all λi (A) > 0.
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Minimizing a function

• We are given a function f : Rn → R.

• Goal: find x∗ that minimizes f : Rn → R.

• Global minimum: for any x ∈ Rn, f (x∗) ≤ f (x).

• Local minimum: for any ‖x − x∗‖ ≤ δ ⇒ f (x∗) ≤ f (x).

• Are local minima also global minima?
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Convex Functions

• Function f : Rn → R

• f is a convex function, if, for any λ ∈ [0, 1], and any x , x ′,

f
(
λx + (1− λ)x ′

)
≤ λf (x) + (1− λ)f (x ′)

• f is a strictly convex function, if, for any λ ∈ ]0, 1[, and any x , x ′,

f
(
λx + (1− λ)x ′

)
< λf (x) + (1− λ)f (x ′)
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Relationship Between Convexity and Minimization

• Goal: find x∗ that minimizes f : Rn → R.

• If f is convex and x∗ is a local minimizer, then it is also a global
minimizer.

• If f is strictly convex and x∗ is a local minimizer, then it is also the
unique global minimizer.
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Gradients and Minimization
• Given f : Rn → R (differentiable), the gradient of f at x :

∇f (x) =


∂f (x)
∂x1
...

∂f (x)
∂xn

 ∈ Rn

• Relationship between gradient and minimization

x∗ is local minimizer
⇒
6⇐ ∇f (x∗) = 0
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Hessians and Convexity

• Given f : Rn → R (differentiable), the Hessian of f at x :

∇2f (x) =


∂2f (x)
∂x21

∂2f (x)
∂x1 ∂x2

· · · ∂2f (x)
∂x1 ∂xn

∂2f (x)
∂x2 ∂x1

∂2f (x)
∂x22

· · · ∂2f (x)
∂x2 ∂xn

...
...

. . .
...

∂2f (x)
∂xn ∂x1

∂2f (x)
∂xn ∂x2

· · · ∂2f (x)
∂x2n

 ∈ Rn×n

• Relationship between Hessian and convexity:

X Positive semi-definite Hessian ⇔ f is convex

X Positive definite Hessian ⇔ f is strictly convex.
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More on Gradients

• Gradient of quadratic form f (x) = xTAx : ∇f (x) = (A + AT )x

• ...if A symmetric: ∇f (x) = 2Ax

• .Particular case: f (x) = xT x = ‖x‖22, then ∇f (x) = 2x

• If f (x) = xTb = bT x , then ∇f (x) = b

• If g(x) = f (Ax), then ∇g(x) = AT∇f (Ax)

• If g(x) = f (a� x), then ∇g(x) = a�∇f (a� x)

• In simple cases, we can find minima analytically: f (x) = ‖Ax − y‖22

∇f (x) = 2AT (Ax − y) = 0 ⇒ x∗ = (ATA)−1AT y
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Gradient Descent

• Goal: minimize f : Rd → R, for differentiable f

• Take small steps in the negative gradient direction until a stopping
criterion is met:

x (t+1) ← x (t) − η(t)∇f (x (t))

• Choosing the step-size: crucial for convergence and performance.

• GD may work well, or not so well. There are many ways to improve it.
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Recommended Reading

• Z. Kolter and C. Do, “Linear Algebra Review and Reference”,
Stanford University, 2015 (https://tinyurl.com/44x2qj4)
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Thank you!

Questions?
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Lecture 2: Machine Learning Basics

André Martins, Francisco Melo, Mário Figueiredo

Deep Learning Course, Winter 2021-2022
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Announcements

• Please don’t forget to register your groups in Fenix!!

• Deadline this Sunday!

• If needed, use Piazza to find a group.

• Many shifts are still available.
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Today’s Roadmap

• Probability Refresher

• Introduction to Machine Learning
• “Deep Learning Superheroes”
• Supervised, Unsupervised, Reinforcement Learning
• Classification and Regression

• Naive Bayes Classifier
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Probability theory

• “Essentially, all models are wrong, but some are useful”; G. Box, 1987

• The study of probability has roots in games of chance (dice, cards, ...)

• Natural tool to model uncertainty, information, knowledge, belief, ...

• ...thus also learning, inference, ...
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What is probability?

• Classical definition: P(A) =
NA

N

...with N mutually exclusive equally likely outcomes,

NA of which result in the occurrence of event A. Laplace, 1814

Example: P(randomly drawn card is ♣) = 13/52.

Example: P(getting 1 in throwing a fair die) = 1/6.

• Frequentist definition: P(A) = lim
N→∞

NA

N

...relative frequency of occurrence of A in infinite number of trials.

• Subjective probability: P(A) is a degree of belief. de Finetti, 1930s

...gives meaning to P(“Tomorrow it will rain”).
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Key concepts: Sample space and events

• Sample space X = set of possible outcomes of a random experiment.

Examples:
• Tossing two coins: X = {HH,TH,HT ,TT}
• Roulette: X = {1, 2, ..., 36}
• Draw a card from a shuffled deck: X = {A♣, 2♣, ...,Q♦,K♦}.

• An event A is a subset of X: A ⊆ X.

Examples:
• “exactly one H in 2-coin toss”: A = {TH,HT} ⊂ {HH,TH,HT ,TT}.

• “odd number in the roulette”: B = {1, 3, ..., 35} ⊂ {1, 2, ..., 36}.

• “drawn a ♥ card”: C = {A♥, 2♥, ...,K♥} ⊂ {A♣, ...,K♦}
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Kolmogorov’s Axioms for Probability

• Probability is a function that maps events A into the interval [0, 1].

Kolmogorov’s axioms (1933) for probability P
• For any A, P(A) ≥ 0

• P(X) = 1

• If A1, A2 ... ⊆ X are disjoint events, then P
(⋃

i

Ai

)
=
∑
i

P(Ai )

• From these axioms, many results can be derived. Examples:

• P(∅) = 0

• C ⊂ D ⇒ P(C ) ≤ P(D)

• P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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Conditional Probability and Independence
• If P(B) > 0, P(A|B) =

P(A ∩ B)

P(B)

• Events A, B are independent (A ⊥⊥ B) ⇔ P(A ∩ B) = P(A)P(B).

• Relationship with conditional probabilities:

A ⊥⊥ B ⇔ P(A|B) =
P(A ∩ B)

P(B)
=

P(A) P(B)

P(B)
= P(A)

• Example: X = “52 cards”, A = {3♥, 3♣, 3♦, 3♠}, and
B = {A♥, 2♥, ...,K♥}; then, P(A) = 1/13, P(B) = 1/4

P(A ∩ B) = P({3♥}) =
1

52

P(A)P(B) =
1

13

1

4
=

1

52

P(A|B) = P(“3”|“♥”) =
1

13
= P(A)
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Law of Total Probability and Bayes Theorem

• Law of total probability: if A1, ...,An are a partition of X

P(B) =
∑
i

P(B|Ai )P(Ai )

=
∑
i

P(B ∩ Ai )

• Bayes’ theorem: if {A1, ...,An} is a partition of X

P(Ai |B) =
P(B ∩ Ai )

P(B)
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Discrete Random Variables
• Distribution function: FX (x) = P({ω ∈ X : X (ω) ≤ x})

• Example: number of heads in tossing 2 coins; range(X ) = {0, 1, 2}.

• Probability mass function (discrete RV): fX (x) = P(X = x),

FX (x) =
∑
xi≤x

fX (xi ).
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Important Discrete Random Variables
• Uniform: X ∈ {x1, ..., xK}, pmf fX (xi ) = 1/K .

• Bernoulli RV: X ∈ {0, 1}, pmf fX (x) =

{
p ⇐ x = 1

1− p ⇐ x = 0

Can be written compactly as fX (x) = px(1− p)1−x .

• Binomial RV: X ∈ {0, 1, ..., n} (sum on n Bernoulli RVs)

fX (x) = Binomial(x ; n, p) =

(
n

x

)
px (1− p)(n−x)

Binomial coefficients
(“n choose x”):(

n

x

)
=

n!

(n − x)! x!
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Continuous Random Variables
• Distribution function: FX (x) = P({ω ∈ X : X (ω) ≤ x})

• Example: continuous RV with uniform distribution on [a, b].

• Probability density function (pdf, continuous RV): fX (x)

FX (x) =

∫ x

−∞
fX (u) du, P(X ∈ [c , d ]) =

∫ d

c
fX (x) dx , P(X =x) = 0
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Important Continuous Random Variables

• Uniform: fX (x) = Uniform(x ; a, b) =

{
1

b−a ⇐ x ∈ [a, b]

0 ⇐ x 6∈ [a, b]
(previous slide).

• Gaussian: fX (x) = N(x ;µ, σ2) =
1√

2π σ2
e−

(x−µ)2

2σ2
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Expectation of Random Variables

• Expectation: E(X ) =


∑
i

xi fX (xi ) X ∈ {x1, ..., xK} ⊂ R∫ ∞
−∞

x fX (x) dx X continuous

• Example: Bernoulli, fX (x) = px (1− p)1−x , for x ∈ {0, 1}.

E(X ) = 0 (1− p) + 1 p = p.

• Example: Gaussian, fX (x) = N(x ;µ, σ2). E(X ) = µ.

• Linearity of expectation:

E(X + Y ) = E(X ) + E(Y ); E(αX ) = αE(X ), α ∈ R
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Expectation of Functions of Random Variables

• E(g(X )) =


∑
i

g(xi )fX (xi ) X discrete, g(xi ) ∈ R∫ ∞
−∞

g(x) fX (x) dx X continuous

• Example: variance, var(X ) = E
((

X − E(X )
)2)

= E(X 2)− E(X )2

• Example: Bernoulli variance, E(X 2) = E(X ) = p , thus var(X ) = p(1− p).

• Example: Gaussian variance, E
(
(X − µ)2

)
= σ2.

• Probability as expectation of indicator, 1A(x) =

{
1 ⇐ x ∈ A
0 ⇐ x 6∈ A

P(X ∈ A) =

∫
A
fX (x) dx =

∫
1A(x) fX (x) dx = E(1A(X ))
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Two (or More) Random Variables
• Joint pmf of two discrete RVs: fX ,Y (x , y) = P(X = x ∧ Y = y).

Extends trivially to more than two RVs.

• Joint pdf of two continuous RVs: fX ,Y (x , y), such that

P
(
(X ,Y ) ∈ A

)
=

∫ ∫
A
fX ,Y (x , y) dx dy .

Extends trivially to more than two RVs.

• Marginalization: fY (y) =


∑
x

fX ,Y (x , y), if X is discrete∫ ∞
−∞

fX ,Y (x , y) dx , if X continuous

• Independence:

X ⊥⊥ Y ⇔ fX ,Y (x , y) = fX (x) fY (y)
⇒
6⇐ E(X Y ) = E(X )E(Y ).
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Conditionals and Bayes’ Theorem

• Conditional pmf (discrete RVs):

fX |Y (x |y) = P(X = x |Y = y) =
P(X = x ∧ Y = y)

P(Y = y)
=

fX ,Y (x , y)

fY (y)
.

• Conditional pdf (continuous RVs): fX |Y (x |y) =
fX ,Y (x , y)

fY (y)

• Bayes’ theorem: fX |Y (x |y) =
fY |X (y |x) fX (x)

fY (y)
(pdf or pmf).

• Also valid in the mixed case (e.g., X continuous, Y discrete).
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Joint, Marginal, and Conditional Probabilities: An Example

• A pair of binary variables X ,Y ∈ {0, 1}, with joint pmf:

• Marginals: fX (0) = 1
5 + 2

5 = 3
5 , fX (1) = 1

10 + 3
10 = 4

10 ,

fY (0) = 1
5 + 1

10 = 3
10 , fY (1) = 2

5 + 3
10 = 7

10 .

• Conditional probabilities:
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An Important Multivariate RV: Multinomial

• Multinomial: X = (X1, ...,XK ), Xi ∈ {0, ..., n}, such that
∑

i Xi = n,

fX (x1, ..., xK ) =

{ ( n
x1 x2 ··· xK

)
px11 px22 · · · p

xK
k ⇐

∑
i xi = n

0 ⇐
∑

i xi 6= n(
n

x1 x2 · · · xK

)
=

n!

x1! x2! · · · xK !

Parameters: p1, ..., pK ≥ 0, such that
∑

i pi = 1.

• Generalizes the binomial from binary to K -classes.

• Example: tossing n independent fair dice, p1 = · · · = p6 = 1/6.
xi = number of outcomes with i dots. Of course,

∑
i xi = n.

• For n = 1, sometimes called categorical or multinoulli.
For n = 1, one and only one xi = 1, others are 0, thus

( n
x1 ··· xK

)
= 1.
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An Important Multivariate RV: Gaussian
• Multivariate Gaussian: X ∈ Rn,

fX (x) = N(x ;µ,C ) =
1√

det(2π C )
exp

(
−1

2
(x − µ)TC−1(x − µ)

)

• Parameters: vector µ ∈ Rn and matrix C ∈ Rn×n.
Expected value: E(X ) = µ. Meaning of C : next slide.
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Covariance, Correlation, and all that...

• Covariance between two RVs:

cov(X ,Y ) = E
[(
X − E(X )

) (
Y − E(Y )

)]
= E(X Y )− E(X )E(Y )

• Relationship with variance: var(X ) = cov(X ,X ).

• X ⊥⊥ Y ⇔ fX ,Y (x , y) = fX (x) fY (y)
⇒
6⇐ cov(X , Y ) = 0

• Covariance matrix of multivariate RV, X ∈ Rn:

cov(X ) = E
[(
X − E(X )

)(
X − E(X )

)T ]
= E(X XT )− E(X )E(X )T

• Covariance of Gaussian RV, fX (x) = N(x ;µ,C ) ⇒ cov(X ) = C
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More on Expectations and Covariances

Let A ∈ Rn×n be a matrix and a ∈ Rn a vector.

• If E(X ) = µ and Y = AX , then E(Y ) = Aµ;

• If cov(X ) = C and Y = AX , then cov(Y ) = ACAT ;

• If cov(X ) = C and Y = aTX ∈ R, then var(Y ) = aTCa ≥ 0;

• If cov(X ) = C and Y = C−1/2X , then cov(Y ) = I ;

• If fX (x) = N(x ; 0, I ) and Y = µ+ C 1/2X , then fY (y) = N(y ;µ,C );

• If fX (x) = N(x ;µ,C ) and Y =C−1/2(X − µ), then fY (y)=N(y ; 0, I ).
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Entropy and all that...

Entropy of a discrete RV X ∈ {1, ...,K}: H(X ) = −
K∑

x=1

fX (x) log fX (x)

• Positivity: H(X ) ≥ 0 ;
H(X ) = 0 ⇔ fX (i) = 1, for exactly one i ∈ {1, ...,K}.

• Upper bound: H(X ) ≤ logK ;
H(X ) = logK ⇔ fX (x) = 1/k , for all x ∈ {1, ...,K}

• Measure of uncertainty/randomness of X

Continuous RV X , differential entropy: h(X ) = −
∫

fX (x) log fX (x) dx

• h(X ) can be positive or negative. Example, if
fX (x) = Uniform(x ; a, b), h(X ) = log(b − a).

• If fX (x) = N(x ;µ, σ2), then h(X ) = 1
2 log(2πeσ2).
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Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

D(fX‖gX ) =
K∑

x=1

fX (x) log
fX (x)

gX (x)

Positivity: D(fX‖gX ) ≥ 0
D(fX‖gX ) = 0 ⇔ fX (x) = gX (x), for x ∈ {1, ...,K}

KLD between two pdf:

D(fX‖gX ) =

∫
fX (x) log

fX (x)

gX (x)
dx

Positivity: D(fX‖gX ) ≥ 0
D(fX‖gX ) = 0 ⇔ fX (x) = gX (x), almost everywhere
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Recommended Reading

• A. Maleki and T. Do, “Review of Probability Theory”, Stanford
University, 2017 (https://tinyurl.com/pz7p9g5)

• L. Wasserman, “All of Statistics: A Concise Course in Statistical
Inference”, Springer, 2004.
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Machine Learning

Tom Mitchell’s definition:

• “A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its
performance at tasks in T , as measured by P, improves with
experience E .”

• In a nutshell: learn from data; improve performance with experience

This comes in many flavours:

• Supervised learning

• Unsupervised learning

• Self-supervised learning

• Reinforcement learning

• Active learning

Formulate the problem; get data; learn the model from the data; evaluate.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 2 DL, IST Fall 2021 28 / 62



Example Tasks

Binary classification: given an e-mail: is it spam or not-spam?

Multi-class classification: given a news article, determine its topic
(politics, sports, etc.)

Regression: how much time a person will spend reading this article?
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https://www.approximatelycorrect.com/2020/10/26/

superheroes-of-deep-learning-vol-1-machine-learning-yearning/
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Let’s Start Simple

• Example 1 – sequence: ? � ◦; label: −1

• Example 2 – sequence: ? ♥ 4; label: −1

• Example 3 – sequence: ? 4 ♠; label: +1

• Example 4 – sequence: � 4 ◦; label: +1

• New sequence: ? � ◦; label ?−1

• New sequence: ? � ♥; label ?−1

• New sequence: ? 4 ◦; label ?

Why can we do this?

(Credits: Ryan McDonald)
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Let’s Start Simple: Machine Learning

• Example 1 – sequence: ? � ◦; label: −1

• Example 2 – sequence: ? ♥ 4; label: −1

• Example 3 – sequence: ? 4 ♠; label: +1

• Example 4 – sequence: � 4 ◦; label: +1

• New sequence: ? 4 ◦; label ?

Label −1 Label +1

P(−1|?) = count(? and −1)
count(?) = 2

3
= 0.67 vs. P(+1|?) = count(? and +1)

count(?) = 1
3
= 0.33

P(−1|4) = count(4 and −1)
count(4)

= 1
3
= 0.33 vs. P(+1|4) = count(4 and +1)

count(4)
= 2

3
= 0.67

P(−1|◦) = count(◦ and −1)
count(◦) = 1

2
= 0.5 vs. P(+1|◦) = count(◦ and +1)

count(◦) = 1
2
= 0.5

(Credits: Ryan McDonald)
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Machine Learning

1 Define a model/distribution of interest

2 Make some assumptions if needed

3 Fit the model to the data

• Model: P(label|sequence) = P(label|symbol1, . . . symboln)
• Prediction for new sequence = argmaxlabel P(label|sequence)

• Assumption (naive Bayes—more later):

P(symbol1, . . . , symboln|label) =
n∏

i=1

P(symboli |label)

• Fit the model to the data: count!! (simple probabilistic modeling)
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Some Notation: Inputs and Outputs

• Input x ∈ X
• e.g., a news article, a sentence, an image, ...

• Output y ∈ Y
• e.g., spam/not spam, a topic, the object in the image (cat? dog?); a

segmentation of the image (pedestrian; car; grass; background)

• Input/Output pair: (x , y) ∈ X× Y
• e.g., a news article together with a topic
• e.g., a image together with an object
• e.g., an image partitioned into segmentation regions
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Many Flavours

• Supervised learning: pairs (x , y) are provided at training time (the
main focus of this class)
• Examples: perceptron, SVMs, decision trees, nearest neighbor, neural

networks, ...
• Caveat: the labels y may be hard or expensive to annotate

• Unsupervised learning: only x is provided; the model needs to figure
out what the labels are without any supervision
• Examples: clustering, PCA, ...

• Reinforcement learning: x is provided, and the model can act on the
environment to obtain a reward (but doesn’t get to know y)
• Example: a robot acting on an environment trying to achieve a goal

• Active learning: the model requests which data points to label next.
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Supervised Learning

• We are given a labeled dataset of input/output pairs:

D = {(xn, yn)}Nn=1 ⊆ X× Y

• Goal: use it to learn a predictor h : X→ Y that generalizes well to
arbitrary inputs.

• At test time, given x ∈ X, we predict

ŷ = h(x).

• Hopefully, ŷ ≈ y most of the time.
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Things can go by different names depending on what Y is...
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Regression

Deals with continuous output variables:

• Regression: Y = R
• e.g., given a news article, how much time a user will spend reading it?

• Multivariate regression: Y = RK

• e.g., predict the X-Y coordinates in an image where the user will click
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Classification

Deals with discrete output variables:

• Binary classification: Y = {±1}
• e.g., spam detection

• Multi-class classification: Y = {1, 2, . . . ,K}
• e.g., topic classification

• Structured classification: Y exponentially large and structured
• e.g., machine translation, caption generation, image segmentation
• Later in this course!
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Sometimes reductions are convenient:

• logistic regression reduces classification to regression

• one-vs-all reduces multi-class to binary

• greedy search reduces structured classification to multi-class

... but other times it’s better to tackle the problem in its native form.

More later!
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Probabilistic Models

• Let’s assume our goal is to model the conditional probability of
output labels y given inputs x , i.e. P(y |x)

• If we can define this distribution, then classification becomes:

ŷ = arg max
y∈Y

P(y |x)
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Bayes Rule

• One way to model P(y |x) is through Bayes Rule:

P(y |x) =
P(y)P(x |y)

P(x)

arg max
y

P(y |x) = arg max
y

P(y)P(x |y)

(since x is fixed!)

• P(y)P(x |y) = P(x , y): a joint probability

• Above is a “generative story”: ‘pick y ; then pick x given y .”

• Models that consider the joint P(x , y) are called generative models,
because they come with a generative story.
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Naive Bayes

Assume that an input x is partitioned as x1, . . . , xL, where xk ∈ Xk

Example:

• x is a document of length L

• xk is the kth token (a word)

• The set Xk = V is a fixed vocabulary (all tokens drawn from V)

Naive Bayes Assumption
(conditional independence)

P(x1, . . . , xL︸ ︷︷ ︸
x

|y) =
∏L

k=1 P(xk |y)
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Multinomial Naive Bayes

P(x , y) = P(y)P(x1, . . . , xL︸ ︷︷ ︸
x

|y) = P(y)
L∏

k=1

P(xk |y)

• All tokens are conditionally independently, given the topic

• The word order doesn’t change P(x , y) (bag-of-words assumption)

Small caveat: we assumed that the document has a fixed length L.

This is not realistic.

How to deal with variable length?
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Multinomial Naive Bayes – Arbitrary Length

Solution: introduce a distribution over document length P(|x |)

• e.g. a Poisson distribution.

We get:

P(x , y) = P(y)P(|x |)
|x |∏
k=1

P(xk |y)︸ ︷︷ ︸
P(x |y)

P(|x |) is constant (independent of y), so nothing really changes

• the posterior P(y |x) is the same as before.
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What Does This Buy Us?

P(x1, . . . , xL︸ ︷︷ ︸
x

|y) =
L∏

k=1

P(xk |y)

What do we gain with the Naive Bayes assumption?

• A huge reduction in the number of parameters!

• If we haven’t done any factorization assumption, how many
parameters would be required for expressing P(x1, . . . , xL|y)? O(|V|L)

• And how many parameters with Naive Bayes? O(|V|)

Less parameters =⇒ Less computation; less risk of overfitting (more later)
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Naive Bayes – Learning

P(y)P(x1, . . . , xL︸ ︷︷ ︸
x

|y) = P(y)
L∏

k=1

P(xk |y)

• Input: dataset D = {(x (t), y (t))}Nt=1 (examples assumed i.i.d.)

• Parameters Θ = {P(y),P(v |y)} for v ∈ V

• Objective: Maximum Likelihood Estimation (MLE): choose
parameters that maximize the likelihood of observed data

L(Θ;D) =
N∏
t=1

P(x (t), y (t)) =
N∏
t=1

(
P(y (t))

L∏
k=1

P(x
(t)
k |y

(t))

)

Θ̂ = arg max
Θ

N∏
t=1

(
P(y (t))

L∏
k=1

P(x
(t)
k |y

(t))

)
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Naive Bayes – Learning via MLE

For the multinomial Naive Bayes model, MLE has a closed form solution!!

It all boils down to counting and normalizing!!

(The proof is left as an exercise...)
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Naive Bayes – Learning via MLE

Θ̂ = arg max
Θ

N∏
t=1

(
P(y (t))

L∏
k=1

P(x
(t)
k )|y (t))

)

P̂(y) =

∑N
t=1[[y (t) = y ]]

N

P̂(v |y) =

∑N
t=1

∑L
k=1[[x

(t)
k = v and y (t) = y ]]

L
∑N

t=1[[y (t) = y ]]

[[X ]] is 1 if property X holds, 0 otherwise (Iverson notation)
Fraction of times a feature appears in training cases of a given label
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Naive Bayes Example

• Corpus of movie reviews: 7 examples for training

Doc Words Class

1 Great movie, excellent plot, renown actors Positive

2 I had not seen a fantastic plot like this in good 5
years. Amazing!!!

Positive

3 Lovely plot, amazing cast, somehow I am in love
with the bad guy

Positive

4 Bad movie with great cast, but very poor plot and
unimaginative ending

Negative

5 I hate this film, it has nothing original Negative

6 Great movie, but not... Negative

7 Very bad movie, I have no words to express how I
dislike it

Negative
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Naive Bayes Example

• Features: adjectives (bag-of-words)

Doc Words Class

1 Great movie, excellent plot, renowned actors Positive

2 I had not seen a fantastic plot like this in good 5
years. amazing !!!

Positive

3 Lovely plot, amazing cast, somehow I am in love
with the bad guy

Positive

4 Bad movie with great cast, but very poor plot and
unimaginative ending

Negative

5 I hate this film, it has nothing original. Really bad Negative

6 Great movie, but not... Negative

7 Very bad movie, I have no words to express how I
dislike it

Negative
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Naive Bayes Example

Relative frequency:

Priors:

P(positive) =

∑N
t=1[[y (t) = positive]]

N
= 3/7 = 0.43

P(negative) =

∑N
t=1[[y (t) = negative]]

N
= 4/7 = 0.57

Assume standard pre-processing: tokenization, lowercasing, punctuation
removal (except special punctuation like !!!)
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Naive Bayes Example

Likelihoods: Count adjective v in class y / adjectives in y

P̂(v |y) =

∑N
t=1

∑L
k=1[[x

(t)
k = v and y (t) = y ]]

L
∑N

t=1[[y (t) = y ]]

P(amazing |positive) = 2/10 P(amazing |negative) = 0/8
P(bad |positive) = 1/10 P(bad |negative) = 3/8
P(excellent|positive) = 1/10 P(excellent|negative) = 0/8
P(fantastic |positive) = 1/10 P(fantastic|negative) = 0/8
P(good |positive) = 1/10 P(good |negative) = 0/8
P(great|positive) = 1/10 P(great|negative) = 2/8
P(lovely |positive) = 1/10 P(lovely |negative) = 0/8
P(original |positive) = 0/10 P(original |negative) = 1/8
P(poor |positive) = 0/10 P(poor |negative) = 1/8
P(renowned |positive) = 1/10 P(renowned |negative) = 0/8
P(unimaginative|positive) = 0/10 P(unimaginative|negative)= 1/8
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Naive Bayes Example
Given a new segment to classify (test time):

Doc Words Class

8 This was a fantastic story, good, lovely ???

Final decision

ŷ = arg max
y

(
P(y)

L∏
k=1

P(xk |y)

)

P(positive) ∗ P(fantastic|positive) ∗ P(good |positive) ∗ P(lovely |positive)

3/7 ∗ 1/10 ∗ 1/10 ∗ 1/10 = 0.00043

P(negative) ∗ P(fantastic|negative) ∗ P(good |negative) ∗ P(lovely |negative)

4/7 ∗ 0/8 ∗ 0/8 ∗ 0/8 = 0

So: sentiment = positive
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Naive Bayes Example

Given a new segment to classify (test time):

Doc Words Class

9 Great plot, great cast, great everything ???

Final decision

P(positive) ∗ P(great|positive) ∗ P(great|positive) ∗ P(great|positive)

3/7 ∗ 1/10 ∗ 1/10 ∗ 1/10 = 0.00043

P(negative) ∗ P(great|negative) ∗ P(great|negative) ∗ P(great|negative)

4/7 ∗ 2/8 ∗ 2/8 ∗ 2/8 = 0.00893

So: sentiment = negative
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Naive Bayes Example

But if the new segment to classify (test time) is:

Doc Words Class

10 Boring movie, annoying plot, unimaginative ending ???

Final decision

P(positive) ∗ P(boring |positive) ∗ P(annoying |positive) ∗ P(unimaginative|positive)

3/7 ∗ 0/10 ∗ 0/10 ∗ 0/10 = 0

P(negative) ∗ P(boring |negative) ∗ P(annoying |negative) ∗ P(unimaginative|negative)

4/7 ∗ 0/8 ∗ 0/8 ∗ 1/8 = 0

So: sentiment = ???
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Laplace Smoothing
Add smoothing to feature counts (add 1 to every count):

P̂(v |y) =

∑N
t=1

∑L
k=1[[x

(t)
k = v and y (t) = y ]] + 1

L
∑N

t=1[[y (t) = y ]] + |V|
where |V| = number of distinct adjectives in training (all classes) = 12

Doc Words Class

11 Boring movie, annoying plot, unimaginative ending ???

Final decision

P(positive) ∗ P(boring |positive) ∗ P(annoying |positive) ∗ P(unimaginative|positive)

3/7 ∗ ((0 + 1)/(10 + 12)) ∗ ((0 + 1)/(10 + 12)) ∗ ((0 + 1)/(10 + 12)) = 0.000040

P(negative) ∗ P(boring |negative) ∗ P(annoying |negative) ∗ P(unimaginative|negative)

4/7 ∗ ((0 + 1)/(8 + 12)) ∗ ((0 + 1)/(8 + 12)) ∗ ((1 + 1)/(8 + 12)) = 0.000143

So: sentiment = negative
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Conclusions

• Machine learning allows computer programs to learn from data
(observations, interventions, ...) and improve performance with
experience

• Can be supervised, unsupervised, self-supervised, reinforced, etc.

• Tasks can be (binary or multi-class) classification, regression, or more
nuanced

• The naive Bayes classifier is a very simple probabilistic model that
assumes inputs are conditionally independent given the label, and uses
the Bayes rule to make predictions

• Learning a naive Bayes classifier amounts to counting and
normalizing.
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Today’s Roadmap

• Linear regression

• Binary and multi-class linear classification

• Linear classifiers: perceptron
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Why Linear Classifiers?

We know the course title promised “deep”, but...

• The underlying machine learning concepts are the same

• The theory (statistics and optimization) are much better understood

• Linear classifiers still widely used (very effective when data is scarce)

• Linear classifiers are a component of neural networks.
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Linear Classifiers and Neural Networks

Linear Classifier Linear Classifier Linear Classifier

Handcrafted
Features
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Feature Representations

Feature engineering is an important step in linear classifiers:

• Bag-of-words features for text, also lemmas, parts-of-speech, ...

• SIFT features and wavelet representations in computer vision

• Other categorical, Boolean, and continuous features
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Feature Representations

Representing information about x :

Typical approach: define a feature map φ : X→ RD

• φ(x) is a (maybe high-dimensional) feature vector

• φ(x) may include Boolean, categorical, and continuous features

• Categorical features can be reduced to a one-hot binary vector.
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Example: Continuous Features

Linear Classifier

Handcrafted
Features
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Feature Engineering and NLP Pipelines

Classical NLP pipelines: stacking together several linear classifiers

Each classifier’s output is used to handcraft features for subsequent
classifiers

Examples of features:

• Word occurrences: binary feature (word occurs or not in a document)

• Word counts: numeric feature counting how many times a word
occurs

• POS tags: classifying words as noun, verb, adjective, ...

• Spell check: misspellings counts for spam detection
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Example: Translation Quality Estimation

Wrong translation!

Goal: estimate the quality of a translation on the fly (without a reference)!
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Example: Translation Quality Estimation

Hand-crafted features:
• no of tokens in the source/target segment

• LM probability of source/target segment and their ratio

• % of source 1–3-grams observed in 4 frequency quartiles of source corpus

• average no of translations per source word

• ratio of brackets and punctuation symbols in source & target segments

• ratio of numbers, content/non-content words in source & target segments

• ratio of nouns/verbs/etc in the source & target segments

• % of dependency relations b/w constituents in source & target segments

• diff in depth of the syntactic trees of source & target segments

• diff in no of PP/NP/VP/ADJP/ADVP/CONJP in source & target

• diff in no of person/location/organization entities in source & target

• features and global score of the SMT system

• number of distinct hypotheses in the n-best list

• 1–3-gram LM probabilities using translations in the n-best to train the LM

• average size of the target phrases

• proportion of pruned search graph nodes;

• proportion of recombined graph nodes.
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Representation Learning

Feature engineering is an art and can be very time-consuming

...but it’s a good way of encoding prior knowledge, still widely used in
practice (especially with “small data”)

Alternative to feature engineering: representation learning

Neural networks will alleviate this (later in the course)!
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Regression

Output space Y is continuous

Example: given an article, how much time a user spends reading it?

• x is number of words of the article

• y is the reading time (minutes)

How to define a model that predicts ŷ from x?
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Linear Regression

• Model: assume ŷ = wx + b

• Model parameters: w and b

• Given training data
D = {(xn, yn)}Nn=1, how to
estimate w and b?

Least squares method: fit w and b on the training set by solving

min
w , b

N∑
n=1

(
yn − (w xn + b)

)2

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 3 DL, IST Fall 2021 15 / 51



Linear Regression
Often, linear dependency of ŷ on x is a bad assumption

Second model: assume ŷ = w · φ(x), where φ(x) is a feature vector

• e.g. φ(x) = [1, x , x2, . . . , xD ] (polynomial features degree ≤ D)

• the bias term b is captured by the constant feature φ0(x) = 1

Fit w by minimizing
∑

n(yn −w · φ(xn))2

• Closed-form solution:

w = (X>X )−1X>y , with X =


φ(x1)>

...
φ(xn)>

...
φ(xN)>

 , y =


y1
...
yn
...
yN

 .

Still called linear regression – linearity w.r.t. the model parameters w.
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One-Slide Proof

Fit w by minimizing

N∑
n=1

(
yn −w · φ(xn)

)2
= ‖y − Xw‖2

Equate the gradient to zero and solve the resulting equation:

0 = ∇w‖y − Xw‖2

= ∇w

(
w>X>Xw − 2y>Xw + ‖y‖2

)
= 2X>Xw − 2X>y

Therefore
w = (X>X )−1X>y .
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Linear Regression (D = 1)(D = 2)
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Squared Loss Function

Linear regression with least squares criterion corresponds to a loss function

L(y , ŷ) =
1

2
(y − ŷ)2, where ŷ = w · φ(x).

The model is fit to the training data by minimizing this loss function.

This is called the squared loss.

More later.
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Least Squares (LS) – Probabilistic Interpretation

The least squares method has a probabilistic interpretation.

Assume the data is generated stochastically as

yi = w∗ · φ(xi ) + n

where n ∼ N(0, σ2) is Gaussian noise (with σ2 fixed), and w∗ are the
“true” model parameters.

That is, yi ∼ N(w∗ · φ(xi ), σ
2).

Then w given by LS is the maximum likelihood estimate under this model.
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One-Slide Proof

Recall N(y ;µ, σ2) = 1√
2πσ2

exp
(
− (y−µ)2

2σ2

)
.

ŵMLE = arg max
w

N∏
i=1

P(yi | xi ;w)

= arg max
w

N∑
i=1

logP(yi | xi ;w)

= arg max
w

N∑
i=1

− (yi −w · φ(xi ))2

2σ2
− log(

√
2πσ2)︸ ︷︷ ︸

constant

= arg min
w

N∑
i=1

(yi −w · φ(xi ))2

Thus, linear regression with the squared loss = MLE under Gaussian noise.
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Other Regression Losses
Squared loss: L(y , ŷ) = 1

2 (y − ŷ)2.

Absolute error loss: L(y , ŷ) = |y − ŷ |.

Huber loss: L(y , ŷ) =

{
1
2 (y − ŷ)2 if |y − ŷ | ≤ 1
|y − ŷ | − 1

2 if |y − ŷ | ≥ 1.

Quizz: which of these are convex; and strictly convex?
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Overfitting and Underfitting

We saw earlier an example of underfitting (slide 15)

However, if the model is too complex (too many parameters) and/or the
data is scarce, we run the risk of overfitting

To avoid overfitting, we often need regularization (more later)
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Maximum A Posteriori
Assuming we have a prior distribution w ∼ N(0, τ2I )

A criterion to estimate w∗ is maximum a posteriori (MAP):

ŵMAP = arg max
w

P(w)
N∏
i=1

P(yi | xi ;w)

= arg max
w

logP(w) +
N∑
i=1

logP(yi | xi ;w)

= arg max
w
−‖w‖

2

2τ 2
−

N∑
i=1

− (yi −w · φ(xi ))2

2σ2
+ constant

= arg min
w

λ‖w‖2︸ ︷︷ ︸
regularizer

+
N∑
i=1

(yi −w · φ(xi ))2

︸ ︷︷ ︸
loss

where λ = σ2/τ2 (so-called regularization constant)

Thus, `2-regularization is equivalent to MAP with a Gaussian prior.
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Binary Classification

Before multi-class, we start with simpler case of binary classification

Output set Y = {−1,+1}

Example: Given a news article, is it true or fake?

• x is the news article, represented a feature vector φ(x)

• y can be either +1 (true) or −1 (fake)

How to define a model to predict ŷ from x?
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Linear Classifier

Defined by

ŷ = sign(w · φ(x) + b) =

{
+1 if w · φ(x) + b ≥ 0
−1 if w · φ(x) + b < 0.

Intuitively, w · φ(x) + b is a “score” for the positive class

Different from regression: sign function converts from continuous to binary

The decision boundary is a hyperplane (w.r.t. φ(x), not x)

w · φ(x) + b = 0

Also called a “hyperplane classifier.”
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Linear Classifier

(w, b) defines a hyperplane that splits the space into two half spaces:

1 2-2 -1

1

2

-2

-1

Points along line
have scores of 0

How to learn this hyperplane from the training data D = {(xn, yn)}Nn=1?
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Linear Separability

• A dataset D is linearly separable if there exists (w, b) such that
classification is perfect

Separable Not Separable

We next present an algorithm that finds such an hyperplane if it exists!
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Linear Classifier: No Bias Term

It is common to present linear classifiers without the bias term b:

ŷ = sign(w · φ(x)+b)

In this case, the decision hyperplane passes through the origin

We can always do this without loss of generality:

• Add a constant feature to φ(x): φ0(x) = 1

• The corresponding weight w0 replaces the bias term b
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Perceptron (Rosenblatt, 1958)

(Source: Wikipedia)

• Invented in 1957 at the Cornell
Aeronautical Laboratory by
Frank Rosenblatt

• Implemented in custom-built
hardware as the “Mark 1
perceptron,” for image
recognition

• 400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

• Weight updates during learning
were performed by electric
motors.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 3 DL, IST Fall 2021 31 / 51



Perceptron in the News...
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Perceptron Algorithm

Online algorithm: process one data point xi at each round

1 Take xi ; apply the current model to make the corresponding prediction

2 If prediction is correct, do nothing

3 If it is wrong, correct w by adding/subtracting feature vector φ(xi )

Omit the bias b: use a constant feature φ0(x) = 1, as explained above.
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Perceptron Algorithm

input: labeled data D

initialize w(0) = 0
initialize k = 0 (number of mistakes)
repeat

get new training example (xi , yi )
predict ŷi = sign(w(k) · φ(xi ))
if ŷi 6= yi then

update w(k+1) = w(k) + yi φ(xi )
increment k

end if
until maximum number of epochs
output: model weights w(k)
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Perceptron’s Mistake Bound

Definitions:

• the training data is linearly separable with margin γ > 0 iff there is a
weight vector u with ‖u‖ = 1 such that

yi u · φ(xi ) ≥ γ, ∀i .

• radius of the data: R = maxi ‖φ(xi )‖.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most R2

γ2 mistakes.
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One-Slide Proof

Recall that w(k+1) = w(k) + yiφ(xi ).

• Lower bound on ‖w(k+1)‖:

u ·w(k+1) = u ·w(k) + yiu · φ(xi )

≥ u ·w(k) + γ

≥ u ·w(k−1) + γ + γ

≥ k γ

Thus, ‖w(k+1)‖ = ‖u‖ · ‖w(k+1)‖ ≥ u ·w(k+1) ≥ kγ (Cauchy-Schwarz)

• Upper bound on ‖w(k+1)‖:

‖w(k+1)‖2 = ‖w(k)‖2 + ‖φ(xi )‖2 + 2yiw
(k) · φ(xi )

≤ ‖w(k)‖2 + R2

≤ k R2.

Equating both sides, we get (kγ)2 ≤ kR2 ⇒ k ≤ R2/γ2 �
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What a Simple Perceptron Can and Can’t Do

• Remember: the decision boundary is linear (linear classifier)

• It can solve linearly separable problems (OR, AND)
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What a Simple Perceptron Can and Can’t Do

• ... but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

• This result is often attributed to Minsky and Papert (1969) but was
known well before.
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Limitations of the Perceptron

Minsky and Papert (1969):

• Shows limitations of multi-layer
perceptrons and fostered an “AI
winter” period.

More later in the neural networks’
lecture!

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 3 DL, IST Fall 2021 39 / 51



Multi-Class Classification

We now assume a multi-class problem, with |Y| ≥ 2 labels (classes).

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 3 DL, IST Fall 2021 40 / 51



Reduction to Binary Classification

Several strategies:

• One-vs-all: train one binary classifier per class, using all others as
negative examples; pick the class with the highest score.

• One-vs-one: another strategy is to train pairwise classifiers and use
majority voting.

• Binary coding: use binary code for the class labels and learn a binary
classifier for each bit.

Here, we will consider classifiers that tackle the multiple classes directly.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 3 DL, IST Fall 2021 41 / 51



Multi-Class Linear Classifiers

• Parametrized by a weight matrix W ∈ R|Y|×D (one weight per
feature/label pair) and a bias vector b ∈ R|Y|:

W =


w>1

...
w>y

...
w>|Y|

 , b =


b1
...
by
...

b|Y|

 .

• Equivalently, |Y| weight vectors wy ∈ RD and scalars by ∈ R
• The score of a particular label is based on a linear combination of

features and their weights

• Predict the ŷ which maximizes this score:

ŷ = arg max
y∈Y

wy · φ(x) + by .
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Multi-Class Linear Classifier

Geometrically, (W , b) split the feature space into regions delimited by
hyperplanes.
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Commonly Used Notation in Neural Networks

Linear Classifier

Handcrafted
Features

ŷ = argmax (Wφ(x) + b) , W =


w>1

...
w>y

...
w>|Y|

 , b =


b1
...
by
...

b|Y|

 .
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Multi-Class Recovers Binary

With two classes (Y = {±1}), this formulation recovers the binary
classifier presented earlier:

ŷ = arg max
y∈{±1}

wy · φ(x) + by

=

{
+1 if w+1 · φ(x) + b+1 > w−1 · φ(x) + b−1

−1 otherwise

= sign((w+1 −w−1)︸ ︷︷ ︸
w

· φ(x) + (b+1 − b−1)︸ ︷︷ ︸
b

).

That is: only half of the parameters are needed.
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Linear Classifiers (Binary vs Multi-Class)

• Prediction rule:

ŷ = h(x) = arg max
y∈Y

linear in wy︷ ︸︸ ︷
wy · φ(x)

• The decision boundary is defined by the intersection of half spaces

• In the binary case (|Y| = 2) this corresponds to a hyperplane classifier
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Linear Classifier – No Bias Term

Again, it is common to omit the bias vector b:

ŷ = arg max
y∈Y

wy · φ(x)+by

Like before, this can be done without loss of generality, by assuming a
constant feature φ0(x) = 1

The first column of W replaces the bias vector.

We assume this for simplicity.
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Example: Perceptron

The perceptron algorithm also works for the multi-class case!

It has a similar mistake bound: if the data is separable, it’s guaranteed to
find separating hyperplanes!
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Perceptron Algorithm: Multi-Class

input: labeled data D

initialize W (0) = 0
initialize k = 0 (number of mistakes)
repeat

get new training example (xi , yi )

predict ŷi = arg maxy∈Yw
(k)
y · φ(xi )

if ŷi 6= yi then

update w
(k+1)
yi = w

(k)
yi + φ(xi ) {increase weight of gold class}

updatew
(k+1)
ŷi

= w
(k)
ŷi
−φ(xi ) {decrease weight of incorrect class}

increment k
end if

until maximum number of epochs
output: model weights w(k)
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Conclusions

• Linear models involve manipulating weights and features

• Linear regression is a simple method for regression which has a closed
form solution

• Linear classifiers include several well-known ML methods (both for
binary and multi-class classification)

• Today we saw the perceptron and proved a mistake bound

• Next class: logistic regression (another linear classifier).
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Announcements

• Homework 1 is out! It’s due January 7.

• Start early!!!

• Post any questions in Piazza.
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Today’s Roadmap

• Logistic regression

• Regularization and optimization

• Stochastic gradient descent.
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Why Linear Classifiers?

We know the course title promised “deep”, but...

• The underlying machine learning concepts are the same

• The theory (statistics and optimization) are much better understood

• Linear classifiers still widely used (very effective when data is scarce)

• Linear classifiers are a component of neural networks.
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Linear Classifiers and Neural Networks

Linear Classifier Linear Classifier Linear Classifier

Handcrafted
Features
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So far

We have covered:

• The perceptron algorithm

• Näıve Bayes.

Perceptron is an instance of a linear classifier.

It finds a separating hyperplane (if it exists),

Näıve Bayes is a generative probabilistic model

Next: a discriminative probabilistic model.
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Reminder

Linear Classifier

Handcrafted
Features

ŷ = arg max
y

(
(Wφ(x) + b)y

)
, W =


...
w>y

...

 , b =


...
by
...

 .
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Key Problem

Mapping from a vector of scores R|Y| to a probability distribution over Y?

z p

We will see an important mapping: softmax (next).
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Logistic Regression
A linear model gives a score for each class y : wy · φ(x).

From the score, we may compute a conditional (posterior) probability:

P(y |x) =
exp(wy · φ(x))

Zx
, where Zx =

∑
y ′∈Y

exp(wy ′ · φ(x))

This operation (exponentiating and normalizing) is called the softmax
transformation (more later!)

Note: still a linear classifier

arg max
y

P(y |x) = arg max
y

exp(wy · φ(x))

Zx

= arg max
y

exp(wy · φ(x))

= arg max
y

wy · φ(x)
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Binary Logistic Regression

Binary labels (Y = {±1})

Scores: 0 for negative class, w · φ(x) for positive class

P(y = +1 | x) =
exp(w · φ(x))

1 + exp(w · φ(x))

=
1

1 + exp(−w · φ(x))

= σ(w · φ(x)).

This is called a sigmoid transformation (more later!)
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Sigmoid Transformation

σ(u) =
eu

1 + eu

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

• Widely used in neural networks

• Maps (squashes) R into [0, 1]

• The output can be interpreted as a probability

• Positive, bounded, strictly increasing
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Multinomial Logistic Regression

PW (y | x) =
exp(wy · φ(x))

Zx

• How to learn weights W ?
• Maximize the conditional log-likelihood of training data:

Ŵ = arg max
W

log

(
N∏
t=1

PW (yt |xt)

)

= arg min
W
−

N∑
t=1

logPW (yt |xt)

= arg min
W

N∑
t=1

log
∑
y ′
t

exp(wy ′
t
· φ(xt))−wyt · φ(xt)

 ,

• i.e., choose W to maximize the probability of the true labels.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 4 DL, IST Fall 2021 13 / 51



Logistic Regression

• This objective function is strictly convex

• Proof left as exercise! (hint, compute second derivatives, i.e., Hessian)

• Therefore any local minimum is a global minimum

• No closed form solution, but lots of numerical techniques

X Gradient methods (gradient descent, conjugate gradient)

X Quasi-Newton methods (L-BFGS, ...)
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Recap: Gradient Descent

• Goal: minimize f : Rd → R, for differentiable f

• Take small steps in the negative gradient direction until a stopping
criterion is met:

x (t+1) ← x (t) − η(t)∇f (x (t))

• Choosing the step-size: crucial for convergence and performance.

• GD may work well, or not so well. There are many ways to improve it.
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Gradient Descent
• Loss function in logistic regression is

L(W ; (x , y)) = log
∑
y ′

exp(wy ′ · φ(x)) − wy · φ(x).

• We want to find

arg min
W

N∑
t=1

L(W ; (xt , yt))

X Set W 0 = 0
X Iterate until convergence (for suitable stepsize ηk):

W k+1 = W k − ηk∇W

(∑N
t=1 L(W ; (xt , yt))

)
= W k − ηk

∑N
t=1∇W L(W k ; (xt , yt))

• ∇W L(W ) is gradient of L w.r.t. W

• L(W ) convex ⇒ gradient descent will reach the global optimum W .
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Stochastic Gradient Descent

Monte Carlo approximation of the gradient (more frequent updates,
convenient with large datasets):

• Set W 0 = 0

• Iterate until convergence
• Pick (xt , yt) randomly

• Update W k+1 = W k − ηk∇W L(W k ; (xt , yt))

• i.e. approximate the gradient with a noisy, unbiased, version based on
a single sample

• Variants exist in-between (mini-batches)

• All guaranteed to find the optimal W (for suitable step sizes)
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Stochastic vs Batch Gradient Descent
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Computing the Gradient

• We need to compute ∇W L(W ; (xt , yt)), where

L(W ; (x , y)) = log
∑
y ′

exp(wy ′ · φ(x)) − wy · φ(x)

• Some reminders:

1 ∇W log F (W ) = 1
F (W )∇W F (W )

2 ∇W expF (W ) = exp(F (W ))∇W F (W )

• We denote by

ey = [0, . . . , 0, 1, 0, . . . , 0]>, 1 in i-th position

the one-hot vector representation of class y .
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Computing the Gradient

∇W L(W ; (x , y)) = ∇W

log
∑
y′

exp(wy′ · φ(x))−wy · φ(x)


= ∇W log

∑
y′

exp(wy′ · φ(x))−∇Wwy · φ(x)

=
1∑

y′ exp(wy′ · φ(x))

∑
y′
∇W exp(wy′ · φ(x))−eyφ(x)>

=
1

Zx

∑
y′

exp(wy′ · φ(x))∇Wwy′ · φ(x)−eyφ(x)>

=
∑
y′

exp(wy′ · φ(x))

Zx
ey′φ(x)>−eyφ(x)>

=
∑
y′

PW (y ′|x)ey′φ(x)>−eyφ(x)>

=




...
PW (y ′|x)

...

− ey
φ(x)>.
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Logistic Regression Summary

• Define conditional probability

PW (y |x) =
exp(wy · φ(x))

Zx

• Set weights to maximize conditional log-likelihood of training data:

W = arg max
W

∑
t

logPW (yt |xt) = arg minW
∑
t

L(W ; (xt , yt))

• Run gradient descent (or any gradient-based optimization algorithm)
using

∇W L(W ; (x , y)) =
∑
y ′

PW (y ′|x)ey ′φ(x)>−eyφ(x)>
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The Story So Far
• Naive Bayes is generative: maximizes joint likelihood

• closed-form solution

• Logistic regression is discriminative: maximizes conditional likelihood
• also called log-linear model and max-entropy classifier
• no closed-form solution
• stochastic gradient updates look like

W k+1 = W k + η

eyφ(x)> −
∑
y ′

Pw(y ′|x)ey ′φ(x)>


• Perceptron is a discriminative, non-probabilistic classifier

• perceptron’s updates look like

W k+1 = W k + eyφ(x)> − eŷφ(x)>

• SGD updates for logistic regression and the perceptron look similar!
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Other Options: Maximizing Margin

• For a training set D

• Margin of a weight matrix W is smallest γ such that

wyt · φ(xt)−wy ′ · φ(xt) ≥ γ

• for every training instance (xt , yt) ∈ D, y ′ ∈ Y
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Margin

Training Testing

Denote the
value of the
margin by γ
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Maximizing Margin

• Intuitively maximizing margin makes sense

• More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

ε ∝ R2

γ2 × N

• Perceptron:
• If a training set is separable by some margin, the perceptron will find a
W that separates the data

• However, the perceptron does not pick W to maximize the margin!

• Support Vector Machines do this (not covered)
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Summary

What we saw

• Linear Classifiers
• Naive Bayes
• Logistic Regression
• Perceptron
• Support Vector Machines (not covered)

What is next

• Regularization

• Softmax

• Non-linear classifiers
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Regularization
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Overfitting

If the model is too complex (too many parameters) and the data is scarce,
we run the risk of overfitting:

• We saw one example already when talking about add-one smoothing
in Naive Bayes!
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Regularization

In practice, we regularize to prevent overfitting

arg minW

N∑
t=1

L(W ; (xt , yt)) + λΩ(W ),

Ω(W ) is the regularization function, and λ controls its weight

• `2 regularization promotes smaller weights:

Ω(W ) = ‖W ‖2
2 =

∑
y

‖wy‖2
2 =

∑
y

∑
j

w2
y ,j .

• `1 regularization promotes sparse weights!

Ω(W ) = ‖W ‖1 =
∑
y

‖wy‖1 =
∑
y

∑
j

|wy ,j |
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Empirical Risk Minimization
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Logistic Regression with `2 Regularization

min−
N∑
t=1

log (exp(wyt · φ(xt))/Zx) +
λ

2
‖W ‖2

• What is the new gradient?

N∑
t=1

∇W L(W ; (xt , yt)) +∇WλΩ(W )

• We know ∇W L(W ; (xt , yt))

• Just need ∇W
λ
2 ‖W ‖

2 = λW
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Loss Function

Should match the metric we want to optimize at test time

Should be well-behaved (convex, maybe smooth) to be amenable to
optimization (this rules out the 0/1 loss)

Some examples:

• Squared loss for regression

• Negative log-likelihood (cross-entropy): multinomial logistic regression

• Hinge loss: support vector machines

• Sparsemax loss for multi-class and multi-label classification
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Recap

How to map from a set of label scores R|Y| to a probability distribution
over Y?

z p

We already saw one example: softmax.

Another example is sparsemax (not covered): Martins and Astudillo (2016)
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Recap: Softmax Transformation

The typical transformation for multi-class classification:

softmax : R|Y| → ∆|Y|−1

softmax(z) =

[
exp(z1)∑
c exp(zc)

, . . . ,
exp(z|Y|)∑
c exp(zc)

]

• Underlies multinomial logistic regression!

• Strictly positive, sums to 1

• Resulting distribution has full support: softmax(z) > 0,∀z
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Recap: Multinomial Logistic Regression

• The common choice for a softmax output layer

• The classifier estimates P(y = c | x ;W )

• We minimize the negative log-likelihood:

L(W ; (x , y)) = − logP(y | x ;W )

= − log [softmax(z(x))]y ,

where zc(x) = wc · φ(x) is the score of class c .

• Loss gradient:

∇W L((x , y);W ) = −
(
eyφ(x)> − softmax(z(x))φ(x)>

)
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Classification Losses (Binary Case)
• Let the correct label be y = +1 and define s = z2 − z1.

• Sparsemax loss in 2D becomes a “classification Huber loss”:
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Recap: What a Linear Classifier Can Do

• It can solve linearly separable problems (OR, AND)
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Recap: What a Linear Classifier Can’t Do

• ... but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

• This was observed by Minsky and Papert (1969) (for the perceptron)
and motivated strong criticisms
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Summary: Linear Classifiers

We’ve seen

• Perceptron

• Naive Bayes

• Logistic regression

• Support vector machines (not covered)

All lead to convex optimization problems ⇒ no issues with local
minima/initialization

All assume the features are well-engineered such that the data is nearly
linearly separable
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What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Kernel methods:

• works implicitly in a high-dimensional feature space

• ... but still need to choose/design a good kernel

• model capacity confined to positive-definite kernels

Neural networks (next class!)

• embrace non-convexity and local minima

• instead of engineering features/kernels, engineer the model
architecture
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Two Views of Machine Learning

There’s two big ways of building machine learning systems:

1 Feature-based: describe objects’ properties (features) and build
models that manipulate them
• everything that we have seen so far.

2 Similarity-based: don’t describe objects by their properties; rather,
build systems based on comparing objects to each other
• k-th nearest neighbors; kernel methods; Gaussian processes.

Sometimes the two are equivalent!
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Nearest Neighbor Classifier

• Not a linear classifier!

• In its simplest version, doesn’t require any parameters

• Instead of “training”, memorize all the data D = {(xi , yi )Ni=1}
• Given a new input x , find its most similar data point xi and predict

ŷ = yi

• Many variants (e.g. k-th nearest neighbor)

• Disadvantage: requires searching over the entire training data

• Specialized data structures can be used to speed up search.
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Kernels

• A kernel is a similarity function between two points that is symmetric
and positive semi-definite, which we denote by:

κ(xi , xj) ∈ R

• Given dataset D = {(xi , yi )Ni=1}, the Gram matrix K is the N × N
matrix defined as:

Ki ,j = κ(xi , xj)

• Symmetric:
κ(xi , xj) = κ(xj , xi )

• Positive definite: for all non-zero v

vKvT ≥ 0
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Kernels

• Mercer’s Theorem: for any kernel κ : X× X→ R, there exists some
feature mapping φ : X→ RX, s.t.:

κ(xi , xj) = φ(xi ) · φ(xj)

• That is: a kernel corresponds to some a mapping in some implicit
feature space!

• Kernel trick: take a feature-based algorithm (SVMs, perceptron,
logistic regression) and replace all explicit feature computations by
kernel evaluations!

wy · φ(x) =
N∑
i=1

∑
y∈Y

αi ,yκ(x , xi ) for some αi ,y ∈ R

• Extremely popular idea in the 1990-2000s!
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Kernels = Tractable Non-Linearity

• A linear classifier in a higher dimensional feature space is a non-linear
classifier in the original space

• Computing a non-linear kernel is sometimes better computationally
than calculating the corresponding dot product in the high dimension
feature space

• Many models can be “kernelized” – learning algorithms generally
solve the dual optimization problem (also convex)

• Drawback: quadratic dependency on dataset size
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Linear Classifiers in High Dimension
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Popular Kernels

• Polynomial kernel

κ(xi , xj) = (φ(xi ) · φ(xj) + 1)d

• Gaussian radial basis kernel

κ(xi , xj) = exp(
−||φ(xi )− φ(xj)||2

2σ
)

• String kernels (Lodhi et al., 2002; Collins and Duffy, 2002)

• Tree kernels (Collins and Duffy, 2002)
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Conclusions

• Linear classifiers are a broad class including well-known ML methods
such as perceptron, logistic regression, support vector machines

• They all involve manipulating weights and features

• They either lead to closed-form solutions or convex optimization
problems (no local minima)

• Stochastic gradient descent algorithms are useful if training datasets
are large

• However, they require manual specification of feature representations
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Today’s Roadmap

Today’s lecture is about neural networks:

• From perceptron to multi-layer perceptron

• Feed-forward neural networks

• Activation functions: sigmoid, tanh, relu, ...

• Activation maps: softmax, sparsemax, ...

• Non-convex optimization and local minima

• Universal approximation theorem

• Gradient backpropagation
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Biological Neuron

• Three main parts: the main body (soma), dendrites and an axon

• The neuron receives input signals from dendrites, and outputs its own
signals through the axon

• Axons in turn connect to the dendrites of other neurons; the
connections called synapses

• Generate sharp electrical potentials across their cell membrane
(spikes), the main signalling unit of the nervous system
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Word of Caution

• Artificial neurons are inspired by biological neurons, but...
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Warren McCulloch and Walter Pitts

• The earliest computational model of a neuron, via threshold logic
(McCulloch and Pitts, 1943).
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Artificial Neuron (McCulloch and Pitts, 1943)

• Later models
replaced the hard
threshold by more
general activations
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Artificial Neuron

• Pre-activation (input activation):

z(x) = w · x+ b =
D∑
i=1

wixi + b,

where w are the connection weights and b
is a bias term.

• Activation:

h(x) = g(z(x)) = g(w · x+ b),

where g : R→ R is the activation function.
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Activation Function

Typical choices:

• Linear

• Sigmoid (logistic function)

• Hyperbolic Tangent

• Rectified Linear

Later:

• Softmax

• Sparsemax

• Max-pooling
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Linear Activation

g(z) = z

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

• No “squashing” of the input

• Composing layers of linear units is equivalent to a single linear layer:
no expressive power increase by using multiple layers (more later)

• Still useful to linear-project the input to a lower dimension
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Sigmoid Activation

g(z) = σ(z) =
1

1 + e−z

• “Squashes” the neuron pre-activation between 0 and 1

• The output can be interpreted as a probability

• Positive, bounded, strictly increasing

• Logistic regression corresponds to a network with a single sigmoid unit

• Combining layers of sigmoid units increases expressiveness (more later)
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Hyperbolic Tangent Activation

g(z) = tanh(z) =
ez − e−z

ez + e−z
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

• “Squashes” the neuron pre-activation between −1 and 1

• Related to the sigmoid via σ(z) = 1+tanh(z/2)
2

• Can be positive or negative, bounded, strictly increasing

• Combining layers of tanh units increases expressiveness (more later)
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Rectified Linear Unit Activation (Glorot et al., 2011)

g(z) = relu(z) = max{0, z}

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

• Non-negative, increasing, but not upper bounded

• Not differentiable at 0

• Leads to neurons with sparse activities (biologically more plausible)

• Less prone to vanishing gradients (more later), and historically the
first activation that allowed training deep nets without unsupervised
pre-training (Glorot et al., 2011)
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Capacity of Single Neuron (Linear Classifier)

• With a single sigmoid activated neuron we recover logistic regression:

p(y = 1|x) = σ(w · x+ b).

• Can solve linearly separable
problems (OR, AND)

• Can’t solve non-linearly separable
problems (XOR)—unless input is
transformed into a better
representation

(Slide credit: Hugo Larochelle)
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The XOR Affair

Minsky and Papert (1969):

• Misunderstood by many as showing
a single perceptron cannot learn
XOR (in fact, this was already
well-known at the time)

• Fostered an “AI winter” period
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Solving XOR with Multi-Layer Perceptron
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Solving XOR with Multi-Layer Perceptron
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Solving XOR with Multi-Layer Perceptron

• This construction was known even by McCulloch and Pitts

• The negative result in Minsky and Papert (1969) is that, to learn
arbitrary logic functions, each hidden unit needs to be connected to
all inputs

• At the time, there was some hope that we’d only need “local” neurons
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Multi-Layer Neural Network

• Key idea: add intermediate layers of artificial neurons before the final
output layer

• Each of these hidden units computes some representation of the input
and propagates forward that representation

• This increases the expressive power of the network, yielding more
complex, non-linear, functions/classifiers

• Similar role as latent variables in probabilistic models, but no need for
a probability semantics

• Also called feed-forward neural network
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Single Hidden Layer

To start simple, let’s assume our task involves several inputs (x ∈ RD) but
a single output (e.g. y ∈ R or y ∈ {0, 1})
Trick: add an intermediate layer of K hidden units (h ∈ RK )
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Single Hidden Layer
Assume D inputs (x ∈ RD) and K hidden units (h ∈ RK )

• Hidden layer pre-activation:

z(x) = W (1)x+ b(1),

with W (1) ∈ RK×D and b(1) ∈ RK .

• Hidden layer activation:

h(z) = g(z(x)),

where g : RK → RK is applied
component-wise
(component-by-component).

• Output layer activation:

f (x) = o(w(2) · h+ b(2)),

where w(2) ∈ RK and o : R→ R if the output activation function.
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Single Hidden Layer

Overall,

f (x) = o(w(2) · h+ b(2))

= o(w(2) · g(W (1)x+ b(1)) + b(2))

Examples:

• o(u) = u for regression (y ∈ R)

• o(u) = σ(u) for binary classification (y ∈ {±1}, f (x) = P(y = 1 | x))

No longer a linear classifier – non-linear dependency on W (1) and b(1)

h is a vector of internal representations (not manually engineered features)
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Multiple Classes

Can we use a similar strategy for the multi-class case?

For multi-class classification, we need multiple output units (one per class)

Each output estimates the conditional probability P(y = c | x)

Predicted class is (usually) the one with highest estimated probability

We have already seen an activation function suitable for this: softmax
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Softmax Activation
Let ∆C−1 ⊆ RC be the probability simplex:

∆C−1 = {(p1, ..., pC ) : pi ≥ 0, i = 1, ...,C ,
C∑
i=1

pi = 1}

Typical activation function for multi-class: softmax : RC → ∆C−1:

o(z) = softmax(z) =

[
exp(z1)∑
c exp(zc)

, . . . ,
exp(zC )∑
c exp(zc)

]

• We saw this previously, when talking about logistic regression!

• Strictly positive, sums to 1

• Resulting distribution has full support: softmax(z) > 0,∀z
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Multi-Layer Neural Networks: General Case

In general we can:

• Have multiple output units (needed for multi-class classification)

• Stack more layers after each other
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Multiple (L ≥ 1) Hidden Layers

• Hidden layer pre-activation (define
h(0) = x for convenience):

z(`)(x) = W (`)h(`−1) + b(1),

with W (`) ∈ RK`×K`−1 and
b(`) ∈ RK` .

• Hidden layer activation:

h(`)(x) = g(z(`)(x)).

• Output layer activation:

f (x) = o(z(L+1)(x)) = o(W (L+1)h(L) + b(L+1)).
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Universal Approximation Theorem

Theorem (Hornik et al. (1989))

An NN with one hidden layer and a linear output can approximate
arbitrarily well any continuous function, given enough hidden units.

• First proved for the sigmoid case by Cybenko (1989), then to tanh
and many other activation functions by Hornik et al. (1989)

• Caveat: may need exponentially many hidden units
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Deeper Networks

• Deeper networks (more layers) can provide more compact
approximations

Theorem (Montufar et al. (2014))

The number of linear regions carved out by a deep neural network with D
inputs, depth L, and K hidden units per layer with ReLU activations is

O

((
K
D

)D(L−1)

KD

)

Therefore, for fixed K , deeper networks are exponentially more expressive
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“Simple” Target Function, One Hidden Layer

(http://playground.tensorflow.org)
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Complex Target Function, One Hidden Layer

(http://playground.tensorflow.org)
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Complex Target Function, Two Hidden Layers

(http://playground.tensorflow.org)
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Complex Target Function, Two Hidden Layers, ReLU

(http://playground.tensorflow.org)
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Complex Target Function, Four Hidden Layers, ReLU

(http://playground.tensorflow.org)
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Capacity of Neural Networks

Neural networks are excellent function approximators!

The universal approximation theorem is an important result, but:

• We need a learning algorithm that finds the necessary parameter
values

• ... and if we want to generalize, we need to control overfitting

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2021 38 / 67



Training Neural Networks

Neural networks are expressive: in theory, they approximate any function

But to do so, their parameters

θ := {(W (1),b(1)), ..., (W (L+1),b(L+1))}

need to be set accordingly

Key idea: learn these parameters from data

In other words: learn a function by sampling a few points and their values

(We’ve seen this when we talked about linear models a few days ago...)
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Empirical Risk Minimization

Goal: choose parameters θ := {(W (`),b(`))}L+1
`=1 that minimize the

following objective function:

L(θ) := λΩ(θ) +
1

N

N∑
i=1

L(f (xi ;θ), yi )

• L(f (xi ;θ), yi ) is a loss function

• Ω(θ) is a regularizer

• λ is a regularization constant
(an hyperparameter that needs
to be tuned)
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Recap: Gradient Descent

We can write the objective as:

L(θ) := λΩ(θ) +
1

N

N∑
i=1

L(f (xi ;θ), yi )

:=
1

N

N∑
i=1

λΩ(θ) + L(f (xi ;θ), yi )︸ ︷︷ ︸
Li (θ)

=
1

N

N∑
i=1

Li (θ)

The gradient is:

∇θL(θ) :=
1

N

N∑
i=1

∇θLi (θ)

Requires a full pass over the data to update the weights—too slow!

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 5 DL, IST Fall 2021 43 / 67



Recap: Stochastic Gradient Descent

Sample a single training example uniformly at random: j ∈ {1, ...,N}
This way we get a noisy but unbiased estimate of the gradient:

∇θL(θ) :=
1

N

N∑
i=1

∇θLi (θ) ≈ ∇θLj(θ)

= λ∇θΩ(θ) +∇θL(f (xj ;θ), yj).

The weights θ = {(W (`),b(`))}L+1
`=1 are then updated as:

θ ← θ − η∇θLj(θ)

In practice, use mini-batch instead of a single sample
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Stochastic Gradient Descent with Mini-Batches

With a mini-batch {j1, . . . , jB} (B � N) we get a less noisy, still unbiased
estimate of the gradient:

∇θL(θ) :=
1

N

N∑
i=1

∇θLi (θ) ≈ 1

B

B∑
i=1

∇θLji (θ)

= λ∇θΩ(θ) +
1

B

B∑
i=1

∇θL(f (xji ;θ), yji ).

The weights θ = {(W (`),b(`))}L+1
`=1 are then updated as:

θ ← θ − η 1

B

B∑
i=1

∇θLji (θ)
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The Key Ingredients of SGD

In sum, SGD needs the following ingredients:

• The loss function L(f (xi ;θ), yi );

• A procedure for computing the gradients ∇θL(f (xi ;θ), yi );

• The regularizer Ω(θ) and its gradient.

Let’s see them one at the time...
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Loss Function

Should match as much as possible the metric we want to optimize at test
time

Should be well-behaved (continuous, maybe smooth) to be amenable to
optimization (this rules out the 0/1 loss)

Some examples:

• Squared loss for regression

• Negative log-likelihood (cross-entropy) for multi-class classification

• Sparsemax loss for multi-class and multi-label classification
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Squared Loss

• The common choice for regression/reconstruction problems

• The neural network aims at estimating f (x;θ) ≈ y

• Minimize the mean squared error:

L(f (x;θ),y) =
1

2
‖f (x;θ)− y‖2

• Loss gradient:
∂L(f (x;θ,y))

∂fc(x;θ)
= fc(x;θ)− yc
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Negative Log-Likelihood (Cross-Entropy)
• The common choice for a softmax output layer

• The neural network estimates fc(x;θ) ≈ P(y = c | x)

• We minimize the negative log-likelihood (also called cross-entropy):

L(f (x;θ), y) = −
∑
c

1(y=c) log fc(x;θ)

= − log fy (x;θ)

= − log softmaxy (z(x))

where z is the output pre-activation.

• Loss gradient at output pre-activation:

∂L(f (x;θ, y))

∂zc
= softmaxc(z(x))− 1(y=c)
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Classification Losses
• Let the correct label be y = 1 and define s = z2 − z1:
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The Key Ingredients of SGD

In sum, SGD needs the following ingredients:

• The loss function L(f (xi ;θ), yi );

• A procedure for computing the gradients ∇θL(f (xi ;θ), yi ): next

• The regularizer Ω(θ) and its gradient.
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Gradient Computation

• Recall that we need to compute

∇θL(f (xi ;θ), yi )

for θ = {(W (`),b(`))}L+1
`=1 (the weights and biases at all layers)

• This will be done with the gradient backpropagation algorithm

• Key idea: use the chain rule for derivatives!

h(x) = f
(
g(x)

)
⇒ h′(x) = f ′(g(x)) g ′(x)
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Recap: Chain Rule

∂r(t)

∂t
= ?

∂r(u)

∂u

∂u(t)

∂t
+
∂r(v)

∂v

∂v(t)

∂t
= 2tv + 3u

= 2t(3t + 1) + 3t2 = 9t2 + 2t.

• If a function r(t) can be written as a function of intermediate results
qi (t), then we have:

∂r(t)

∂t
=
∑
i

∂r(t)

∂qi (t)

∂qi (t)

∂t

• We can invoke it by setting t to a output unit in a layer; qi (t) to the
pre-activation in the layer above; and r(t) to the loss function.
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Hidden Layer Gradient

Main message: gradient backpropagation is just the chain rule of
derivatives!
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Hidden Layer Gradient

(Recap: z(`+1) = W (`+1)h(`) + b(`+1))

∂L(f (x;θ), y)

∂h
(`)
j

=
∑
i

∂L(f (x;θ), y)

∂z
(`+1)
i

∂z
(`+1)
i

∂h
(`)
j

=
∑
i

∂L(f (x;θ), y)

∂z
(`+1)
i

W (`+1)
i,j

Hence ∇h(`)L(f (x;θ), y) = W (`+1)>∇z(`+1)L(f (x;θ), y).
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Hidden Layer Gradient (Before Activation)

(Recap: h
(`)
j = g(z

(`)
j ), where g : R→ R is the activation function)

∂L(f (x;θ), y)

∂z
(`)
j

=
∂L(f (x;θ), y)

∂h
(`)
j

∂h
(`)
j

∂z
(`)
j

=
∂L(f (x;θ), y)

∂h
(`)
j

g ′(z
(`)
j )

Hence ∇z(`)L(f (x;θ), y) = ∇h(`)L(f (x;θ), y)� g ′(z(`)).

How to compute the derivative of the activation function g ′(z(`))?
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Linear Activation

g(z) = z

Derivative:

g ′(z) = 1

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
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Sigmoid Activation

g(z) = σ(z) =
1

1 + e−z

Derivative:

g ′(z) = g(z)(1− g(z))
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0.0
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0.6

0.8
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Hyperbolic Tangent Activation

g(z) = tanh(z) =
ez − e−z

ez + e−z

Derivative:

g ′(z) = 1− g(z)2 = sech2(x)
-3 -2 -1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0
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Rectified Linear Unit Activation (Glorot et al., 2011)

g(z) = relu(z) = max{0, z}

Derivative (except for z = 0):

g ′(z) = 1z>0
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0.0

0.5

1.0

1.5
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Parameter Gradient

(Recap: z(`) = W (`)h(`−1) + b(`))

∂L(f (x;θ), y)

∂W (`)
i ,j

=
∂L(f (x;θ), y)

∂z
(`)
i

∂z
(`)
i

∂W (`)
i ,j

=
∂L(f (x;θ), y)

∂z
(`)
i

h
(`−1)
j

Hence ∇W (`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y)h(`−1)>

Similarly, ∇b(`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y)
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Backpropagation

Compute output gradient (before activation):

∇z(L+1)L(f (x;θ), y) = −(1y − f (x))

for ` from L + 1 to 1 do
Compute gradients of hidden layer parameters:

∇W (`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y) h(`−1)>

∇b(`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y)

Compute gradient of hidden layer below:

∇h(`−1)L(f (x;θ), y) = W (`)>∇z(`)L(f (x;θ), y)

Compute gradient of hidden layer below (before activation):

∇z(`−1)L(f (x;θ), y) = ∇h(`−1)L(f (x;θ), y)� g ′(z(`−1))

end for
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Conclusions

• Multi-layer perceptrons are universal function approximators

• However, they need to be trained

• Stochastic gradient descent is an effective training algorithm

• This is possible with the gradient backpropagation algorithm (an
application of the chain rule of derivatives)

Next class:

• Most current software packages represent a computation graph and
implement automatic differentiation

• Dropout regularization is effective to avoid overfitting

• Tricks of the trade
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Thank you!

Questions?
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Lecture 6: Neural Networks II

André Martins, Francisco Melo, Mário Figueiredo

Deep Learning Course, Winter 2021-2022
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Today’s Roadmap

Last lecture was about neural networks:

• From perceptron to multi-layer perceptron

• Feed-forward neural networks

• Activation funcions: sigmoid, tanh, relu, ...

• Activation maps: softmax, sparsemax, ...

• Non-convex optimization and local minima

• Universal approximation theorem

• Gradient backpropagation

Today: autodiff, regularization, tricks of the trade.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2021 2 / 43



Recap: Forward Propagation

Now assume L ≥ 1 hidden layers:

• Hidden layer pre-activation (define
h(0) = x for convenience):

z(`)(x) = W (`)h(`−1) + b(1),

with W (`) ∈ RK`×K`−1 and
b(`) ∈ RK` .

• Hidden layer activation:

h(`)(x) = g(z(`)(x)).

• Output layer activation:

f (x) = o(z(L+1)(x)) = o(W (L+1)h(L) + b(L+1)).
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Recap: Gradient Backpropagation

Compute output gradient (before activation):

∇z(L+1)L(f (x;θ), y) = −(1y − f (x))

for ` from L + 1 to 1 do
Compute gradients of hidden layer parameters:

∇W (`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y) h(`−1)>

∇b(`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y)

Compute gradient of hidden layer below:

∇h(`−1)L(f (x;θ), y) = W (`)>∇z(`)L(f (x;θ), y)

Compute gradient of hidden layer below (before activation):

∇z(`−1)L(f (x;θ), y) = ∇h(`−1)L(f (x;θ), y)� g ′(z(`−1))

end for
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Computation Graph

• Forward propagation can be represented as a
DAG

• Allows to implement forward propagation in a
modular way

• Each box can be an object with a fprop

method, that computes the value of the box
given its parents/inputs

• Calling the fprop method of each box in the
right order (after a topological sort) yields
forward propagation
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Automatic Differentiation

• ... Also allows to implement backpropagation
in a modular way

• Each box can also have a bprop method, that
computes the loss gradient with respect to its
parents, given the loss gradient with respect to
the output

• Can make use of cached computation done
during the fprop method

• By calling the bprop method in reverse order,
we get backpropagation (only need to reach
the parameters)
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Several Autodiff Strategies

Symbol-to-number differentiation (Caffe, Torch, Pytorch, Dynet, ...)

• Take a computational graph and a set of numerical inputs, then return
a set of numerical values describing the gradient at those input values

• Advantage: simpler to implement and to debug

• Disadvantage: only works for first-order derivatives

Symbol-to-symbol differentiation (Theano, Tensorflow, ...)

• Take a computational graph and add additional nodes to the graph
that provide a symbolic description of the desired derivatives (i.e. the
derivatives are just another computational graph)

• Advantage: generalizes automatically to higher-order derivatives

• Disadvantage: harder to implement and to debug
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Many Software Toolkits for Neural Networks

• Theano

• Tensorflow

• Torch, Pytorch

• MXNet

• Keras

• Caffe

• DyNet

• ...

All implement automatic differentiation.
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We will have a Pytorch practical class this week

You may bring your laptops if you want to try it out!
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Some Theano Code (Logistic Regression)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2021 12 / 43



Some Code in Tensorflow (Linear Regression)
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Some Code in Keras (Multi-Layer Perceptron)
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Some Code in Pytorch (Multi-Layer Perceptron)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 6 DL, IST Fall 2021 15 / 43



Reminder: The Key Ingredients of SGD

In sum, we need the following ingredients:

• The loss function L(f (xi ;θ), yi );

• A procedure for computing the gradients ∇θL(f (xi ;θ), yi )

• The regularizer Ω(θ) and its gradient – next!
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Regularization

Recall that we’re minimizing the following objective function:

L(θ) := λΩ(θ) +
1

N

N∑
n=1

L(f (xi ;θ), yi )

It remains to define the regularizer and its gradient

We’ll talk about:

• `2 regularization

• `1 regularization

• dropout regularization
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`2 Regularization

• Gaussian prior on the weights

• Note: only the weights are regularized (not the biases)

Ω(θ) =
1

2

∑
`

‖W (`)‖2

• Gradient is:
∇W (`)Ω(θ) = W (`)

• This has the effect of a weight decay:

W (`) ← W (`) − η∇W (`)Li (θ)

= W (`) − η(λ∇W (`)Ω(θ) +∇W (`)L(f (xi ;θ), yi ))

= (1− ηλ)W (`) − η∇W (`)L(f (xi ;θ), yi )
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`1 Regularization

• Laplacian prior on the weights

• Note: only the weights are regularized (not the biases)

Ω(θ) =
∑
`

‖W (`)‖1

• Gradient is:
∇W (`)Ω(θ) = sign(W (`))

• Promotes sparsity of the weights
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Dropout Regularization (Srivastava et al., 2014)

Idea: During training, remove some hidden units stochastically
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Dropout Regularization (Srivastava et al., 2014)

• Each hidden unit’s output is set to 0 with probability p (e.g. p = 0.5)

• This prevents hidden units to co-adapt to other units, forcing them to
be more generally useful

• At test time, keep all units, but multiply their outputs by 1− p

• Shown to be a form of adaptive regularization (Wager et al., 2013)

• Note: many software packages implement another variant, inverted
dropout, where at training time the output of the units that were not
dropped is divided by 1− p and requires no change at test time
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Implementation of Dropout

• This is usually implemented using random binary masks

• The hidden layer activations become (for ` = 1, . . . , L):

h(`)(x) = g(z(`)(x))�m(`)

• Beats regular backpropagation on many datasets (Hinton et al., 2012)

• Other variants, e.g. DropConnect (Wan et al., 2013), Stochastic
Pooling (Zeiler and Fergus, 2013)
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Backpropagation with Dropout

Compute output gradient (before activation):

∇z(L+1)L(f (x;θ), y) = −(1y − f (x))

for ` from L + 1 to 1 do
Compute gradients of hidden layer parameters:

∇W (`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y) h(`−1)>︸ ︷︷ ︸
includes m(`−1)

∇b(`)L(f (x;θ), y) = ∇z(`)L(f (x;θ), y)

Compute gradient of hidden layer below:

∇h(`−1)L(f (x;θ), y) = W (`)>∇z(`)L(f (x;θ), y)

Compute gradient of hidden layer below (before activation):

∇z(`−1)L(f (x;θ), y) = ∇h(`−1)L(f (x;θ), y)� g ′(z(`−1))�m(`−1)

end for
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Initialization

Initialize all biases to zero

For weights:

• Cannot initialize to zero with tanh activation (the gradients would
also be zero and we would reach a saddle point)

• Cannot initialize the weights to the same value (need to break the
symmetry)

• Random initialization (Gaussian, uniform), sampling around 0 to
break symmetry

• For ReLU activations, the mean should be a small positive number

• Variance cannot be too high, otherwise all neuron activations will be
saturated
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“Glorot Initialization”

• Recipe from Glorot and Bengio (2010):

W (`)
i ,j ∼ U[−t, t], with t =

√
6√

K (`) + K (`−1)

• Works well in practice with tanh and sigmoid activations
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Training, Validation, and Test Sets

Split datasets in training, validation, and test partitions.

• Training set serves to train the model

• Validation set serves to tune hyperparameters (learning rate, number
of hidden units, regularization coefficient, dropout probability, best
epoch, etc.)

• Test set serves to estimate the generalization performance
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Hyperparameter Tuning: Grid Search, Random Search

Search for the best configuration of the hyperparameters:

• Grid search: specify a set of values we want to test for each
hyperparameter, and try all configurations of these values

• Random search: specify a distribution over the values of each
hyper-parameter (e.g. uniform in some range) and sample
independently each hyper-parameter to get configurations

• Bayesian optimization and learning to learn (Snoek et al., 2012)

We can always go back and fine-tune the grid/distributions if necessary
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Early Stopping

• To select the number of epochs, stop training when validation error
increases (with some look ahead)

• One common strategy (with SGD) is to halve the learning rate for
every epoch where the validation error increases

(Image credit: Hugo Larochelle)
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Cross Validation
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Over-parametrization
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Tricks of the Trade

• Normalization of the data

• Decaying the learning rate

• Mini-batches

• Adaptive learning rates

• Gradient checking

• Debugging on a small dataset
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Normalization of the Data

• For each input dimension: subtract the training set mean and divide
by the training set standard deviation

• This makes each input dimension have zero mean, unit variance

• This can speed up training (in number of epochs)

• Doesn’t work for sparse inputs (destroys sparsity)
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Decaying the Learning Rate

In SGD, as we get closer to a local minimum, it makes sense to take
smaller update steps (to avoid diverging)

• Start with a large learning rate (say 0.1)

• Keep it fixed while validation error keeps improving

• Divide by 2 and go back to the previous step
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Mini-Batches

• Instead of updating after a single example, can aggregate a
mini-batch of examples (e.g. 50–200 examples) and compute the
averaged gradient for the entire mini-batch

• Less noisy than vanilla SGD

• Can leverage matrix-matrix computations (or tensor computations)

• Large computational speed-ups in GPUs (since computation is
trivially parallelizable accross the mini-batch and we can exhaust the
GPU memory)
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Adaptive Learning Rates

Instead of using the same step size for all parameters, have one learning
rate per parameter

• Adagrad (Duchi et al., 2011): learning rates are scaled by the square
root of the cumulative sum of squared gradients

η(t) = η(t−1) + (∇θL(f (x), y))2, ∇̄(t)
θ =

∇θL(f (x), y)√
η(t) + ε

• RMSprop (Tieleman and Hinton, 2012): instead of cumulative sum,
use exponential moving average

η(t) = βη(t−1) + (1− β)(∇θL(f (x), y))2, ∇̄(t)
θ =

∇θL(f (x), y)√
η(t) + ε

• Adam (Kingma and Ba, 2014): combine RMSProp with momentum
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Gradient Checking

• If the training loss is not decreasing even with a very small learning
rate, there’s likely a bug in the gradient computation

• To debug your implementation of fprop/bprop, compute the
“numeric gradient,” a finite difference approximation of the true
gradient:

∂f (x)

∂x
≈ f (x + ε)− f (x − ε)

2ε
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Debugging on a Small Dataset

• Extract a small subset of your training set (e.g. 50 examples)

• Monitor your training loss in this set

• You should be able to overfit in this small training set

• If not, see if some units are saturated from the very first iterations (if
they are, reduce the initialization variance or properly normalize your
inputs)

• If the training error is bouncing up and down, decrease the learning
rate
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Conclusions

• Multi-layer perceptrons are universal function approximators

• However, they need to be trained

• Stochastic gradient descent is an effective training algorithm

• This is possible with the gradient backpropagation algorithm (an
application of the chain rule of derivatives)

• Most current software packages represent a computation graph and
implement automatic differentiation

• Dropout regularization is effective to avoid overfitting
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Thank you!

Questions?
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Announcements

Deadline for Homework #1 is this Wednesday end of day!

• Please submit your solutions and code in Fenix.

• No late days allowed!!

• Solutions will be posted the day after.

Homework #2 will be posted this Wednesday!

• Deadline Jan 31.

• Start early!!
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Today’s Roadmap

Today’s lecture is about:

• Representation learning.

• Principal component analysis (PCA) and auto-encoders.

• Denoising auto-encoders.

• Distributed representations.

• Word embeddings and negative sampling.

• Multilingual and contextual word embeddings.
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Representations

• A key feature of NNs is their ability to learn representations φ(x)

• Standard linear models require manually engineered features φ(x)

• Representations are useful for several reasons:

(i) They can make our models more expressive and more accurate

(ii) They may allow transferring representations from one task to another

• We talked about (i) when discussing the multi-layer perceptron

• In this lecture, we’ll focus on (ii)
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Representation Learning

This is becoming a extremely popular topic!

Number of submissions to the “International Conference on Learning
Representations” (ICLR):

Representation learning almost became of synonym of deep learning
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Hierarchical Compositionality
Key Idea: deep(er) NNs learn coarse-to-fine representation layers.

Vision:

• pixels → edges → textons → motifs → parts → objects → scenes

Speech:

• audio samples → spectral bands → formants → motifs → phonemes →
words

Text:

• characters → words → phrases → sentences → stories

(Slide inspired by Marc’Aurelio Ranzato and Yann LeCun)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 7 DL, IST Fall 2021 8 / 69



Hierarchical Compositionality

Feature visualization of convolutional NNs trained on ImageNet (Zeiler
and Fergus, 2013):
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The Mammalian Visual Cortex is Hierarchical

(Slide inspired by Marc’Aurelio Ranzato and Yann LeCun)
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What’s in Each Layer

• Bottom level layers (closer to inputs) tend to learn low-level
representations (corners, edges)

• Upper level layers (farther away from inputs) learn more abstract
representations (shapes, forms, objects)

This holds for images, text, etc.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 7 DL, IST Fall 2021 11 / 69



Distributed Representations (Hinton, 1984)

This is a central concept in neural networks.

Key questions:

• How can a NN so effectively represent objects, if it has only a few
hidden units (i.e. much fewer than possible objects)?

• What is each hidden unit actually representing?

• How can a NN generalize to objects that is has not seen before?
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Local vs Distributed Representations

Consider two alternative representations:

• Local (one-hot) representations (one dimension per object)

• Distributed representations (one dimension per property)

(Slide inspired by Moontae Lee and Dhruv Batra)
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Distributed Representations

Key idea: no single neuron “encodes” everything; groups of neurons (e.g.
in the same hidden layer) work together!

cf. the grandmother cell

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 7 DL, IST Fall 2021 15 / 69



The Power of Distributed Representations

• Distributed representations are more compact (there can be O(expN)
objects combining N properties)

• They are also more powerful, as they can generalize to unseen objects
in a meaningful way:

(Slide inspired by Moontae Lee and Dhruv Batra)
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The Power of Distributed Representations

• For this to work, hidden units should capture diverse properties of
objects (not all capturing the same property)

• Usually ensured by random initialization of the weights

• Initializing all the units to the same weights, we would never break
the symmetry!

• Side note: a NN computes the same function if we permute the
hidden units within the same layer (order doesn’t matter, only
diversity)

Next: how to learn useful object representations from raw inputs (no labels)?
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Example: Unsupervised Pre-Training

• Training deep NNs (with many hidden layers) can be challenging

• This has been a major difficulty with NNs for a long time

• Initialize hidden layers using unsupervised learning
(Erhan et al., 2010):

- Force network to represent latent structure of input distribution

- Encourage hidden layers to encode that structure

- This can be done with an auto-encoder!
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Data Manifold

Key idea: learn the manifold where the input objects live

(Image credit: Hugo Larochelle)

Learn representations that encode well points in that manifold
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Auto-Encoders

Auto-encoder: feed-forward NN trained to reproduce its input at the output

Encoder:

h(x) = g(Wx + b)

Decoder:

x̂ = W>h(x) + c

Loss function (for real-valued inputs):

L(x̂ ; x) =
1

2
‖x̂ − x‖2
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The Simplest Auto-Encoder

What happens if the activation function g is linear?

Principal Component Analysis (PCA)!

(From “An Introduction to Statistical Learning” by James, Witten, Hastie, Tibshirani)
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Interlude: PCA
Consider N points in RD : x (1), ..., x (N)

Goal: find good K -dimensional representation of the points, with K < D,

x (i) ' x̂ (i) =
K∑
j=1

α
(i)
j uj ,

where {u1, ...,uK} ⊂ RD is an orthonormal basis of a subspace of RD .

If {u1, ...,uK} is fixed, and the approximation is in Euclidean norm,

x̂ (i) = arg min
x ′
‖x (i) − x ′‖2

2, subject to x ′ ∈ span({u1, ...,uK})

has a well-known solution: orthogonal projection,

x̂ (i) =
K∑
j=1

ujuT
j x (i) = UUTx (i)

where U =
[
u1, ...,uK

]
∈ RD×K ; notice that UTU = I.
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Interlude: PCA
Minimizing the average error for the N points in RD : x (1), ..., x (N):

min
UTU=I

1

N

N∑
i=1

‖x (i) −UUTx (i)‖2
2

Notice that
‖x (i) −UUTx (i)‖2

2 =
(
(x (i))T − (x (i))TUUT

)(
x (i) −UUTx (i)

)
(a)
= ‖x (i)‖2

2 − (x (i))TUUTx (i)

= ‖x (i)‖2
2 −

K∑
j=1

(x (i))Tuj︸ ︷︷ ︸
scalar

uT
j x (i)︸ ︷︷ ︸
scalar

=

indep. of U︷ ︸︸ ︷
‖x (i)‖2

2 −
K∑
j=1

uT
j x (i)(x (i))Tuj

(a) since −2(x (i))TUUTx (i) + (x (i))TU

I︷ ︸︸ ︷
UTU UTx (i) = −(x (i))TUUTx (i)
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Interlude: PCA

Minimizing the average error for the N points in RD : x (1), ..., x (N):

arg min
UTU=I

1

N

N∑
i=1

‖x (i) −UUTx (i)‖2
2 = arg max

UTU=I

1

N

N∑
i=1

K∑
j=1

uT
j x (i)(x (i))Tuj

= arg max
UTU=I

K∑
j=1

uT
j

(
1

N

N∑
i=1

x (i)(x (i))T

)
︸ ︷︷ ︸

Σ̂

uj

= arg max
UTU=I

K∑
j=1

uT
j Σ̂uj

Σ̂ is the sample covariance, assuming centred data:
∑N

i=1 x (i) = 0.
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PCA
Let’s start with K = 1,

u1 = arg max
‖u‖2

2=1
uT Σ̂u

Lagrangian:
L(u, λ) = uT Σ̂u + λ(1− ‖u‖2

2)

Setting the gradient to zero: 2Σ̂u − 2λu = 0 ⇒ Σ̂u = λu,

i.e., u is an eigenvector of Σ̂. Plugging above:

uT Σ̂u = uTuλ = ‖u‖2
2λ = λ

Conclusion: u1 is the eigenvector of the largest eigenvalue of Σ̂.

Notice: Σ̂ is positive semi-definite, thus all eigenvalues are non-negative.

Easy to extend to K > 1.
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Interlude: PCA

arg max
UTU=I

K∑
j=1

uT
j Σ̂uj = eigenvectors of the top K eigenvalues of Σ̂

Recall that Σ̂ = 1
N

∑N
i=1 x (i)(x(i))T = 1

NXTX

Notice that the eigenvalues of Σ̂ are the singular values (SV) of X/
√
N.

PCA corresponds to SVD (SV decomposition) of the scaled data matrix X
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PCA: EigenFaces
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Back to the Linear Auto-Encoder
Let X ∈ RN×D be the data matrix (N > D),

Assume W ∈ RK×D with K < D (no biases, assuming X is centred)

We want to minimize, with g identity, thus x̂ (i) = W>W x (i),

N∑
i=1

‖x (i) − x̂ (i)‖2
2 = ‖X − X̂‖2

F = ‖X − XW>W ‖2
F

where ‖ · ‖2
F is the Frobenius matrix norm and W>W has rank K .

From the Eckart-Young theorem, the minimizer is truncated SVD of X>:

X̂> = UKΣKV>K ,

where ΣK is a diagonal matrix containing the top K singular values of
X>, and the columns of UK are the corresponding left singular vectors.

The solution is W = U>K , which gives as desired:

X̂> = W>WX> = UKU>K UΣV> = UKΣKV>K .

Conclusion: the optimal linear auto-encoder coincides with PCA.
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Auto-Encoders

PCA fits a linear manifold (affine space) to the data

By using non-linear activations, we obtain more sophisticated codes (i.e.
representations).

We need some sort of regularization to:

• encourage a smooth representation (small perturbations of the input
will lead to similar codes)

• avoid overfitting to the training data
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Some Variants of Auto-Encoders

• Sparse auto-encoders: use many hidden units, but add a `1

regularization term to encourage sparse representations of the input

• Denoising auto-encoders: regularize by adding noise to the input;
the goal is to learn a smooth representation function that allows to
output the denoised input (inspired by image denoising)

• Stacked auto-encoders: several auto-encoders on top of each other

• Variational auto-encoders: a generative probabilistic model that
minimizes a variational bound (this will be covered in another lecture!)
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Regularized Auto-Encoders

• To regularize auto-encoders, regularization may be added to the loss

• The goal is then to minimize L(x̂;x) + Ω(h,x)

• For example:

- regularizing the code Ω(h,x) = λ‖h‖2

- regularizing the derivatives Ω(h,x) = λ
∑

i ‖∇xhi‖2

• The encoder and decoder parameters may be shared or not.
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Sparse Auto-Encoders

• Most auto-encoders learn low-dimensional codes, e.g., they reduce
input dimensionality (bottleneck shape K < D).

• But one exception are sparse auto-encoders:

- Sparse auto-encoders incorporate a sparsity penalty Ω(h) on the code
layer, e.g., Ω(h) = λ‖h‖1

- Typically the number of hidden units is large, e.g., larger than the input
dimension

- The sparsity penalty encourages sparse codes, where most hidden units
are inactive.
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Stochastic Auto-Encoders

• In this case, the encoder and decoder are not deterministic functions,
but involve some noise injection

• We have a distribution pencoder(h | x) for the encoder and a
distribution pdecoder(x | h) for the decoder

• The auto-encoder can be trained to minimize

− log pdecoder(x | h).
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Denoising Auto-Encoders

• Use a perturbed version of the input, x̃ = x+ n, where n is random
noise (e.g. Gaussian noise n ∼ N(0, σ2I ))

• Instead of minimizing 1
2‖x̂− x‖

2, minimize 1
2‖x̂− x̃‖

2

• This is a form of implicit regularization that ensures smoothness: it
forces the system to represent well not only the data points, but also
their perturbations
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Denoising Auto-Encoders

(From Goodfellow et al.’s book.)
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Denoising Auto-Encoders
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Why Do We Use Auto-Encoders?

Historically, training deep neural networks was hard

One of the initial successful uses of auto-encoders was for unsupervised
pre-training (Erhan et al., 2010).
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Unsupervised Pre-Training

A greedy, layer-wise procedure:

• train one layer at a time, from first to last, with unsupervised criterion
(e.g. an auto-encoder)

• fix the parameters of previous hidden layers

• previous layers viewed as feature extraction

Pre-training initializes the parameters in a region such that the near local
optima overfit less the data.
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Fine-Tuning

Once all layers are pre-trained:

• add output layer

• train the whole network using supervised learning

Supervised learning is performed as in a regular feed-forward network:

• forward propagation, backpropagation and update

• all parameters are “tuned” for the supervised task at hand

• representation is adjusted to be more discriminative
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Other Applications of Auto-Encoders

• Dimensionality reduction

• Information retrieval and semantic hashing (via binarizing the codes)

• Conversion of discrete inputs to low-dimensional continuous space
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Word Representations

We’ll focus now on recent methods for learning representations of words in
natural language

Also called word embeddings

This has been an extremely successful application of representation
learning

It’s still a very active area of research!
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Distributional Similarity

Key idea: represent a word by means of its neighbors

• “You shall know a word by the company it keeps” (J. R. Firth, 1957)

• One of the most successful ideas of modern statistical NLP!

For example:

• Adjectives are normally surrounded by nouns

• Words like book, newspaper, article, are commonly surrounded by
reading, read, writes, but not by flying, eating, sleeping

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 7 DL, IST Fall 2021 44 / 69



Word Embeddings

How do we obtain lower dimensional vector representations of words?

Two possible methods:

• Factorization of a co-occurrence word/context matrix (latent
semantic analysis, etc.)

• Directly learn low-dimensional vectors by training a network to predict
the context of a given word

We’ll focus on the latter, incarnated in the word2vec toolkit (Mikolov
et al., 2013), which follows previous ideas of Bengio et al. (2003) and
Collobert et al. (2011).
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Neural Language Model (Bengio et al., 2003)

(Image credits: Quoc Le)
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Neural Language Model (Bengio et al., 2003)

• Each word is associated with a continuous vector (a word embedding)

• Given the context (previous K words), predict the next word

• This is done by concatenating the word embeddings in the context
window, then propagating them through a feedforward neural network

• The output layer is a gigantic softmax that assigns a probability value
to each word in the vocabulary

Variants of this model achieved better accuracy than smoothed K -th order
Markov models

As a by-product: word embeddings!

The embedding matrix is a lookup table that assigns a continuous vector
to every word in the vocabulary.
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Neural Language Model

In this class, we are not concerned with language modeling (the actual
task), but rather about the quality of the embeddings (the representations
we learn for that task).
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Some Insights

If we don’t care about language modeling as a task:

1 We don’t need to have a “left-to-right model” where we try to predict
the next word given the context

2 We don’t need to predict the probability of every word, we might just
make sure that the true word is more likely than a random word

These insights underlie the word2vec model of Mikolov et al. (2013).
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Word2Vec (Mikolov et al., 2013)

Considers a context window around each word in the sentence.

Word2vec comes with two variants:

• Skip-gram: predict surrounding context words in a window of length
m of every word

• Continuous bag-of-words (CBOW): predict the central word from
the context

We’ll focus on the skip-gram model (more widely used).
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Skip-Gram

Goal: maximize the log probability of any context word given the current
center word:

J(Θ) =
1

T

T∑
t=1

∑
−m≤j≤m, j 6=0

log pΘ(xt+j | xt)

There are two sets of parameters Θ = (u, v):

• Embeddings uo for each word o appearing as the center word

• Embeddings vc for each word c appearing in the context of another
word

Define a log-bilinear model: pΘ(xt+j = c | xt = o) ∝ exp(uo · vc)

Every word gets two vectors!

In the end, we use the u vectors as the word embeddings and discard the
v vectors
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The Large Vocabulary Problem

Recall that we have

pΘ(xt+j = c | xt = o) =
exp(uo · vc)∑′
c exp(uo · v ′c)

This objective requires a softmax over the entire vocabulary

Unfortunately, with large vocabularies this leads to very slow training :(

Workarounds:

• Stochastic sampling

• Noise contrastive estimation

• Negative sampling

More details in these notes: https://arxiv.org/pdf/1410.8251.pdf

We’ll focus on negative sampling.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 7 DL, IST Fall 2021 52 / 69

https://arxiv.org/pdf/1410.8251.pdf


Negative Sampling

Key idea:

• replace the gigantic softmax by binary logistic regressions for a true
pair (center word and word in its context window) and a couple of
random pairs (the center word with a random word):

Jt(Θ) = log σ(uo · vc) +
k∑

i=1

log σ(−uo · vji ), ji ∼ P(x)

• Several strategies for the sampling distribution P(x) (uniform,
unigram frequency, etc.)

Negative sampling is a simple form of unsupervised pre-training.
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Linear Relationships

• These representations are very good at encoding dimensions of
similarity!

• Word analogies can be solved quite well just by doing vector
subtraction in the embedding space

• Syntactically:

xapple − xapples ≈ xcar − xcars ≈ xfamily − xfamilies

• Semantically:

xshirt − xclothing ≈ xchair − xfurniture

xking − xman ≈ xqueen − xwoman
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Visualization

Typical word embedding dimensions are on the hundreds (e.g. 300)

How can we visualize these embeddings?

Simple way: project them in 2D with something like PCA!

Most used: t-distributed stochastic neighbor embedding (t-SNE, Maaten
and Hinton 2008)

https://lvdmaaten.github.io/tsne
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Word Analogies (Mikolov et al., 2013)

(Slide credit to Richard Socher)
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Other Methods for Obtaining Word Embeddings

GloVe: Global Vectors for Word Representation (Pennington et al., 2014)

• https://nlp.stanford.edu/projects/glove

• Training is performed on aggregated global word-word co-occurrence
statistics from a corpus

fastText (Bojanowski et al., 2016): embeds also character n-grams for
generating embeddings for out-of-vocabulary words

• https://fasttext.cc (from FAIR)

• open-source, free, lightweight library that allows users to learn text
representations and text classifiers

• contains multi-lingual word vectors for 157 different languages
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GloVe Visualizations: Company → CEO

(Slide credit to Richard Socher)
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GloVe Visualizations: Superlatives

(Slide credit to Richard Socher)
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Word Embeddings: Some Open Problems

• Can we have word embeddings for multiple languages in the same
space?

• How to capture polysemy?

• These word embeddings are static, can we compute embeddings
on-the-fly depending on the context?
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Cross-Lingual Word Embeddings

(From Hermann and Blunsom (2014).)
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Cross-Lingual Word Embeddings

Key idea:

• use a corpus of parallel sentences in two languages

• define a composition function to obtain a sentence representation
given word embeddings

• apply a loss function that encourages the sentence representions in
the two languages to be similar

• negative sampling works here too: true pair vs fake pair.
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Cross-Lingual Word Embeddings

Other approaches:

• Define a bilingual dictionary and apply canonical correlation analysis
(Faruqui and Dyer, 2014)

• Task-specific embeddings with convex optimization (Ferreira et al.,
2016)

• Learn the two embeddings separately, and then apply a linear
transformation to put them in a shared space (Artetxe et al., 2017)

• Adversarial training (Lample et al., 2018)

This is a very active area of research!
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Contextual Embeddings

Words can have different meanings, depending on which context they
appear in.

In 2018, a model called ELMo learned context-dependent embeddings and
achieved impressive results on 6 NLP downstream tasks (Peters et al.,
2018)

Key idea:

• Pre-train a BILSTM language model on a large dataset (we’ll see in a
later class what this is)

• Save all the encoder parameters at all layers, not only the embeddings

• Then, for your downstream task, tune a scalar parameter for each
layer, and pass the entire sentence through this encoder.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 7 DL, IST Fall 2021 64 / 69



BERT, GPT, etc.

Some time later, a Transformer-based model (BERT) achieved even better
performance:

Huge improvements in multiple NLP tasks!

(Trained on 64 TPU chips!!)

Other related models include GPT-2, GPT-3, etc.

This will be covered in a later lecture!
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Conclusions

• Neural nets learn internal representations that can be transferred
across tasks

• Distributed representations are exponentially more compact and allow
generalizing to unseen objects

• Deeper neural nets exhibit hierarchical compositionality: upper level
layers learn more abstract/semantic representations than bottom level
layers

• Auto-encoders are an effective means for learning representations

• Word embeddings are continuous representations of words that are
extremely useful in NLP
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Thank you!

Questions?
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Today’s Roadmap

Today’s lecture is about:

• Convolutional neural networks (CNN).

• Convolutional and max-pooling layers.
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Convolutional Neural Networks

A convolutional neural network (CNN) is a NN with a specialized
connectivity structure

Roadmap:

• Parameter tying/sharing

• 2D CNNs for object recognition

• Pooling

• Examples: ImageNet, AlexNet, GoogLeNet

• 1D CNNs in NLP
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Neocognitron (Fukushima and Miyake, 1982)

(Credits: Fei-Fei Li, Johnson, Yeung)

• “Sandwich” architecture, alternating between simple cells with
modifiable parameters and complex cells which perform pooling
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Neocognitron (Fukushima and Miyake, 1982)

• Inspired by the multi-stage hierarchy model of the visual nervous
system (Hubel and Wiesel, 1965)
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ConvNet (LeNet-5) (LeCun et al., 1998)
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Convolutional Networks

... but what is a convolutional layer?

How is it different from a fully connected layer (as in a standard
feedforward neural network).
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Fully Connected Layer

(Credits: Fei-Fei Li, Johnson, Yeung)

All activations depend on all inputs.
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Convolutional Layer

Don’t stretch/reshape: preserve the spacial structure!

(Credits: Fei-Fei Li, Johnson, Yeung)
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Convolutional Layer

(Credits: Fei-Fei Li, Johnson, Yeung)
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Convolutional Layer

Apply the same filter to all spatial locations (28x28 times, why?):

(Credits: Fei-Fei Li, Johnson, Yeung)
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Convolutional Layer

• For example, if we have 6 5x5x3 filters, we get 6 activation maps:

(Credits: Fei-Fei Li, Johnson, Yeung)

• We stack these up to get a “new image” of size 28x28x6!
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Image Size, Filter Size, Stride, Channels
Stride is the shift in pixels between two consecutive windows

So far we have considered a stride of 1

The number of channels is the number of filters we consider in each layer

Given an N × N × D image, F × F × D filters, K channels, and stride S ,
the resulting output will be of size M ×M × K , where

M = (N − F )/S + 1

For example:

• N = 32, D = 3, F = 5, K = 6, S = 1 results in an 28× 28× 6 output

• N = 32, D = 3, F = 5, K = 6, S = 3 results in an 10× 10× 6 output

In practice: common to pad the border with zeros;

Common pad size is (F − 1)/2, which preserves size spatially: M = N.
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Convolutions and Parameter Tying

Why do we call this “convolutional”?

The convolution of a signal and a filter is:

h[t] = (x ∗ w)[t] =
∞∑

a=−∞
x [a]w [t − a].

The basic idea of a CNN is the combination of sparse/local connectivity
and parameter tying/sharing.
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Convolutions and Parameter Tying
Leads to translation/shift equivariance

Why do we want to tie (share) parameters?

• Reduce the number of parameters to be learned

• Deal with arbitrary long, variable-length, sequences: rather than
shifting the filters, shift the input

Can also be done in 1D (e.g., text data, signals, ...)
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Convolutions and Pooling

The second component of CNNs is pooling

Common conv nets alternate convolutional layers and pooling layers.
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Pooling Layers

• Aggregate to achieve local invariance:

• Subsampling to reduce temporal/spacial scale and computation:

(Slide credit to Yoshua Bengio)
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Equivariance vs Invariance
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Pooling Layer

• Makes the representations smaller and more manageable

• Operates over each activation map (each channel) independently

• Max-pooling:

(Credits: Fei-Fei Li, Johnson, Yeung)
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Multiple Convolutions: Feature Maps

• Different filter weights for each channel, but keeping spatial
invariance:

(Slide credit to Yoshua Bengio)
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2D Convolutional Nets (LeCun et al., 1989)

• Inspired by “Neocognitron” (Fukushima, 1980)

• 2D Convolutions: the same filter (e.g. 3x3) is applied to each
location of the image

• The filter weights are learned (as tied parameters)

• Multiple filters

• Alternates convolutional and pooling layers.
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ConvNet Successes: MNIST

Handwritten text/digits:

• MNIST (0.35% error (Ciresan et al., 2011b))

• Arabic and Chinese (Ciresan et al., 2011a)
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ConvNet Successes: CIFAR-10, Traffic Signs

Simpler recognition benchmarks:

• CIFAR-10 (9.3% error (Wan et al., 2013))

• Traffic signs: 0.56% error vs 1.16% for humans (Cireşan et al., 2011)

But less good at more complex datasets, e.g. Caltech-101/256 (few
training examples).
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ImageNet Dataset
• 14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon Turk

(Slide credit to Rob Fergus)
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AlexNet (Krizhevsky et al., 2012)

• 54M parameters; 8 layers (5 conv, 3 fully-connected)

• Trained on 1.4M ImageNet images

• Trained on 2 GPUs for a week (50x speed-up over CPU)

• Dropout regularization

• Test error: 16.4% (second best team was 26.2%)
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GoogLeNet (Szegedy et al., 2015)

• GoogLeNet inception module: very deep convolutional network, fewer
(5M) parameters
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Residual Networks (ResNets)

• Add skip-connections; tends to lead to more stable learning.

(He et al., 2016)
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Residual Networks (ResNets)

• Very deep network (34 layers here, but up
to 152 layers!)

• VGG-19 (“Visual Geometry Group”) is
Simonyan and Zisserman (2014) (19 layers,
but more FLOPs)
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Residual Networks (ResNets)

(Li et al., 2018)
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Convolutional Nets in NLP

So far, we talked mostly about images.

Are conv nets also used in NLP? Not as much, but...

Quoting Yoav Goldberg in the Representation Learning Workshop in ACL
2018:

“NLP’s ImageNet moment has arrived.”

(Not referring to conv nets in particular, but to big neural architectures.)
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Convolutional Nets in NLP

• 1D convolutions

• Filters are applied to local windows around
each word

• For word embeddings x1, . . . , xL, the filter
response for word i is:

hi = g(W [xi−h ⊕ . . .⊕ xi ⊕ . . . xi+h] + b),

where ⊕ denotes vector concatenation and W
are shared parameters

• Can pad left and right with special symbols if
necessary.

Kalchbrenner et al. (2014)
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Variable Input Length

Most computation in conv nets can be done in parallel

GPUs can leverage this and achieve great speed-ups!

But unlike images which have fixed size, sentences have different lengths
(number of words), which makes batching a bit trickier!
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Mini-Batching, Padding, and Masking

Mini-batching is necessary to speed up training in GPUs

But how to cope with different input sizes (e.g. different sentence
lengths)?

Solution: Minimize waste by sorting by sentence length before forming
mini-batches, then padding:

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

Masking needs to be used to make sure the padded symbols are not
affecting the results.
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Beyond Convolutions

Other architectures have been proposed which offer alternatives to
convolutions

For example: transformer networks, which stack multi-head attention
layers

This is somewhat similar to “dynamic convolutions”

We’ll cover this in another lecture.
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What Representations Are We Learning?

Which neurons fire for recognizing a particular object?

What parts of the network are activated?

To understand this, we need a way of visualizing what’s happening inside
the network.
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Visualization

• Idea: Optimize input to maximize particular output

• Depends on the initialization

• Google DeepDream, maximizing “banana” output:

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)

• Can also specify a particular layer and tune the input to maximize the
layer’s activations—useful to see what kind of features each layer is
representing

• Specifying a higher layer produces more complex representations...
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Google DeepDream

(from https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html)
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Adversarial Attacks

• How can we perturb an input slightly to
fool a classifier?

• For example: 1-pixel attacks

• Glass-box model: assumes access to the
model

• Backpropagate to the inputs to find
pixels which maximize the gradient

• There’s also work for black-box
adversarial attacks (don’t have access
to the model, but can query it).

(Credits: Su, Vargas, Sakurai (2018))
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Even Worse: Perturb Object, Not Image

• Print the model of a
turtle in a 3D printer.

• Perturbing the texture
fools the model into
thinking it’s a rifle,
regardless of the pose of
the object!

(Credits: Athalye, Engstrom, Ilyas, Kwok (2018))

Neural networks are still very brittle!
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Conclusions

• Convolutional neural networks (CNN) is a very powerful architecture
for computer vision

• They take advantage of parameter sharing and sparse connectivity

• They are extremely useful to capture translational invariances in
images

• Typically, convolution layers are alternated with max-pooling layers

• Lower layers capture more low-level representations (edges, corners)

• Higher layers have more “semantic” representations (objects, scenes)
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Thank you!

Questions?
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Today’s Roadmap

Today we’ll cover neural sequential models:

• Recurrent neural networks.

• Backpropagation through time.

• Neural language models.

• The vanishing gradient problem.

• Gated units: LSTMs and GRUs.

• Bidirectional LSTMs.

• Example: ELMO representations.

• From sequences to trees: recursive neural networks.

• Other deep auto-regressive models: PixelRNNs.
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Recurrent Neural Networks

Much interesting data is sequential in nature: words in sentences, DNA
sequences, stock market returns, samples of sound signals, ...

How to deal with arbitrarily long sequences?
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Feed-forward vs Recurrent Networks
• Feed-forward neural networks:

h = g(Vx + c)

ŷ = Wh + b

• Recurrent neural networks (Elman, 1990):

ht = g(Vxt + Uht−1 + c)

ŷt = Wht + b
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Unrolling the Graph
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How do We Train the RNN Parameters?

• The unrolled graph is a well-formed (directed and acyclic)
computation graph—we can use gradient backpropagation as usual

• Parameters are tied/shared accross “time”

• Derivatives are aggregated across time steps

• This instantiation is called backpropagation through time (BPTT).

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 9 DL, IST Fall 2021 7 / 79



Parameter Tying

∂L

∂U
=

4∑
t=1

∂ht

∂U
∂L

∂ht

• Same idea as when learning the filters in convolutional neural networks
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What Can RNNs Be Used For?

We’ll see three applications of RNNs:

1 Sequence generation: generates symbols sequentially with an
auto-regressive model (e.g. language modeling)

2 Sequence tagging: takes a sequence as input, and returns a label for
every element in the sequence (e.g., part of speech–POS–tagging)

3 Pooled classification: takes a sequence as input, and returns a
single label by pooling the RNN states.
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Recap: Full History Model

P(start, y1, y2, . . . , yL, stop) =
L+1∏
t=1

P(yt |y0, . . . , yt−1)

• The generation of each word depends on all the previous words

• Huge expressive power!

• But: too many parameters to estimate! (how many?)

• Cannot generalize well, specially for long sequences
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Can We Have Unlimited Memory?

Markov models avoid the full history by considering a limited memory

Alternative: consider all the history, but compress it into a vector!

RNNs do this!
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Auto-Regressive Models

Key ideas:

• Feed the previous output as input to the current step:

xt = yt−1

• Maintain a state vector ht which is a function of the previous state
vector and the current input: this state will compress all the history!

ht = g(V xt + Uht−1 + c)

• Compute next output probability:

P(yt |y0, . . . , yt−1) = softmax(Wht + b)

Let’s see each of these steps in detail
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Language Modeling: Large Softmax

• To generate text, each yt is a word in the vocabulary

• Typically, large vocabulary; e.g., |V | = 100, 000

zt = Wht + b

p(yt = i) =
exp((zt)i )∑
j exp((zt)j)

=
(
softmax(z)

)
i
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Language Modeling: Auto-Regression

P(y1, . . . , yL) = P(y1)× P(y2 | y1)× . . .× P(yL | y1, . . . , yL−1)

= softmax(Wh1 + b)× softmax(Wh2 + b)× . . .
× softmax(WhL + b)
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Three Problems for Sequence Generating RNNs

Algorithms:

• Sampling a sequence from the probability distribution defined by the
RNN

• Obtaining the most probable sequence

• Training the RNN.
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Sampling a Sequence

This is easy!

• Compute h1 from x1 = START

• Sample y1 ∼ softmax(Wh1 + b)

• Compute h2 from h1 and x2 = y1

• Sample y2 ∼ softmax(Wh2 + b)

• ...and so on
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Obtaining the Most Probable Sequence

Unfortunately, this is hard!

• It would require obtaining the y1, y2, . . . that jointly maximize the
product softmax(Wh1 + b)× softmax(Wh2 + b)× . . .

• Note that picking the best yt greedily at each time step doesn’t
guarantee the best sequence

• This is rarely needed in language models. But it is important in
conditional language modelling

• More later, when discussing sequence-to-sequence models
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Training the RNN

• Sequence-generating RNNs are typically trained with maximum
likelihood estimation

• In other words, they are trained to minimize the log-loss
(cross-entropy):

L(Θ, y1:L) = − 1

L + 1

L+1∑
t=1

logPΘ(yt | y0, . . . , yt−1)

• This is equivalent to minimizing perplexity exp(L(Θ, y1:L))

• Intuition: − logPΘ(yt | y0, . . . , yt−1)

measures how “perplexed” (or “surprised”) the model is when the
t-th word is revealed
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Training the RNN

• Unlike Markov (n-gram) models, RNNs never forget!

• However, we will see they might have trouble learning to use their
memories (more soon...)
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Teacher Forcing and Exposure Bias

Note that conditioning is on the true history, not on the model’s
predictions! This is known as teacher forcing.

Teacher forcing cause exposure bias at run time: the model will have
trouble recovering from mistakes early on, since it generates histories that
it has never observed before.

How to improve this is a current area of research!
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Character-Level Language Models

We can also have an RNN over characters instead of words!

Advantage: can generate any combination of characters, not just words in
a closed vocabulary.

Disadvantage: need to remember further away in history!
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A Character-Level RNN Generating Fake Shakespeare

PANDARUS: Alas, I think he shall be come approached and the day When little
srain would be attain’d into being never fed, And who is but a chain and subjects of
his death, I should not sleep.

Second Senator: They are away this miseries, produced upon my soul, Breaking
and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO: Well, your wit is in the care of side and that.

Second Lord: They would be ruled after this chamber, and my fair nues begun
out of the fact, to be conveyed, Whose noble souls I’ll have the heart of the wars.

Clown: Come, sir, I will make did behold your worship.

VIOLA: I’ll drink it.

(Credits: Andrej Karpathy)
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A Char-Level RNN Generating a Math Paper

(Credits: Andrej Karpathy)
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A Char-Level RNN Generating C++ Code

(Credits: Andrej Karpathy)
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Note: these examples are from 5 years ago; we now have much more
impressive language generators (e.g. GPT-3)

Instead of RNNs, the most recent language generators use transformers

We will cover transformers in a later class!
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What Can RNNs Be Used For?

We’ll see three applications of RNNs:

1 Sequence generation: generates symbols sequentially with an
auto-regressive model (e.g. language modeling) X

2 Sequence tagging: takes a sequence as input, and returns a label for
every element in the sequence (e.g., part of speech–POS–tagging)

3 Pooled classification: takes a sequence as input, and returns a
single label by pooling the RNN states.
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Sequence Tagging with RNNs

• In sequence tagging, we are given an input sequence x1, . . . , xL

• The goal is to assign a tag to each element of the sequence, yielding
an output sequence y1, . . . , yL

• Examples: POS tagging, named entity recognition

• Differences with respect to sequence generation:

- The input and output are distinct (no need for auto-regression)

- The length of the output is known (same as that of the input)
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Example: POS Tagging

• Map sentences to sequences of part-of-speech tags.

Time flies like an arrow .
noun verb prep det noun .

• Need to predict a morphological tag for each word of the sentence

• High correlation between adjacent words!
(Ratnaparkhi, 1999; Brants, 2000; Toutanova et al., 2003)
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An RNN-Based POS Tagger

• The inputs x1, . . . , xL ∈ RE×L are word embeddings (found by looking
up rows in an V -by-E embedding matrix, eventually pre-trained)

• As before, maintain a state vector ht , function of ht−1 and the
current xt : this state compresses all the input history!

ht = g(V xt + Uht−1 + c)

• A softmax output layer computes the probability of the current tag
given the current and previous words:

P(yt |x1, . . . , xt) = softmax(Wht + b)
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An RNN-Based POS Tagger

This model can be improved:

• Use a bidirectional RNN to condition also on the following words
(combinining a left-to-right and a right-to-left RNN)—more later!

• Use a nested character-level CNN or RNN to obtain embeddings for
unseen words.

This model achieved SOTA performance on the Penn Treebank and
several other benchmarks (Ling et al., 2015; Wang et al., 2015)!
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Bidirectional RNNs

• We can read a sequence from left to
right to obtain a representation

• Or we can read it from right to left

• Or we can read it from both and
combine the representations

• More later...

(Slide credit: Chris Dyer)
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Example: Named Entity Recognition

From sentences extract named entities.

Louis Elsevier was born in Leuven .
B-PER I-PER O O O B-LOC .

• Identify word segments that refer to entities (person, organization,
location)

• Typically done with sequence models and B-I-O tagging

(Zhang and Johnson, 2003; Ratinov and Roth, 2009)
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RNN-Based NER

• The model we described for POS tagging works just as well for NER

• However, NER has constraints about tag transitions: e.g., we cannot
have I-PER after B-LOC

• The RNN tagger model we described exploits input structure (via the
states encoded in the recurrent layer) but lacks output structure...
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What Can RNNs Be Used For?

We’ll see three applications of RNNs:

1 Sequence generation: generates symbols sequentially with an
auto-regressive model (e.g. language modeling) X

2 Sequence tagging: takes a sequence as input, and returns a label for
every element in the sequence (e.g., POS tagging) X

3 Pooled classification: takes a sequence as input, and returns a
single label by pooling the RNN states.
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Pooled Classification

• What we have seen so far assumes we want to output a sequence of
labels (either to generate or tag a full sequence).

• What about predicting a single label for the whole sequence?

• We can still use an RNN to capture the input sequential structure!

• Just pool the RNNs states, i.e., map them to a single vector

• Use a single softmax to output the final label.
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Pooling Strategies

• The simplest strategy is just to use the last RNN state

• This state results from traversing the full sequence left-to-right, hence
it has information about the full sequence!

• Disadvantage: for long sequences, the influence the earliest words
may vanish

• Other pooling strategies:

- use a bidirectional RNN and combine both last states of the
left-to-right and right-to-left RNN

- average pooling

- ...
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Example: Sentiment Analysis

(Slide credit: Ollion & Grisel)
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Recurrent Neural Networks are Very Versatile

Check out Andrej Karpathy’s blog post “The Unreasonable Effectiveness
of Recurrent Neural Networks”
(http://karpathy.github.io/2015/05/21/rnn-effectiveness/).
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Training the RNN: Backpropagation Through Time

What happens to the gradients as we go back in time?

(Slide credit: Chris Dyer)
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Backpropagation Through Time

What happens to the gradients as we go back in time?

∂F

∂h1
=

∂h2

∂h1

∂h3

∂h2

∂h4

∂h3︸ ︷︷ ︸∏4
t=2

∂ht
∂ht−1

∂ŷ
∂h4

∂F

∂ŷ

where ∏
t

∂ht

∂ht−1
=
∏
t

∂ht

∂zt
∂zt
∂ht−1

=
∏
t

Diag(g ′(zt))U

Three cases:

• largest eigenvalue of U exactly 1: gradient propagation is stable

• largest eigenvalue of U < 1: gradient vanishes (exponential decay)

• largest eigenvalue of U > 1: gradient explodes (exponential growth)
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Vanishing and Exploding Gradients

• Exploding gradients can be dealt with by gradient clipping
(truncating the gradient if it exceeds some magnitude)

• Vanishing gradients are more frequent and harder to deal with

- In practice: long-range dependencies are difficult to learn

• Solutions:

- Better optimizers (second order methods)

- Normalization to keep the gradient norms stable across time

- Clever initialization to start with good spectra (e.g., start with random
orthonormal matrices)

- Alternative parameterizations: LSTMs and GRUs
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Gradient Clipping

• Norm clipping:

∇̃ ←
{ c
‖∇‖∇ if ‖∇‖ ≥ c

∇ otherwise.

• Elementwise clipping:

∇̃i ← min{c , |∇i |} × sign(∇i ), ∀i

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 9 DL, IST Fall 2021 46 / 79



Alternative RNNs

• Gated recurrent unit (GRU)
(Cho et al., 2014)

• Long short-term memorie (LSTM)
(Hochreiter and Schmidhuber, 1997)

Intuition: instead of multiplying across time (which leads to exponential
growth), we want the error to be approximately constant

They solve the vanishing gradient problem, but still have exploding
gradients (still need gradient clipping)
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Gated Recurrent Units (Cho et al., 2014)

• Recall the problem: the error must backpropagate through all the
intermediate nodes:

• Idea: create some kind of shortcut connections:

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

• Create adaptive shortcuts controlled by special gates
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Gated Recurrent Units (Cho et al., 2014)

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

ht = ut � h̃t + (1− ut)� ht−1

• Candidate update: h̃t = g(Vxt + U(rt � ht−1) + b)

• Reset gate: rt = σ(Vrxt + Urht−1 + br )

• Update gate: ut = σ(Vrxt + Uuht−1 + bu)
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Long Short-Term Memories
(Hochreiter and Schmidhuber, 1997)

• Key idea: use memory cells ct
• To avoid the multiplicative effect, flow information additively through

these cells

• Control the flow with special input, forget, and output gates

(Image credit: Chris Dyer)
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Long Short-Term Memories

(Image credit: Chris Dyer)

ct = ft � ct−1 + it � g(Vxt + Uht−1 + b), ht = ot � g(ct)

• Forget gate: ft = σ(Vf xt + Uf ht−1 + bf )

• Input gate: it = σ(Vixt + Uiht−1 + bi )

• Output gate: ot = σ(Voxt + Uoht−1 + bo)
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Long Short-Term Memories

(Slide credit: Christopher Olah)
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Bidirectional LSTMs

• Same thing as a Bidirectional RNN, but
using LSTM units instead of vanilla
RNN units.

(Slide credit: Chris Dyer)
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LSTMs and BILSTMs: Some Success Stories

• Time series prediction (Schmidhuber et al., 2005)

• Speech recognition (Graves et al., 2013)

• Named entity recognition (Lample et al., 2016)

• Machine translation (Sutskever et al., 2014)

• ELMo (deep contextual) word representations (Peters et al., 2018)

• ... and many others.
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Summary

• Better gradient propagation is possible if we use additive rather than
multiplicative/highly non-linear recurrent dynamics

• Recurrent architectures are an active area of research (but LSTMs are
hard to beat)

• Other variants of LSTMs exist which tie/simplify some of the gates

• Extensions exist for non-sequential structured inputs/outputs (e.g.
trees): recursive neural networks (Socher et al., 2011), PixelRNN
(Oord et al., 2016)
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From Sequences to Trees

• So far we’ve talked about recurrent neural networks, which are
designed to capture sequential structure

• What about other kinds of structure? For example, trees?

• It is also possible to tackle these structures with recursive
computation, via recursive neural networks.
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Recursive Neural Networks

• Proposed by Socher et al. (2011) for parsing images and text

• Assume a binary tree (each node except the leaves has two children)

• Propagate states bottom-up in the tree, computing the parent state p
from the children states c1 and c2:

p = tanh

(
W
[

c1

c2
+ b

])
• Use the same parameters W and b at all nodes

• Can compute scores at the root or at each node by appending a
softmax output layer at these nodes.
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Compositionality in Text

Uses a recurrent net to build a bottom-up parse tree for a sentence.

(Credits: Socher et al. (2011))
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Compositionality in Images

Same idea for images.

(Credits: Socher et al. (2011))
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Tree-LSTMs

• Extend recursive neural networks the same way LSTMs extend RNNs,
with a few more gates to account for the left and right child.

• Extensions exist for non-binary trees.
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Fine-Grained Sentiment Analysis

(Taken from Stanford Sentiment Treebank.)
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What about Images?

• While sequences are 1D, images are 2D.

• PixelRNNs are 2D extensions of RNNs.

• They can be used as auto-regressive models to generate images, by
generating pixels in a particular order, conditioning on neighboring
pixels.

• Several variants...
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RNNs for Generating Images

• Input-to-state and state-to-state mappings for PixelCNN and two
PixelRNN models (Oord et al., 2016):
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RNNs for Generating Images

(Oord et al., 2016)
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Even More General: Graph LSTMs

(Credits: Xiaodan Liang)
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More Tricks of the Trade

• Depth

• Dropout

• Implementation Tricks

• Mini-batching
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Deep RNNs/LSTMs/GRUs

• Depth in recurrent layers helps in practice (2–8 layers seem to be
standard)

• Input connections may or may not be used

(Slide credit: Chris Dyer)
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Dropout in Deep RNNs/LSTMs/GRUs

• Apply dropout between layers, but not on the recurrent connections

• ... Or use the same mask for all recurrent connections (Gal and
Ghahramani, 2015)

(Slide credit: Chris Dyer)
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Implementation Tricks

For speed:

• Use diagonal matrices instead of full matrices (esp. for gates)

• Concatenate parameter matrices for all gates and do a single
matrix-vector multiplication

• Use optimized implementations (from NVIDIA)

• Use GRUs or reduced-gate variant of LSTMs

For learning speed and performance:

• Initialize so that the bias on the forget gate is large (intuitively: at
the beginning of training, the signal from the past is unreliable)

• Use random orthogonal matrices to initialize the square matrices
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Mini-Batching

• RNNs, LSTMs, GRUs all consist of many element-wise operations
(addition, multiplication, nonlinearities), and lots of matrix-vector
products

• Mini-batching: convert many matrix-vector products into a single
matrix-matrix multiplication

• Batch across instances, not across time

• The challenge with working with mini batches of sequences is...
sequences are of different lengths (we’ve seen this when talking about
convolutional nets)

• This usually means you bucket training instances based on similar
lengths, and pad with zeros

• Be careful when padding not to back propagate a non-zero value!
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Conclusions

Recurrent neural networks allow to take advantage of sequential input
structure

They can be used to generate, tag, and classify sequences, and are trained
with backpropagation through time

Vanilla RNNs suffer from vanishing and exploding gradients

LSTMs and other gated units are more complex variants of RNNs that
avoid vanishing gradients

They can be extended to other structures like trees, images, and graphs.
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Thank you!

Questions?
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Today’s Roadmap

Last lecture we talked about sequence tagging and sequence generation.
Today we’ll talk about sequence-to-sequence models.

• Machine translation

• Sequence vector representation

• Encoder-decoder architecture

• Sequence matrix representation

• Attention mechanism

• Encoder-decoder with attention
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Sequence-to-Sequence

Sequence-to-sequence models map a source sequence (of arbitrary length)
into a target sequence (also of arbitrary length)

This is different from sequence tagging, where the two sequences are of
the same length
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Example: Machine Translation

Goal: translate a source sentence x in one language into a target
sentence y in another language.

Example (Portuguese to English):

x : “A ilha de Utopia tem 200 milhas de diâmetro na parte central.”

↓

y : “The island of Utopia is two hundred miles across in the middle part.”
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1950s: Early Machine Translation

(Source: https://youtu.be/K-HfpsHPmvw)

• MT research began in early 1950s

• Mostly Russian-English (motivated by the Cold War!)

• Systems were mostly rule-based, using a bilingual dictionary
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Noisy Channel Model (Shannon and Weaver, 1949)

“When I look at an article in Russian, I say:
‘This is really written in English, but it has been
coded in some strange symbols. I will now
proceed to decode.’ ”
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A very simple model: builds a generative story that works “backwards”
(flips source and target)

Yet, the dominant paradigm in MT for several decades (until 2014)

In 2014: neural machine translation (later)
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1990s-2010s: Statistical Machine Translation

Goal: find the best English sentence y , given Russian sentence x

ŷ = arg max
y

P(y | x)

Key idea: use Bayes’ rule to break this down into two components:

ŷ = arg max
y

P(x | y) P(y)

• Translation model: models how words/phrases are translated (learnt
from parallel data)

• Language model: models how to generate fluent English (learn from
monolingual data)
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How to Learn the Language Model?

• Need large amounts of monolingual data
(easy to get for most languages).

• How to learn a language model from these data?

• We covered language models in previous lectures:

- Markov models (maybe with smoothing)

- Neural language models

- ...

• Pick your favorite!
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How to Learn the Translation Model?

Need large amounts of parallel data!

(e.g., pairs of human translated Russian/English sentences.)
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Rosetta Stone

• (Re-)discovered in 1799 near
Alexandria

• Parallel corpora: ancient
Egyptian, demotic Egyptian,
ancient Greek
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Europarl

• Proceedings from the European parliament sessions, translated into
all EU official languages

• Around 1M parallel sentences for some language pairs

• Other corpora: Hansard, MultiUN, News Commentary, Wikipedia,
OpenSubtitles, Paracrawl, ...
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1990s: IBM Models for Statistical MT

• How to learn the translation model P(x | y)?

• Assume we have enough parallel training data.

• Break it down further: consider instead

P(x , a | y),

where a are word alignments, i.e., word-level correspondences
between Russian sentence x and English sentence y

• Word alignments are generally a latent/missing variable at training
time, and need to be marginalized over at test time,

P(x | y) =
∑
a

P(x , a | y),
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Word Alignments

Example for English-French:

Some words may be unaligned (no counterpart in the other language)!
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Word Alignments

Alignment can be one-to-many (word fertility):
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Word Alignments

Alignment can be many-to-one:
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Word Alignments

Alignment can be many-to-many (phrase-level): phrase-based MT:
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1990s: IBM Models for Statistical MT

• How to learn the translation model P(x | y)?

• ...assuming we have enough parallel training data.

• Break it down further: consider instead

P(x , a | y).

• Learn P(x , a | y) as a combination of several factors:

- Probability of particular words aligning (co-occurrence, relative
position, etc.)

- Probability of words having a particular fertility

- ...

• This leads to IBM models 1, 2, 3, 4, ...
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1990s: IBM Models for Statistical MT

• To search the best translation, we need to solve

ŷ = arg max
y

∑
a

P(x , a| y)P(y),

combining the translation and language models.

• Enumerating all possible hypothesis and alignments is intractable.

• Typical approach: heuristic search to gradually build the translation,
discarding hypotheses that are too low probability.
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Searching for the Best Translation

(Slide credit: https://web.stanford.edu/class/cs224n/lectures/lecture10.pdf)
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Summarizing: Statistical Machine Translation

We only saw the tip of the iceberg: SMT is (was?) a huge research field.

• The best systems are extremely complex

• It’s a big pipeline with many separately-designed subcomponents
(translation and language model are only two examples)

• Lots of feature engineering

• System design is very language-dependent

• Requires compiling and maintaining resources (e.g., phrase tables)

• Models are disk/memory hungry

• Lots of human effort to maintain.
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2014: Neural Machine Translation
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What is Neural Machine Translation (NMT)?

• NMT = MT with a single neural network

• End-to-end training with parallel data (no more complex pipelines!)

• The underlying architecture is an encoder-decoder (also called a
sequence-to-sequence model)

• In fact, NMT is also statistical; however, historically, “statistical MT”
refers to non-neural models, and NMT to NN-based models.
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Recap: Recurrent Neural Networks

Lecture 9 covered RNNs and showed they can have several uses...
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Recap: RNNs for Pooled Classification

(Slide credit: Ollion & Grisel)
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Recap: Auto-Regressive RNNs for Sequence Generation
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Sequence-to-Sequence Learning
(Cho et al., 2014; Sutskever et al., 2014)

• Can we put the two things together?

• Idea:

1 Encoder RNN encodes source sentence, generating a vector state

2 Decoder RNN generates target sentence conditioned on vector state.
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Encode a Sequence as a Vector

(Slide credit: Chris Dyer)

What is a vector representation of a sequence x?

c = RNN(x)

What is the probability of a sequence y | x?

y | x ∼ RNNLM(c)
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Encoder-Decoder Architecture

(Slide credit: Chris Dyer)
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Encoder-Decoder Architecture

Another way of depicting it (from Sutskever et al. (2014)):
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Some Problems

• If the source sentence is long, the encoder may forget the initial words
and the translation will be degraded

- Poor man’s solution: reverse the source sentence.

• The decoder does greedy search—this leads to error propagation

- Solution: beam search.
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Beam Search

Ideally we want to find the target sentence y that maximizes

ŷ = arg max
y

P(y | x) = arg max
y1,...,yL

P(y | x) =
L∏

i=1

P(yi | y1:i−1, x)

Enumerating all y is intractable!

Beam Search:

• approximate search strategy

• on each step of the decoder, keep track of the k most probable partial
translations; discard the rest

• k is the beam size

• if k = 1, we recover greedy search.
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Beam Search

(Source: https://web.stanford.edu/class/cs224n/lectures/lecture10.pdf)
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Beam Search

• A little better than greedy search, but still greedy

• Runtime linear as a function of beam size k: trade-off speed/accuracy

• In practice: beam sizes ∼ 4–12

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 10 DL, IST Fall 2021 37 / 69



Some Additional Tricks

From Sutskever et al. (2014):

• Deep LSTMs

• Reversing the source
sentence

At run time:

• Beam search

• Ensembling: combine N independently trained models and obtaining
a “consensus” (always helps!)
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End-to-End Neural Machine Translation

• Previous statistical machine translation models were complicated
pipelines (word alignments → phrase table extraction → language
model → decoding a phrase lattice)

• As an alternative, can do end-to-end NMT using a simple
encoder-decoder

• Doesn’t quite work yet, but gets close to top performance
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Caption Generation
Works for image inputs too!

(Slide credit: Chris Dyer)
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Progress in Machine Translation

Slide credit: Rico Sennrich
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NMT: A Success Story

• Neural MT went from a fringe research activity in 2014 to the leading
standard method in 2016

- 2014: First seq2seq paper published

- 2016: Google Translate switches from SMT to NMT

• This is amazing!

• SMT systems, built by hundreds of engineers over many years,
outperformed by NMT trained by a handful of engineers in a few
months.
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So Is Machine Translation Solved?

No. Many difficulties remain:

• Out-of-vocabulary words

• Domain mismatch between train and test data

• Low-resource language pairs

• Maintaining context over longer text (coming next!)
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Limitations

A possible conceptual problem:

• Sentences have unbounded lengths

• Vectors have finite capacity

“You can’t cram the meaning of a whole %&$# sen-
tence into a single $&# vector!” (Ray Mooney)

A possible practical problem:

• Distance between “translations” and their sources are distant—can
LSTMs learn this?
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Encode Sentences as Matrices, Not Vectors

Problem with the fixed-size vector model:

• Sentences are of different sizes but vectors are of the same size

• Bottleneck problem: a single vector needs to represent the full source
sentence!

Solution: use matrices instead!

• Fixed number of rows, but number of columns depends on the
number of words

• Then, before generating each word in the decoder, use an attention
mechanism to condition on the relevant source words only
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How to Encode a Sentence as a Matrix?

First shot: define the sentence words’ vectors as the columns

(Image credit: Chris Dyer)

• Not very effective, since the word vectors carry no contextual
information
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How to Encode a Sentence as a Matrix?

Other strategies:

• Convolutional neural networks (Kalchbrenner et al., 2014): can
capture context

• Typical choice: bidirectional LSTMs (Bahdanau et al., 2015)

• Later: Transformer networks (Vaswani et al., 2017).
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Bidirectional LSTM Encoder

(Slide credit: Chris Dyer)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 10 DL, IST Fall 2021 49 / 69



Generation from Matrices

• We now have a matrix F representing the input.

• How to generate from it?

• Answer: use attention! (Bahdanau et al., 2015)

• Attention is the neural counterpart of word alignments.
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Generation from Matrices with Attention

• Generate the output sentence word by word using an RNN

• At each output position t, the RNN receives two inputs:

- a fixed-size vector embedding of the previous output symbol yt−1

- a fixed-size vector encoding a “view” of the input matrix F , via a
weighted sum of its columns (i.e., words): Fat

• The weighting of the input columns at each time-step (at) is called
the attention distribution.
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Attention Mechanism (Bahdanau et al., 2015)

Let s1, s2, . . . be the states produced by the decoder RNN

When predicting the t-th target word:

1 Compute “similarity” with each of the source words:

zt,i = v · g(Whi + Ust−1 + b), for i = 1, ..., L

where hi is the ith column of F (representation of the ith source
word), and v , W , U , b are parameters of the model

2 Form vector zt = (zt,1, . . . , zt,i , . . . , zt,L) and compute attention
at = softmax(zt)

3 Use attention to compute input conditioning state ct = Fat

4 Update RNN state st based on st−1, yt−1, ct

5 Predict yt ∼ p(yt | st)
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Encoder-Decoder with Attention

(Slide credit: Chris Dyer)
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Putting It All Together

obtain input matrix F with a bidirectional LSTM
t = 0, y0 = start (the start symbol)
s0 = w (learned initial state)
repeat
t = t + 1
zt = v · g(WF + Ust−1 + b)
compute attention at = softmax(zt)
compute input conditioning state ct = Fat
st = RNN(st−1, [E (yt−1), ct ])
yt |y<t , x ∼ softmax(Pst + b)

until yt 6= stop
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Attention Mechanisms

• Attention is closely related to “pooling” operations in convnets (and
other architectures)

• Attention in MT plays a similar role as alignment, but leads to “soft”
alignment instead of “hard” alignment

• Bahdanau et al. (2015)’s model has no bias in favor of diagonals,
short jumps, fertility, etc.

• Some recent work adds some “structural” biases (Luong et al., 2015;
Cohn et al., 2016)

• Other works constrains the amount of attention each word can
receive (based on its fertility): Malaviya et al. (2018).
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Attention is Great!

• Attention significantly improves NMT performance!

• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem (by allowing the decoder to
look directly at source)

• Attention helps with vanishing gradient problem (provides shortcut to
faraway states)

• Attention provides some interpretability (we can see what the decoder
was focusing on)

• This is good because we never explicitly trained a word aligner; the
network learns it by itself!
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Attention Map
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Example: Machine Translation
Some positive examples where NMT has impressive performance:

(From Wu et al. (2016))
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Example: Machine Translation

... But also some negative examples:

• Dropping source words (lack of attention)

• Repeated source words (too much attention)

Source: 1922 in Wien geboren, studierte Mang während und nach dem Zweiten
Weltkrieg Architektur an der Technischen Hochschule in Wien bei
Friedrich Lehmann.

Human: Born in Vienna in 1922, Meng studied architecture at the Technical Uni-
versity in Vienna under Friedrich Lehmann during and after the second
World War.

NMT: *Born in Vienna in 1922, Mang studied architecture at the Technical
College in Vienna with Friedrich Lehmann.

Source: Es ist schon komisch, wie dies immer wieder zu dieser Jahreszeit auf-
taucht.

Human: It’s funny how this always comes up at this time of year.
NMT: *It’s funny how this time to come back to this time of year.
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Example: Machine Translation

... And an example where neural MT failed miserably:

(Credit: Barry Haddow)
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Example: Caption Generation

Attention over images:

(Slide credit to Yoshua Bengio)
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A More Extreme Example...

(Slide credit to Dhruv Batra)
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Attention and Memories

Attention is used in several problems, sometimes under different names:

• image caption generation (Xu et al., 2015)

• speech recognition (Chorowski et al., 2015)

• memory networks for reading comprehension (Sukhbaatar et al., 2015;
Hermann et al., 2015)

• neural Turing machines and other “differentiable computers” (Graves
et al., 2014; Grefenstette et al., 2015)
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Other Attentions

• Can we have more interpretable attention? Closer to hard alignments?

• Can we upper bound how much attention a word receives? This may
prevent a common problem in neural MT, repetitions

• Sparse attention via sparsemax (Martins and Astudillo, 2016)

• Constrained attention with constrained softmax/sparsemax (Malaviya
et al., 2018)
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Conclusions

• Machine translation is a key problem in AI since the 1950s

• Neural machine translation with sequence-to-sequence models was a
breakthrough

• Representing a full sentence with a single vector is a bottleneck

• Attention mechanisms allow focusing on different parts of the input
and solve the bottleneck problem

• Other applications beyond MT: speech recognition, image captioning,
etc.
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Thank you!

Questions?
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Lecture 11:

Attention Mechanisms and Transformers

André Martins, Francisco Melo, Mário Figueiredo

Deep Learning Course, Winter 2021-2022
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Today’s Roadmap

Previous lecture: sequence-to-sequence models using RNNs and attention.

Today we look at self-attention and transformers:

• Convolutional sequence-to-sequence models

• Self-attention

• Transformer networks

• Pre-trained models and transfer learning (next class)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 11 DL, IST Fall 2021 2 / 56



Pointers for Today’s Class

• Lena Voita’s seq2seq with attention: https://lena-voita.

github.io/nlp_course/seq2seq_and_attention.html

• Marcos Treviso lecture on attention mechanisms:
https://andre-martins.github.io/docs/dsl2020/

attention-mechanisms.pdf

• John Hewitt’s lecture on self-attention and transformers:
http://web.stanford.edu/class/cs224n/slides/

cs224n-2021-lecture09-transformers.pdf

• Illustrated transformer:
http://jalammar.github.io/illustrated-transformer/

• Annotated transformer:
https://nlp.seas.harvard.edu/2018/04/03/attention.html
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Recap: RNN with Attention (Encoder)

(Slide credit: Chris Dyer)
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Recap: RNN with Attention (Decoder)

(Slide credit: Chris Dyer)
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RNN-Based Encoder-Decoder
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Drawbacks of RNNs

• Sequential mechanism prohibits parallelization

• Long-range dependencies are tricky, despite gating

• Possible solution: replace RNN encoder by hierarchical 1-D CNN
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Convolutional Encoder

(Gehring et al., 2017)
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Fully Convolutional

• Can use CNN decoder too!

• Convolutions will be over output prefixes only

• Encoder is parallelizable, but decoder still requires sequential
computation (the model is still auto-regressive)
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Convolutional Sequence-to-Sequence
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Convolutional Sequence-to-Sequence

(Gehring et al., 2017)
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Next: Self-Attention

• Both RNN and CNN decoders require an attention mechanism

• Attention allows focusing on an arbitrary position in the source
sentence, shortcutting the computation graph

• But if attention gives us access to any state...
...maybe we don’t need the RNN?
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Why Attention?

We want NNs that automatically weigh input relevance

Main advantages:

• performance gain

• none or few parameters

• fast (easy to parallelize)

• tool for “interpreting” predictions
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Example: Machine Translation
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Example: Caption Generation

Attention over images:

(Slide credit to Yoshua Bengio)
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Example: Document Classification

(Bao et al., 2018)
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Attention Mechanism
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Attention Mechanism: Recap

Recall how attention works:

1 We have a query vector q (e.g. the decoder state)

2 We have input vectors H = [h1, . . . ,hL]> (e.g. one per source word)

3 We compute affinity scores s1, . . . , sL by “comparing” q and H
4 We convert these scores to probabilities:

p = softmax(s)

5 We use this to output a representation as a weighted average:

c = H>p =
L∑

i=1

pihi

Let’s see these steps in detail!
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Affinity Scores

Several ways of “comparing” a query q and an input (“key”) vector hi :

• Additive attention (Bahdanau et al., 2015), what we covered in
previous class:

si = u> tanh(Ahi + Bq)

• Bilinear attention (Luong et al., 2015):

si = q>Uhi

• Dot product attention (Luong et al., 2015) (particular case; queries
and keys must have the same size):

si = q>hi

The last two are easier to batch when we have multiple queries and
multiple keys.
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Keys and Values

The input vectors H = [h1, . . . ,hL]> appear in two places:

• They are used as keys to “compare” them with the query vector q to
obtain the affinity scores

• They are used as values to form the weighted average c = H>p

To be fully general, they don’t need to be the same – we can have:

• A key matrix K = [k1, . . . , kL]> ∈ RL×dK

• A value matrix V = [v1, . . . , vL]> ∈ RL×dV
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Attention Mechanism: More General Version

1 We have a query vector q (e.g. the decoder state)

2 We have key vectors K = [k1, . . . , kL]> ∈ RL×dK

and value vectors V = [v1, . . . , vL]> ∈ RL×dV

(e.g. one of each per source word)

3 We compute query-key affinity scores s1, . . . , sL “comparing” q and K

4 We convert these scores to probabilities:

p = softmax(s)

5 We output a weighted average of the values:

c = V>p =
L∑

i=1

pivi ∈ RdV
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Self-Attention

• So far we talked about contextual attention – the decoder attends to
encoder states (this is called “input context”)

• The encoder and the decoder states were propagated sequentially
with a RNN, or hierarchically with a CNN

• Alternative: self-attention – at each position, the encoder attends to
the other positions in the encoder itself

• Same for the decoder.
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Self-Attention Layer
Self-attention for a sequence of length L:

1 Query vectors Q = [q1, . . . ,qL]> ∈ RL×dQ

2 Key vectors K = [k1, . . . , kL]> ∈ RL×dK

3 value vectors V = [v1, . . . , vL]> ∈ RL×dV

4 Compute query-key affinity scores “comparing” Q and K , e.g.,

S = QK> ∈ RL×L (dot-product affinity)

5 Convert these scores to probabilities (row-wise):

P = softmax(S) ∈ RL×L

6 Output the weighted average of the values:

Z = PV = softmax(QK>)︸ ︷︷ ︸
P

V ∈ RL×dV .
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Self-Attention

(Vaswani et al., 2017)
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Transformer (Vaswani et al., 2017)

• Key idea: instead of RNN/CNNs,
use self-attention in the encoder

• Each word state attends to all the
other words

• Each self-attention is followed by a
feed-forward transformation

• Do several layers of this

• Do the same for the decoder,
attending only to already generated
words.
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Transformer
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Transformer

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 11 DL, IST Fall 2021 29 / 56



Transformer Blocks

(Illustrated transformer: http://jalammar.github.io/illustrated-transformer/)
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Transformer Basics

Let’s define the basic building blocks of transformer networks first: new
attention layers!

Two innovations:

• scaled dot-product attention

• multi-head attention
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Scaled Dot-Product and Multi-Head Attention

(Vaswani et al., 2017)
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The Encoder

Example for a sentence with 2 words:
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Transformer Self-Attention: Queries, Keys, Vectors

• Obtained by projecting the
embedding matrix X ∈ RL×e to
a lower dimension:

Q = XWQ

K = XW K

V = XW V .

• The projection matrices WQ ,
W K , W V are model
parameters.
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Transformer Self-Attention: Queries, Keys, Vectors
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Scaled Dot-Product Attention

Problem: As dK gets large, the variance of q>k increases, the softmax
gets very peaked, hence its gradient gets smaller.

Solution: scale by length of query/key vectors:

Z = softmax

(
QK>√
dK

)
V .
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Scaled Dot-Product Attention
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Scaled Dot-Product and Multi-Head Attention

(Vaswani et al., 2017)
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Multi-Head Attention
Self-attention: each word forms a query vector and attends to the other
words’ key vectors

This is vaguely similar to a 1D convolution, but where the filter weights
are “dynamic” is the window size spans the entire sentence!

Problem: only one channel for words to interact with one-another

Solution: multi-head attention!

• define h attention heads, each with their own projection matrices
(e.g. h = 8)

• apply attention in multiple channels, concatenate the outputs and
pipe through linear layer:

MultiHead(X ) = Concat(Z1, . . . ,Zh)WO ,

where Zi = Attention(XWQ
i︸ ︷︷ ︸

Qi

,XW K
i︸ ︷︷ ︸

Ki

,XW V
i︸ ︷︷ ︸

Vi

).
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Multi-Head Attention
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Other Tricks

• Self-attention blocks are repeated
several times (e.g. 6 or 12)

• Residual connections on each
attention block

• Layer normalization

• Positional encodings (to distinguish
word positions)
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Positional Encodings
• As just described, the transformer is insensitive to word order!

- queries attend to keys regardless of their position in the sequence

• To make it sensitive to order, we add positional encodings
• Two strategies: learn one embedding for each position (up to a

maximum length) or use sinusoidal positional encodings (next)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 11 DL, IST Fall 2021 42 / 56



Sinusoidal Positional Encodings
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Residuals and Layer Normalization
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The Decoder

What about the self-attention blocks in the decoder?

Everything is pretty much the same as in the encoder, with two twists:

• The decoder cannot see the future! Use “causal” masking

• The decoder should attend to itself (self-attention), but also to the
encoder states (contextual attention).
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The Decoder
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Attention Visualization Layer 5
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Implicit Anaphora Resolution
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Computational Cost

• Faster to train (due to self-attention parallelization)

• More expensive to decode

• Scale quadratically with respect to sequence length
(problematic for long sequences).
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Other Tricks

• Label smoothing

• Dropout at every layer before residuals

• Beam search with length penalty

• Adam optimizer with learning-rate decay

Overall, transformers are harder to optimize than RNN seq2seq models

They don’t work out of the box: hyperparameter tuning is very important.
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Transformer Results

(Vaswani et al., 2017)’s “Attention Is All You Need”
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TransformerXL

Big transformers can look at larger contexts.

TransformerXL: enables going beyond a fixed length without disrupting
temporal coherence:

(Dai et al., 2019)
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Conclusions

• RNN-based seq2seq models require sequential computation and have
difficulties with long range dependencies

• Attention mechanisms allow focusing on different parts of the input

• Encoders/decoders can be RNNs, CNNs, or self-attention layers

• Transformers are the current state of the art for many tasks in NLP
and vision

• Other applications: speech recognition, image captioning, etc.

• Next lecture: pretrained models and transfer learning (BERT, GPT-2,
GPT-3, etc.)
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Thank you!

Questions?
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Lecture 12: Self-Supervised Learning and Large

Pretrained Models

André Martins, Francisco Melo, Mário Figueiredo

Deep Learning Course, Winter 2021-2022
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Announcements

• HW2 due next Wednesday (Feb 2)

• Next Friday: guest lecture by Chrysoula Zerva.
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Today’s Roadmap

Previous lecture: sequence-to-sequence models and transformers.

Today: large pretrained models (BERT, GPT3, etc.) and how to use them
for downstream tasks.

• Contextualized representations

• Self-supervised learning

• Pretraining and finetuning

• Adaptors and prompting.
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Pointers for Today’s Class

• John Hewitt’s lecture on pretrained transformer models:
http://web.stanford.edu/class/cs224n/slides/

cs224n-2021-lecture10-pretraining.pdf
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From Static to Contextualized Word Embeddings

• In the representation learning lecture, we saw how to obtain word
representations (embeddings) (e.g. word2vec, GloVe)

• Each word in the vocabulary is represented by a vector, regardless of
its context (a “static” vector)

• Today: how to obtain contextualized embeddings.
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GloVe Visualizations: Company → CEO

(Slide credit to Richard Socher)
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GloVe Visualizations: Superlatives

(Slide credit to Richard Socher)
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Word Embeddings: Some Open Problems

• Can we have word embeddings for multiple languages in the same
space?

• How to capture polysemy (e.g. “bear” vs “bear”; “flies” vs ”flies”)?

• Can we compute embeddings on-the-fly, depending on the context?
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Contextualized Embeddings

• Words can have different meanings,
depending on which context they appear in.

• In 2018, a model called ELMo learned
context-dependent embeddings and
achieved impressive results on 6 NLP
downstream tasks (Peters et al., 2018).

• This was the first of a series of models
named after Sesame Street characters
(more to come).
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Embeddings from Language Models (ELMo)
(Peters et al., 2018)

Key idea:

• Pre-train a BiLSTM language model on a large dataset

• Save all the parameters at all layers, not only the embeddings

• Then, for your downstream task, tune a scalar parameter for each
layer, and pass the entire sentence through this encoder.

Later several models have been proposed (BERT, GPT) with even more
impressive performance.
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Pretraining through Language Modeling

Recall the language modeling task:

• Model pθ(yt | y1:(t−1)), the probability distribution of words given
their past contexts.

• There’s lots of data for this! No labels are necessary, just raw text.

• This is called unsupervised pretraining or self-supervised learning.

Pretraining through language modeling:

• Train a NN to perform language modeling on a large amount of text.

• Save the network parameters.
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Pretraining and Fine-tuning

Pretraining can be very effective by serving as parameter initialization.

Step 1: Pretrain (e.g. on LM)

Lots of text; learn general things!

Step 2: Finetune (on your
task)

Not many labels; adapt to the task!
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Self-Supervised Learning

Pretraining on language model task is a form of self-supervised learning

• Take raw (unlabeled) data, remove information and train a model to
recover that information

• In the case of language modeling, the information removed is the next
word; the model is trained to predict future words given the context

• Other strategies: mask words (later)

• This can be done with signals, images too, not just NLP

• For example, take images, obfuscate a region, and train a model to
predict the missing region (image completion)
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Constrastive Predictive Coding (Speech)

(From Oord et al. (2018))
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Constrastive Predicting Coding (Images)

(From Oord et al. (2018))
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Siamese Networks

• Rotate, translate, or scale existing
image.

• Minimize the distance between the
two representations.

(From https://ai.facebook.com/blog/

self-supervised-learning-the-dark-matter-of-intelligence/)
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Why Does This Work?

Let’s look at pretraining and fine-tuning from a “training neural nets”
perspective.

• Pretraining leads to parameters θ̂ ≈ arg minθ Lpretrain(θ)

• Fine-tuning approximates arg minθ Lfinetune(θ), starting at θ̂

• Pretraining helps because SGD stays (relatively) close to θ̂ during
fine-tuning.

• Pretraining on large datasets exposes the model to many words and
contexts not seen in the fine-tuning data (a form of weak supervision).

• Hopefully, the fine-tuning local minima near θ̂ tend to generalize well!
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Three Architectures for Pretraining

Decoders

• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on
future words

Encoders

• Bidirectional context ⇒ can condition on
future!

• Wait, how do we pretrain them?

Encoder-Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?
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Pretrained Decoders

• When using language model pretrained
decoders, we can ignore that they were
trained to model pθ(xt | x1:(t−1))

• Fine-tuning by training a classifier on
the last hidden state.

h1, . . . ,hL = Decoder(x1, . . . , xL)

y = softmax(AhL + b)

where A and b are randomly initialized
and learned by the downstream task.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 12 DL, IST Fall 2021 21 / 71



Pretrained Decoders

Two common choices for fine-tuning:

• Freeze the pretrained model and train only A and b

• Or fine-tune everything, letting gradients backpropagate through the
whole network.

Pretrained decoders are particularly useful for generation tasks:

• Summarization

• Machine Translation

• Dialogue

• etc.

The family of GPT models developed by OpenAI is an example.
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Generative Pretrained Transformer (GPT)
(Radford et al., 2018)

• 2018’s GPT was a big success in pretraining a decoder!

• Transformer decoder with 12 layers.

• 768-D hidden states, 3072-D feed forward hidden layers.

• Byte pair encoding with 40,000 merges (vocabulary size)

• Trained on BooksCorpus over 7000 books.

• Contains long spans of contiguous text, for learning long distance
dependencies.
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Generative Pretrained Transformer (GPT)
(Radford et al., 2018)

How do we format inputs to our decoder for finetuning tasks?

Radford et al. (2018) evaluates on Natural Language Inference (NLI):

• Label pairs of sentences as entailment/contradiction/neutral

Premise: “The man is in the doorway”
Hypothesis: “The person is near the door” ⇒ entailment

The input is formatted to become a sequence of tokens for the decoder:
[START] The man is in the doorway [DELIM] The person is near the

door [EXTRACT]

A linear classifier is applied to the representation of [EXTRACT]
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Generative Pretrained Transformer (GPT)
(Radford et al., 2018)

Results on various natural language inference (NLI) tasks:
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GPT-2 (Radford et al., 2019)

Another iteration of GPT, with larger models and trained on much more
data (40GB of Internet text)

Particularly strong in language generation tasks.

• A transformer-based language model with 1.5 billion parameters,
trained on 8 million web pages

• Training task: predict the next word, given all of the previous words

• Test time: top-k truncated random sampling

• Lots of hype!
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GPT-2’s Famous Example (Radford et al., 2019)

Given a prompt, perform story completion:
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GPT-2 Generated Text

A machine learning school was held in Bangkok early August. I
had originally expected a much more “procedural and algorith-
mic” approach as well, but was ple asantly surprised by the level
of expertise of the students. These were both very experienced
mathematicians, but also had an appreciation for machine learning
techniques. These are the same school that created and operates
the very popular Algorithmia blog , so they aren’t exactly new to
me, and are well known to other Algorithmia grads at the Univer-
sity of Central Europe.

https://talktotransformer.com/
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GPT-2 Generated Text

I am teaching a deep learning class. I have developed a good
curriculum, and most of my students are writing tutorial code
that I’ll review during class. At the same time, I’m doing training
with several of my students. I am giving them a lot of freedom in
their code. But I am giving them rigorous, artificial data to train
on. I will judge their code based on this data.
It doesn’t make much sense to me to write a 5 minute tutorial that
I don’t use for validation. I don’t want to validate these tutorials
in an inconsistent way.

https://talktotransformer.com/
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GPT-2 Generated Text

I am teaching a deep learning class in Lisbon. I am feeling a bit
weird about this since I am not even certified in this topic.
I have to work very hard to make myself more able to teach,
especially a course about deep learning.
That’s why I’m looking for guidance from my friends and col-
leagues here in Portugal.
They know deep learning pretty well since it’s pretty hot at the
moment, but they don’t always get what it means to teach with
it. They can only teach to one person at a time, and sometimes
that one person does not understand the explanation.

https://talktotransformer.com/
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GPT-3 (Brown et al., 2020)

Keep scaling up... Even larger models pretrained on more data:

• 175 billion parameters (!!!)

• Trained on 500 billion words

• Took 3.14× 1023 FLOPS to train (on a standard GPU, it would cost
$4.6M and it would require 355 years to train such a model)

• Introduces prompting as an alternative to fine-tuning (later)

• Demonstrates few-shot learning capabilities (learning new tasks on
the fly from very few examples)
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Large Pretrained Models
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Three Architectures for Pretraining

Decoders X

• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on
future words

Encoders

• Bidirectional context ⇒ can condition on
future!

• Wait, how do we pretrain them?

Encoder-Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?
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Pretrained Encoders

So far, we’ve looked at language model pretraining. But encoders get
bidirectional context, so we can’t do language modeling!

So, what pretraining objective to use? Masked Language Modeling.
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Masked Language Modeling

• Idea: replace a fraction of words in
the input with a special [MASK]
token; predict these words.

h1, . . . ,hL = Encoder(x1, . . . , xL)

yi = softmax(Ahi + b).

• Only add loss terms from words
that are “masked out.” If x̃ is the
masked version of x , we’re
learning pθ(x |x̃)

• Similar to a denoising
auto-encoder.

(Devlin et al., 2018)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 12 DL, IST Fall 2021 35 / 71



Example: BERT (Devlin et al., 2018)

“Bidirectional Encoder Representations from Tranformers”

• Randomly mask 15% of the words of the input
and train a Transformer to recover those words
from the context

• Both left and right context, used
simultaneously!

• In doing so, learn contextualized word
representations

• Can use this as a pre-trained model and
fine-tune it to any downstream task

• Extremely effective! Achieved SOTA on 11
NLP tasks (7.7% absolute point improvement
on GLUE score).
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Example: BERT (Devlin et al., 2018)

(Devlin et al., 2018)

Aditionally to predicting masked words, BERT is also trained to predict
whether one chunk follows the other or is randomly sampled (to obtain
sentence-level representations.

Later work has argued this “next sentence prediction” is not necessary.
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Details about BERT (Devlin et al., 2018)

Two models were released:

• BERT base: 12 layers, 768 dim hidden states, 12 attention heads, 110
million params.

• BERT large: 24 layers, 1024 dim hidden states, 16 attention heads,
340 million params.

Trained on:

• BooksCorpus (800 million words)

• English Wikipedia (2,500 million words)

Pretraining is expensive and impractical on a single GPU.

• BERT was pretrained with 64 TPU chips for a total of 4 days.

Fine-tuning is practical and common on a single GPU:

• “Pretrain once, finetune many times.”
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Fine-Tuning BERT (Devlin et al., 2018)

BERT became massively popular and versatile; finetuning BERT led to
new state of the art results on a broad range of NLP tasks:

• Paraphrase detection (QQP, MRPC)

• Natural language inference (QNLI, RTE)

• Sentiment analysis (SST-2)

• Grammatical correctness (CoLA)

• Semantic textual similarity (STS-B)
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Other variants of BERT

• M-BERT (same as BERT but multilingual, not English-specific)

– Effective in many cross-lingual tasks

• RoBERTA (similar to BERT, but trained on more data and removing
next-sentence prediction)

• XLM-RoBERTA (multilingual version)

• SpanBERT

• ...
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Limitations of pretrained encoders

Why not use pretrained encoders for everything?

Pretrained decoders (causal LM) vs pretrained encoders (masked LM):

• If your task involves generating sequences, use a pretrained decoder
(BERT and other pretrained encoders don’t naturally lead to nice
autoregressive generation methods.)

• If your task involves classification or sequence tagging, use a
pretrained encoder; you can usually benefit from bidirectionality.
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Three Architectures for Pretraining

Decoders X

• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on
future words

Encoders X

• Bidirectional context ⇒ can condition on
future!

• Wait, how do we pretrain them?

Encoder-Decoders

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?
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Pretrained Encoder-Decoder

• For encoder-decoders , we can do
something like language modeling,
but where a prefix of every input is
provided to the encoder and is not
predicted.

h1, . . . ,hT = Encoder(x1, . . . , xT )

hT+1, . . . ,h2T = Decoder(xT+1, . . . , x2T )

yi = softmax(Ahi + b), i > T

• The encoder portion benefits from
bidirectional context

• the decoder portion is used to
train the whole model through
language modeling.

(Raffel et al., 2020)
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T5 (Raffel et al., 2020)

Use span corruption as an auxiliary task:

• Replace different length spans from the input with unique
placeholders; decode out the spans that were removed!

• This is implemented in text preprocessing: it’s still an objective that
looks like language modeling at the decoder side.

Inputs: Thank you 〈X〉 me to your party 〈Y〉 week.

Targets: 〈X〉 for inviting 〈Y〉 last 〈Z〉
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T5 (Raffel et al., 2020)

Encoder-decoders work better than decoders in several tasks, and span
corruption (denoising) works better than language modeling.

(Raffel et al., 2020)
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T5 (Raffel et al., 2020)

T5 can be fine-tuned to answer a wide range of questions, retrieving
factual knowledge from its parameters!

Natural Questions (NQ), WebQuestions (WQ), TriviaQA (TQA)
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Limitations of Fine-Tuning

So far, we have talked about pretraining and fine-tuning.

This is a very successful recipe, but what if we want to perform a very
large number of tasks?

• Multilingual models supporting many languages (English, German,
Portuguese, a long tail of low-resource languages)

• Similar tasks but in different domains (news, conversational data,
medical, legal, ...)

• Different tasks (e.g. generation, classification, tagging)

Fine-tuning a very large model to each of the tasks can be very expensive
and requires a copy of the model for each task.

Can we do better?

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 12 DL, IST Fall 2021 48 / 71



Adapters (Houlsby et al., 2019)

• Alternative to fine-tuning language models on a downstream task

• Instead of fine-tuning the full model, a small set of task-specific
parameters (adapter) is appended to the model and updated during
fine-tuning

• The rest of the model is kept fix

• Several advantages:

– Much fewer parameters to fine-tune

– Can share the same big pretrained model across tasks, and fine-tune
only the task-specific adapters

– Can also be used to create multilingual models (language adapters)
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Adapters (Houlsby et al., 2019)

From Houlsby et al. (2019)

• Adapter layers interleaved in the other transformer layers

• At fine-tuning time, only these adapter layers are updated

• The big pretrained model stays untouched
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Adapters (Houlsby et al., 2019)
• They achieve high performance in downstream tasks with much fewer

new parameters:

From Houlsby et al. (2019)
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Task and Language Adapters (Pfeiffer et al., 2020)
• Adapters can be used to adapt to new tasks and languages:

From Pfeiffer et al. (2020)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 12 DL, IST Fall 2021 52 / 71



Few-Shot Learning

• What if we want to solve a completely new task for which not enough
data exists, not even for fine-tuning?

• Can we do it on-the-fly?

• This is called few-shot learning

• Powerful models such as GPT-3 can do this via prompting

• In a nutshell: leveraging the versatility of language models is all we
need!
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What do Pretrained Language Models Learn?

• Instituto Superior Técnico is located in , Portugal. [Trivia]

• I put fork down on the table. [Syntax]

• The woman walked across the street, checking for traffic over
shoulder. [Coreference]

• I went to the ocean to see the fish, turtles, seals, and . [Lexical
semantics]

• Overall, the value I got from the two hours watching it was the sum
total of the popcorn and the drink. The movie was . [Sentiment]

• Iroh went into the kitchen to make some tea. Standing next to Iroh,
Zuko pondered his destiny. Zuko left the . [Complex reasoning]

• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21,
[Basic arithmetic]
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Prompting and In-Context Learning

• Pretrained language models acquire a lot of factual knowledge!

• This suggests we can prompt them on-the-fly to solve new tasks.
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Prompting and In-Context Learning (Brown et al., 2020)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 12 DL, IST Fall 2021 56 / 71



Prompting and In-Context Learning (Brown et al., 2020)
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Example: Using New Words (Brown et al., 2020)
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Example: Grammar Correction (Brown et al., 2020)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 12 DL, IST Fall 2021 59 / 71



Example: Auto-Completing Code (Chen et al., 2021)
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Example: Auto-Completing Code (Chen et al., 2021)
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Prompting as a Way to Solve Many Tasks

From Liu et al. (2021)
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Prompting Terminology

From Liu et al. (2021)
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Prompt Engineering

From Liu et al. (2021)
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Learning the Prompt

• Design a good prompt manually can be tedious

• Systems are very brittle and sensitive to the choice of prompt

• Combining multiple prompts and ensembling the answers increases
robustness

• One exciting research direction is learning prompts automatically

• Two ways of doing this (both with some fine-tuning data):

– Learn discrete prompts for each task (combinatorial problem)
– Learn continuous prompts – by learning the word embeddings directly.

• More information in this survey: Liu et al. (2021)
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Dangers of Large Pretrained Models (Bender et al., 2021)

Large pretrained models are leading to many successes.

But they also pose serious concerns:

• For many existing models, data was not properly curated or
representative of the world’s population

• Current models are English-centric; other languages are poorly
represented

• They may propagate biases and discriminate against minorities

• They may disclose private information (maybe some private
information was in the training data, and models can expose it)

• Their output is uncontrolled – it can be toxic or offensive

• They can provide misleading information with unpredictable
consequences
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Example

(https://www.nabla.com/blog/gpt-3/)

More about this in the lecture on fairness and interpretability.
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Conclusions

• Pretraining large models and fine-tuning for downstream tasks is a
very effective recipe

• Pretraining language models is a form of self-supervised learning

• Models such as ELMo, BERT, GPT, follow this procedure

• Other strategies, e.g., adapters and prompting are more
parameter-efficient

• Current models such as GPT-3 exhibit few-shot learning capabilities:
they learn new tasks on-the-fly

• However, these models also pose very serious concerns about their
social implications

• Finding ways to mitigate these problems is an active research area.
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Thank you!

Questions?
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Lecture 13: Deep Generative Models

André Martins, Francisco Melo, Mário Figueiredo

Deep Learning Course, Winter 2021-2022
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Announcements

• This Friday, 15:00–17:00, Centro de Congressos (Pav. Civil,
Alameda): guest lecture by Prof. Chrysoula Zerva!
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Today’s Roadmap

Most of the course was about supervised learning.

Today we’ll talk about deep generative models and unsupervised learning.

• Deep auto-regressive models

• Boltzmann machines

• Evidence lower bound (ELBO) and variational inference

• Variational auto-encoders

• Generative adversarial networks
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Which of these people is real?

(http://www.whichfaceisreal.com)

(http://www.whichfaceisreal.com)

(http://www.whichfaceisreal.com)

(http://www.whichfaceisreal.com)

(http://www.whichfaceisreal.com)
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Generative Modeling

• Modelling complex high-dimensional data (e.g., images) is a hard,
open problem

• Deep generative models are currently making progress on this.

• Goal: model P(x) (unsupervised learning) or P(x,y) (supervised
learning)

• Often, deep generative models also use latent variables h, in which
case they may model P(x,h) or P(x,h,y), such that

P(x) =
∑
h

P(x,h) or P(x,y) =
∑
h

P(x,h,y)
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Examples of Deep Generative Models

• Auto-Regressive Networks

• Restricted Boltzmann Machines

• Deep Belief Networks

• Deep Boltzmann Machines

• Gaussian-Bernoulli RBMs

• Convolutional Boltzmann Machines

• Sigmoid Belief Nets

• Variational Auto-Encoders

• Generative Adversarial Networks

• Convolutional Generative Networks

• Generative Stochastic Networks
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Deep Auto-Regressive Models

• Deep auto-regressive (AR) models have no latent variables.

• Use the chain rule of probabilities to decompose:

P(x) = P(x1)P(x2 | x1) · · ·P(xD | x1, . . . , xD−1)

• Also called fully-visible Bayes networks.

• We saw examples already: RNNs, Pixel RNNs, Pixel CNNs, ...
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Examples: PixelCNNs and PixelRNNs

• Input-to-state and state-to-state mappings for PixelCNN and two
PixelRNN models (Oord et al., 2016):
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RNNs for Generating Images

(Oord et al., 2016)
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Summary

• Despite their simplicity, deep AR models can be very powerful.

• However, they may require too many parameters/complex functions
due to the assumption all variables are observed.

• Models with latent variables are an appealing alternative: they can
represent “clusters”, yielding simpler representations.
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Energy Based Models

• A probability distribution (mixing observed and latent variables) via
an energy function E (x,h;θ):

Pθ(x,h) =
exp(−E (x,h;θ))

Z (θ)

• Maximizing probability corresponds to minimizing the energy.

• Challenges:

- Computing the partition function Z (θ)

- Computing the evidence Pθ(x)

- Computing the posterior Pθ(h | x)

- Sampling from Pθ(x,h) or from Pθ(x)
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Boltzmann Machine (Ackley et al., 1985)

• Energy-based model over binary vectors

• Some variables are observed (v), others are
latent/hidden (h)

• Probability distribution over
(v,h) ∈ {0, 1}N+M :

Pθ(v,h) =
exp(−E (v,h;θ))

Z (θ)

• Energy function, with θ = (R,W ,S , b, c),

E (v,h;θ) = −
[
v> h>

] [ R W /2
W>/2 S

] [
v
h

]
−
[
b> c>

] [v
h

]
= −v>Rv − v>Wh− h>Sh− b>v − c>h
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Boltzmann Machine

• The Boltzmann machine (BM) is a universal approximator of
probability mass functions over discrete variables (Le Roux and
Bengio, 2008)

• Emulates the idea in Hebbian learning: “neurons that fire together
wire together.”

• However, in general,

- Sampling is hard,

- Inference is hard,

- Learning is hard.
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How to Learn a Boltzmann Machine?

• Learning is usually based on maximum likelihood.

• The partition function Z (θ) is intractable: for learning, the gradient
must be approximated:

- contrastive divergence

- pseudo-likelihood

- noise-contrastive estimation

- annealed importance sampling

• Not covered here, but check Goodfellow et al. (2016, Chapter 18).

• In a nutshell, learning a fully general BM is usually very challenging,
so we typically use a particular version.
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Particular Case: Restricted Boltzmann Machines

• Also called harmonium
(Smolensky, 1986)

• A layer of observable variables

• A single layer of latent variables.

• Bipartite graph, no intra-layer connections: R = 0; S = 0.

• The energy function becomes:

E (v,h;θ) = −v>Wh− b>v − c>h

• What is the advantage?
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Restricted Boltzmann Machines

• Unfortunately, the partition function Z (θ) is still intractable

• ... but the conditionals Pθ(h | v) and Pθ(v | h) are now tractable!

- easy to compute!

- easy to sample!

- using Markov-Chain Monte Carlo (MCMC) with Gibbs sampling.

• Why are these easy? Conditional independence (next slide)
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Restricted Boltzmann Machines

• Why are the conditionals tractable?

• Because, without intra-layer connections, h1, . . . , hN are conditionally
independent given v:

Pθ(h | v) =
M∏
j=1

P(hj | v)

where

Pθ(hj = 1 | v) = σ
(
cj + (Wv)j

)
, ∀j = 1, . . . ,M.

• Reciprocally for Pθ(v | h).

• RBMs are relatively easy to train by approximating Z (θ)
(see Goodfellow et al. (2016, Chapter 18)).

• RBMs may be stacked to form deeper models.
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Some RBM’s Friends

(Image from Goodfellow et al. (2016))

(a) Restricted Boltzmann machine (RBM)

(b) Deep belief network (DBN): hybrid directed/undirected GM with
multiple latent layers

(c) Deep Boltzmann machine (DBM): undirected GM with several layers
of latent variables.
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Examples of Deep Generative Models

• Auto-Regressive Networks X

• Restricted Boltzmann Machines X

• Deep Belief Networks

• Deep Boltzmann Machines

• Gaussian-Bernoulli RBMs

• Convolutional Boltzmann Machines

• Sigmoid Belief Nets

• Variational Auto-Encoders

• Generative Adversarial Networks

• Convolutional Generative Networks

• Generative Stochastic Networks
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Next: Differentiable Generator Networks

• Several recent models are based on differentiable generator networks.

• This is a differentiable function G (h;θ) that maps latent variables h
into sample reconstructions x (or distributions Pθ(x | h)).

• This idea underlies

- Variational auto-encoders (VAE)

- Generative adversarial networks (GAN)

• We’ll cover those next.
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Variational Auto-Encoders

• Many latent variable models have:

- intractable evidence P(x)

- intractable posterior P(h | x).

• Variational inference (e.g. mean field approximation) is a technique
used to approximate these quantities.

• Widely used in Bayesian inference, topic models, etc...

• Auto-encoders: effective to learn data representations or codes, i.e.,

x −→ h −→ x̂

• Key idea: combine auto-encoders with variational inference.
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Assumptions

• Henceforth, we assume that:

- the prior Pθ(h) is tractable (e.g.. zero-mean, unit-variance Gaussian)

- the conditional Pθ(x | h) is tractable (e.g. a feed-forward neural
network or an RNN).

• However,

- he evidence Pθ(x) (i.e. marginalizing out h) is still intractable

- computing the posterior Pθ(h | x) is still intractable.

• Next: using variational inference to approximate these computations
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Recap: Shannon’s Entropy

• Let P be a distribution over X. The entropy of P is

H(P) = −
∑
x∈X

P(x) logP(x) = EP(x)
[
− logP(x)

]
• Always non-negative: H(P) ≥ 0

• H(P) = 0 iff P(x) = 1, for some x and P(x′) = 0, for any x′ 6= x.

• Upper bound: H(P) ≤ log |X|

• H(P) = log |X| iff P(x) = 1/|X| (uniform distribution)

• Intuition: H(P) measures how close to uniform the distribution is

• Coding perspective: expected number of bits (using log2) to optimally
encode x ∼ P(x)
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Recap: Kullback-Leibler (KL) Divergence

• Let P and Q be two distributions over X.

KL(P‖Q) =
∑
x

P(x) log
P(x)

Q(x)

= EP(x)
[
− logQ(x)

]
+ EP(x)

[
logP(x)

]
= EP(x)

[
− logQ(x)

]
− H(P)

• Always non-negative: KL(P‖Q) ≥ 0

• KL(P‖Q) = 0 iff P(x) = Q(x), for all x ∈ X

• Not symmetric: in general, KL(P‖Q) 6= KL(Q‖P)

• Intuition: KL(P‖Q) measure how different Q is from P

• Coding perspective: expected number of extra bits needed to encode
x ∼ P(x) using a code that is optimal for Q(x).
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Recap: Entropy and KL Divergence in the Continuous Case
• Let P be a probability density over X. The differential entropy of P is

H(P) = −
∫
X

P(x) logP(x) dx = EP(x)
[
− logP(x)

]
...no longer guaranteed to be non-negative.

• Let P and Q be two probability densities over X.

KL(P‖Q) =

∫
X

P(x) log
P(x)

Q(x)
dx

= EP(x)
[
− logQ(x)

]
+ EP(x)

[
logP(x)

]
= EP(x)

[
− logQ(x)

]
− H(P)

• Also, always non-negative: KL(P‖Q) ≥ 0

• KL(P‖Q) = 0 iff P(x) = Q(x), almost everywhere

• Intuition: KL(P‖Q) still measure how different Q is from P
A. Martins, F. Melo, M. Figueiredo (IST) Lecture 13 DL, IST Fall 2021 29 / 76



Evidence Lower Bound (ELBO)
• ELBO is a central concept in variational inference.

• True posterior and evidence: Pθ(h | x) and Pθ(x)

• For any distribution Q(h),

0 ≥ −KL(Q(h)‖Pθ(h | x))

= EQ(h)[logPθ(h | x)]−

H(Q)︷ ︸︸ ︷
EQ(h)[logQ(h)]

(a)
= EQ(h)[logPθ(x,h)]− EQ(h)[logQ(h)]︸ ︷︷ ︸

ELBO(Q)

− logPθ(x).

where (a) uses Bayes law: logPθ(h | x) = logPθ(x,h)− logPθ(x)

• Moving logPθ(x) to the l.h.s.,

logPθ(x) ≥ ELBO(Q)
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Variational Inference

• Evidence lower bound (ELBO):

logPθ(x) = ELBO(Q) + KL(Q(h)‖Pθ(h | x)) ≥ ELBO(Q).

• Equality achieved for Q(h) = Pθ(h | x), but intractable in general

• Key idea:

1 constrain Q(h) to a chosen tractable family;

2 look for the Q(h) in this family that maximizes the ELBO.

• Since logPθ(x) fixed,

maximizing ELBO(Q) ⇔ minimizing KL(Q(h)‖Pθ(h | x))

• Old roots in calculus of variations (Newton, Bernoulli, Euler,
Lagrange, ...)
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Evidence Lower Bound

• The ELBO can be written in different ways:

ELBO(Q) = EQ(h)[logPθ(x,h)]− EQ(h)[logQ(h)]

= EQ(h)[logPθ(x | h)]− EQ(h)

[
log

Q(h)

Pθ(h)

]
= EQ(h)[logPθ(x | h)]− KL(Q(h)‖Pθ(h)).

• Which values of h is Q(h) encouraged to place its mass on?

- First term: expected likelihood: encourages placing mass on latent
variables h that explain the observed data x.

- Second term: negative KLD between Q(h) and the prior: encourages
staying close to the prior.

• The ELBO mirrors the usual trade-off between likelihood and prior.
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Mean Field Approximation

• Which tractable family to use for Q(h)?

• Mean field approximation (MFA):

Q(h) =
∏
i

Q(hi ).

i.e., model the hi are independent.

• More sophisticated: structured mean field imposes a graphical model
on Q capturing (some) interactions among the hi , but still tractable.
(see the book by Wainwright and Jordan (2008) for details).
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Amortized Variational Inference

• As seen so far, the variational distribution Q(h) has to be optimized
for every example x.

• This can be expensive: requires several gradient/coordinate ascent
iterations per example.

• Alternative: use amortized variational inference!

• Key idea: instead of optimizing Q(h) for every example, use an
encoder with shared parameters φ and define Qφ(h | x).

For each example:

- make a forward pass on the encoder to obtain Qφ(h | x)

- backpropagate through the encoder to update φ.
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Example: Multivariate Bernoulli with Continuous
Latent Variables (Kingma and Welling, 2013)

• Prior: multivariate isotropic Gaussian Pθ(h) = N(h; 0, I )

• Conditional: multivariate Bernoulli

Pθ(x | h) =
D∏
i=1

σ(fi (h;θ))xi (1− σ(fi (h;θ)))1−xi ,

where f (h;θ) is an MLP, with parameters θ and input h

• The true posterior Pθ(h | x) is intractable

• Approximate the posterior with a variational distribution

Qφ(h | x) = N(h;µ(x;φ),σ2(x;φ))

where µ(x;φ) and σ2(x;φ) are MLPs
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Example: Multivariate Bernoulli with Continuous Latent
Variables (Kingma and Welling, 2013)

• This leads to variational auto-encoders:

• ... we’ll come back to this!
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Parameter Gradients

• Recall that:

ELBO(φ;θ) = EQφ(h|x)[logPθ(x,h)− logQφ(h | x)].

• We need to compute gradients with respect to θ and φ.

• Gradient w.r.t. θ, parameters of the generation network:

∇θELBO(φ;θ) = EQφ(h|x)[∇θ logPθ(x,h)]

- Follows from linearity of the expectation.

- This is simple and can be well approximated with Monte Carlo samples.
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Parameter Gradients
• Recall that:

ELBO(φ;θ) = EQφ(h|x)[logPθ(x,h)− logQφ(h | x)].

• Gradient w.r.t. θ, parameters of the inference network:

∇φELBO(φ;θ)

= EQφ(h|x)[(logPθ(x,h)− logQφ(h | x))︸ ︷︷ ︸
“reward” Rθ,φ(h)

∇φ logQφ(h | x)].

(derivation in the next slide)

- Problem: Monte Carlo estimators have high variance due to the left
part!

- Requires variance reduction techniques.

- Resembles REINFORCE, a reinforcement learning algorithm
(Williams, 1992)
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Derivation of the Inference Network Gradient

∇φELBO(φ;θ)

= ∇φEQφ(h|x)[logPθ(x,h)− logQφ(h | x)]

= ∇φ
∑
h

Qφ(h | x) logPθ(x,h)−∇φ
∑
h

Qφ(h | x) logQφ(h | x)

=
∑
h

logPθ(x,h)∇φQφ(h | x)−
∑
h

(1 + logQφ(h | x))∇φQφ(h | x)

=
∑
h

(logPθ(x,h)− logQφ(h | x))∇φQφ(h | x)

= EQφ(h|x)[(logPθ(x,h)− logQφ(h | x)) ∇φ logQφ(h | x)],

where we used the facts:∑
h

∇φQφ(h | x) = ∇φ
∑
h

Qφ(h | x) = ∇φ1 = 0.

∇φQφ(h | x) = Qφ(h | x)∇φ logQφ(h | x).
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• Summing up, the bottleneck is the gradient w.r.t. φ, the parameters
of the inference network

• ... the Monte Carlo approximation has large variance.

• Is there a better strategy?

• Yes: the reparameterization trick.
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Reparameterization Trick (Kingma and Welling, 2013)

• How to draw samples from Qφ(h | x)?

• Trick:

- Use an auxiliary random variable ε with fixed distribution P(ε)

- Sample ε ∼ P(ε), and obtain h as a deterministic function of ε and x

h = gφ(ε,x)

• Consequently, for any function f ,

EQφ(h|x)[f (h)] ≈ 1

N

N∑
i=1

f (gφ(x, ε(i)))

• Gradients w.r.t. φ can be estimated with regular backpropagation
over gφ.
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Reparameterization Trick

• This construction is possible in many cases for continuous latent
variables:

• exponential

• Gaussian

• location-scale families

• log-normal

• etc...

• For discrete latent variables, it is still possible via the Gumbel-softmax
trick (not covered in the course).
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Example: Gaussian

1 Sample ε ∼ N(ε; 0, I )

2 Use inference network gφ with input x to output mean µ(x) and
variance σ2(x)

3 Set h = µ(x) + εσ(x).

4 Thus, h | x ∼ N
(
µ(x), (σ(x))2

)
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Reparameterization Trick
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Variational Auto-Encoders (Kingma and Welling, 2013)

• Decoder computes Pθ(h) and Pθ(x | h)

• Encoder computes Qφ(h | x) = N(h;µφ(x),σ2
φ(x))

• Loss function: ELBO.
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Summing Up: VAEs at Training Time
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Summing Up: VAEs at Test Time
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What is the Latent Variable Representing?

• Nice property of VAE: simultaneously training a parametric encoder in
combination with a generator network forces the model to learn a
predictable coordinate system that the encoder can capture.

• This makes it an excellent manifold learning algorithm.

• Example: the algorithm discovered two independent factors of
variation present in images of faces: angle of rotation and emotional
expression.
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What is the Latent Variable Representing?

From Kingma and Welling (2013).
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What is the Latent Variable Representing?

From Kingma and Welling (2013).
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Issues with VAEs

• Posterior collapse: if the generative part is strong, the model may
learn to ignore the latent variables:

Pθ(x | h) ≈ P(x)

Qφ(h | x) ≈ Pθ(h).

• Can be mitigated with a few tricks:

- Decrease/anneal the weight of KL(Qφ(h | x)‖Pθ(h)) in the ELBO
objective

- Use auxiliary losses

- Combine stochastic and amortized inference.

• In general, reporting both reconstruction loss and the KL term is
needed to be able to tell if the model makes use of the latent
variables.
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Examples of Deep Generative Models

• Auto-Regressive Networks X

• Restricted Boltzmann Machines X

• Deep Belief Networks

• Deep Boltzmann Machines

• Gaussian-Bernoulli RBMs

• Convolutional Boltzmann Machines

• Sigmoid Belief Nets

• Variational Auto-Encoders X

• Generative Adversarial Networks

• Convolutional Generative Networks

• Generative Stochastic Networks
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Why Maximum Likelihood?

• All models discussed aim to maximize the likelihood (evidence) P(x)

• In fact, since this is intractable, they maximize a lower bound (ELBO)

• But if we want to build a generator, is this really the best criterion?

• Maximum likelihood tends to produce blurry images
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Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014)

• Key idea:

- keep the generation network G = {Pθ(h),Pθ(x | h)}

- drop the inference network and use instead a discriminator network
D : X→ {0, 1}

• Formulate the learning problem as a game between two players:

- the generator’s job is to generate data that looks real

- the discriminator’s job is to distinguish between real data and fake data
generated by the generator

• This is like a Turing test: distinguish artificial from real.
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Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014)
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Minimax Game

• Saddle point problem:

min
G

max
D

V (D,G ) = EPdata(x)[logD(x)] + EPθ(h)[log(1− D(G (h)))].

• The optimal discriminator (intractable to compute) is:

D?(x) =
Pdata(x)

Pdata(x) + Pθ(x)
, Pθ(x) =

∫
Pθ(x | h)Pθ(h).

• Given D?(x), the optimal generator G ?(x) minimizes the
Jensen-Shannon divergence between Pdata(x) and Pθ(x):

JS(Pdata(x),Pθ(x)) =
1

2
KL
(
Pdata(x)‖P̄(x)

)
+

1

2
KL
(
Pθ(x)‖P̄(x)

)
,

where P̄(x) = Pdata(x)+Pθ(x)
2 .
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Training GANs

• How to train a GAN?

• Use stochastic gradient descent! Alternate between:

- Stochastic gradients updates of the generator parameters θ

- Stochastic gradients updates of the discriminator D.

• Several variants and schedules have been proposed.

• Caveats:

- no convergence guarantees

- optimization in GANs is often difficult
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Images Generated by GANs

(https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/)
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Mode Collapse

min
G

max
D

V (D,G ) 6= max
D

min
G

V (D,G ).

• G in inner loop: place all mass on most likely point

(From Metz et al. (2016))

• What prevents the generator from always picking the same example?

• The top row finds all the modes, the bottom finds just one mode.
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Mode Collapse

• GANs often seem to collapse to far fewer modes than the model can
represent

• This causes low output diversity.

• How to mitigate mode collapse?

• One strategy: minibatch (Salimans et al., 2016)

- Let the discriminator make a decision by comparing an example to a
whole minibatch of fake/real examples

- Discriminator can now consider diversity.
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Wasserstein GANs (WGANs)

• Instead of optimizing the Jensen-Shannon divergence, optimize
instead:

min
G

max
D

V (D,G ) = Ex∼Pdata(x)[D(x)]− Eh∼Pθ(h)[D(G (h))].

• This is related to the Wasserstein distance (also called Earth mover’s
distance).

• A technical condition is that ∇D is bounded; in practice this is
ensured with gradient clipping.

• This improves stability and mitigates the mode collapse problem.
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Pros and Cons of GANs

Advantages:

• They currently generate the sharpest images

• They are cheap to train (since no statistical inference is required),
and only back-propogation is needed to obtain gradients

Disadvantages:

• GANs are difficult to optimize due to unstable training dynamics.

• No statistical inference can be done with them.
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Still Improving...
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Some Extensions of GANs

• Augmenting GANs with an inference network (Dumoulin et al., 2016;
Donahue et al., 2016)

• Domain adversarial training for domain adaptation (Ganin et al.,
2016)

• Conditional GANs and semi-supervised GANs (Salimans et al., 2016)

• CycleGAN (Zhu et al., 2017): “translate” images from a source
domain X to a target domain Y without paired examples. Use two
generators G : Y→ X and F : X→ Y and introduce a cycle
consistency loss to push F (G (y)) ≈ y and G (F (x)) ≈ x.
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Image-to-Image Translation w/ CycleGAN
(Zhu et al., 2017)

(https://junyanz.github.io/CycleGAN)
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Failure Cases

(https://junyanz.github.io/CycleGAN)
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Evaluation

There is no single compelling way to evaluate a generative model.

• Models with good likelihood can produce bad samples

• Models with good samples can have bad likelihood

• There is no standard way to quantify how good samples are

• For GANs, it is also hard to even estimate the likelihood

• See “A note on the evaluation of generative models,” Theis et al.
(2015), for a good overview.
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Discrete Outputs

To train a GAN, G must be differentiable

But G cannot be differentiable if the output is discrete.

Possible workarounds:

• REINFORCE (Williams, 1992)

• Concrete/Gumbel-softmax distribution (Maddison et al., 2016; Jang
et al., 2016)

• Learn distribution over continuous embeddings, decode to discrete

How does this compare with VAEs?

• VAEs have trouble with discrete latent variables (cannot differentiate
through the inference network)

• GANs have trouble with discrete output variables (cannot differentiate
through the generator network).
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Connections to Reinforcement Learning

We can regard the discriminator loss as a reward signal for the generator.

• GANs interpreted as actor-critic (Pfau and Vinyals, 2016)

• GANs as inverse reinforcement learning (Finn et al., 2016)
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Conclusions

• Generative models are useful to model high-dimensional data

• Latent-variable generative models are appealing since they are more
compact (“minimum description length” principle)

• Often, computing evidence and posterior distributions is intractable
(e.g. Boltzmann machines)

• A common surrogate for maximum likelihood is the evidence lower
bound (ELBO)

• Variational auto-encoders optimize the ELBO with amortized VI

• Their main drawback is posterior collapse

• Generative adversarial networks (GANs) are formulated as a game
between a generator and a discriminator

• They manage to generate sharp outputs, but suffer from mode
collapse and do not return a likelihood score

• Open problem (both VAEs/GANs): how to deal with discrete data?
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Thank you!

Questions?
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Today’s Roadmap

In the previous lectures we have seen different neural architectures, the
potential of large neural models and their applications.

Today we will discuss additional aspects that are important across different
neural architectures, to enhance trust in models. We will focus on
Responsible AI and touch on: model uncertainty, explainability and
fairness.
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Outline

1 Motivation

2 Uncertainty

3 Explainability

4 Fairness and Ethical AI

5 Conclusions
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Quote of the day

“All models are wrong, but some can be useful”
George Box

“. . . if we can trust them”
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Who should trust the model?

Improve
understanding
Anticipate issues 
Train better models
Develop new
algorithms
Deploy safely

Understand
purpose
Increase trust
Informed consent
Correct & safe use
Less bias

Understand impact
Increase trust
Adapt regulations
Monitor and report

Researchers
& Engineers Consumers Regulators 
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Uncertainty in Machine Learning

• Typical setup:
• Training input set XT

• Learned outputs YT

• Neural model M: y = F(x)
• Performance metric(s)

 

 

• Assume:
• Test sample x i , x i ∈ Xtest

• How trustworthy y i is?
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Example in Deep Learning

Oxford-IIIT-Pet-dataset Parkhi et al. (2012)
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Example in Deep Learning: Image recognition

During test time:

• Is it expected for the model to be wrong out-of-domain ?
• Could we have an indication that the model is confused?
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Why is this important?

• Decide if a prediction must be further inspected

• Useful for debugging, retraining, adapting a model

• Some applications are higher risk than others
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Uncertainty in Machine Learning

Let’s see an example:

train sample

For which test point will we have a more confident prediction?
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Uncertainty in Machine Learning

Let’s see an example:

train sample

test input
predicted 

true 

For which test point will we have a more confident prediction?
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Uncertainty Quantification

• How do we estimate uncertainty?

▶ In information theory: → Entropy
(for ŷ = F(x))

• Discrete predictions (classification):
H(p(ŷ |x)) = −

∑
ŷ∈Y p(ŷ |x) log p(ŷ |x)

• Continuous predictions (regression):
H(p(ŷ |x)) = E [− log p(ŷ |x)] = −

∫
y∈Y

p(ŷ |x) log p(ŷ |x)dx
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(for ŷ = F(x))

• Discrete predictions (classification):
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H(p(ŷ |x)) = E [− log p(ŷ |x)] = −
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Uncertainty Quantification

• How do we estimate uncertainty?

▶ Dispersion of a random variable in statistics? → Variance
• We need to obtain a distribution of predictions Ŷ = {ŷ1, ŷ2, . . . , ŷN}

instead of a single point estimate ŷ
• Assume a Gaussian distribution: p(y |ŷ) = N(ŷ , σ2)

▶ How do we obtain such a distribution?
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Variance-based Uncertainty Quantification

How can we obtain a distribution
over ŷ?

x1

x2

x3
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Variance-based Uncertainty Quantification

Bayesian Neural Networks
(BNN)

Apply a prior distribution over
model weights, e.g. a Gaussian:
W ∼ N(0, I ).
We can then infer the model
likelihood p(y |ŷ) = p(y |f W (x));
and compute the posterior over
the weights p(W |X ,Y ).
Then we can define the likelihood
as p(y |f W (x)) = N(f W (x), σ2)

x1

x2

x3
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likelihood p(y |ŷ) = p(y |f W (x));
and compute the posterior over
the weights p(W |X ,Y ).
Then we can define the likelihood
as p(y |f W (x)) = N(f W (x), σ2)

x1

x2

x3

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 15 DL, IST Fall 2021 15 / 76



Variance-based Uncertainty Quantification

Bayesian Neural Networks
(BNN)
Apply a prior distribution over
model weights, e.g. a Gaussian:
W ∼ N(0, I ).
We can then infer the model
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Variance-based Uncertainty Quantification

Monte Carlo Dropout (MCD):

▶ Apply model dropout during
inference.

▶ Run multiple stochastic
forward runs.

▶ We can define the likelihood
as p(y |ŷ) ∼ N(µ(ŷ), σ(ŷ)2)

x1

x2

x3
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Variance-based Uncertainty Quantification

Deep Ensembles (DE):

▶ Obtain multiple model
checkpoints

• Different seeds;
• Different

hyper-parameters/training
steps;

• Bootstrap on data
subsets;

▶ p(y |ŷ) ∼ N(µ(ŷ), σ(ŷ)2)

x1

x2

x3
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Uncertainty Quantification

How do we estimate uncertainty uncertainties?

train sample

test input
predicted 

true 

▶ What uncertainties do we need to estimate?

aleatoric/data 
uncertainty

epistemic/model/knowledge 
uncertainty

total 
uncertainty
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Aleatoric Uncertainty

• Aleatoric uncertainty derives from the inherent randomness of the
data (noise)

• Also called data uncertainty

• Does not depend on model parameters

• Corresponds to the irreducible error → no matter how much more
data we use to train, we cannot remove the uncertainty
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Aleatoric Uncertainty

aleatoric : the latin word alea refers to a dice-like game

Assume two models M1 and M2 that estimate the dice-rolling

outcome p(x |d), for a six-sided dice d.

• M1 has seen a very large number of rolls (infinite)

What is the uncertainty for the predicted outcome x = 5?

• M2 has seen only the following roll outcomes:

{1, 2, 2, 3, 3, 3, 4, 5}
What is the expected uncertainty for the predicted

outcome x = 5?
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More on dice...

What if we apply the same models on these dice?
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Aleatoric Uncertainty in Deep Learning

In object recognition:

Input image Segmented image aleatoric noise

In machine translation:

How did you find this place?

Como encontraste este sítio?

Que achaste deste sítio?

Como encontraste o caminho para este sítio?
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Aleatoric Uncertainty Estimation

What assumptions can we make about noise in the data?

• Homoscedastic noise: constant noise variance
• Does not depend on input
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Aleatoric Uncertainty Estimation

What assumptions can we make about noise in the data?

• Heteroscedastic noise: variable noise variance
• Does depend on input
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Estimating Aleatoric uncertainty

What can we use to estimate aleatoric uncertainty?

• If we have access to the dataset:
We can distil the uncertainty using the entropy-based approach and
conditioning on the model weights
H(p(ŷ |x)) = −

∑
ŷ∈Y p(ŷ |x) log p(ŷ |x) →

→ H(p(ŷ |x ,w)) = −
∑

ŷ∈Y p(ŷ |x ,w) log p(ŷ |x ,w)
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Predicting Aleatoric uncertainty

What can we use to estimate aleatoric uncertainty?

• If we have access to multiple human judgements per segment:

• Assume we can estimate a metric of dispersion of human scores per
instance: e.g. assume the scores follow a Gaussian distribution
y ∼ N(µh, σ

2
h)

• We would like to learn µh as the target quality score and σh as the
target uncertainty score;

• We want to learn to predict a Gaussian as close as possible to
N(µh, σ

2
h) → minimise KL divergence KL(pyh∥pŷ)

• Learning objective: LKL = (µh−µ̂)2+σh
2

2σ̂2 + 1
2 log

σ̂2

σh
2 − 1

2

• If we have access to single human judgement per segment?
• Can we assume unit variance for the true labels?
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Epistemic uncertainty

• Also known as: systematic, knowledge, model uncertainty
• Reflects incomplete knowledge of the model

• Insufficient/complex training data
• Out-of-domain examples

• Epistemic uncertainty corresponds to the reducible error
• if we had more data (knowledge) the model would be more confident

(less wrong).
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Predicting Epistemic Uncertainty

Typically we try to estimate epistemic uncertainty using:

• Variance based methods

• Total uncertainty estimates Uep = Utotal − Ual

▶ Can we use error estimates to improve the estimation of epistemic
uncertainty?

• Calibration: Sometimes the magnitude of uncertainty needs to be
adapted
▶ the uncertainty should be representative of how often/much the
model is wrong

• Direct Uncertainty Prediction: What if we train another model to
predict the error of the main predictor?
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Uncertainty-aware ML
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Outline

1 Motivation

2 Uncertainty

3 Explainability

4 Fairness and Ethical AI

5 Conclusions
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Motivation

Is uncertainty enough to understand and trust model behaviour?
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Motivation

Is uncertainty enough to understand and trust model behaviour?

 

 

Human readable
explanation ?

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 15 DL, IST Fall 2021 31 / 76



Deep Learning Motivation

Remember the high risk deep learning applications:
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Intrinsic Explainability

Some models are more explainable than others

→ Intrinsically explainable

• Decision trees

• Linear models (GAMs,
GLMs)

• Bayesian networks
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feature significance
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Post-hoc Explainability

What about non intrinsically explainable models?

Local explanations

• Model Specific Explanations – Attribution-based methods
• Gradient-based explanations

• Integrated Gradients (Sundararajan et al., 2017)
• SmoothGrad (Smilkov et al., 2017)
• GradCAM (Selvaraju et al., 2016)
• XRAI (Kapishnikov et al., 2019)

• Layer-wise relevance propagation (Bach et al., 2015)
• Attention-based explanations (Vashishth et al., 2019)

• Model Generic Explanations
• Shapley values (SHAP) (Lundberg and Lee, 2017)
• Input perturbation based explanations (LIME) (Ribeiro et al., 2016)
• Counterfactual explanations (MiCE) (Ross et al., 2020)
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Gradient-based explanations

Intuition: Reveal which regions of the input are important for the final
prediction → Use the gradients as an indication of feature importance?
Assume an image classification model with a class activation function Sc
for each class c ∈ C , such that class(x)i = argmax

c∈C
(Sc(x))

• Compute the gradient of Sc with respect to x

• Average gradients from all layers

• Smooth gradients

• Compute integrated gradients
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Integrated Gradients

Intuition:

*Credits: Doug Kelly talk
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Integrated Gradients

Step-by-step application:

Initial image x

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 15 DL, IST Fall 2021 37 / 76



Integrated Gradients

Step-by-step application:

Start from baseline α = 0

Interpolate images for small intervals from α = 0.0 to α = 1.0
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Integrated Gradients

Baseline:
α = 0

α = 0.2

α = 0.6

α = 0.8

α = 1.0Generate interpolated images

α = 0.4

Compute integrated gradient approximation
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Integrated Gradients

Output visualisation & overlay on initial image:
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Attribution in NLP tasks

Can we do this with text?

• Gradient-based attribution
on the word embedding
space

• Discretized integrated
gradients (Sanyal and Ren,
2021)

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 15 DL, IST Fall 2021 40 / 76



Attribution in NLP tasks

Can we do this with text?
• Gradient-based attribution

on the word embedding
space

• Discretized integrated
gradients (Sanyal and Ren,
2021)

This is a great movie .

-0.2 1.0

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 15 DL, IST Fall 2021 40 / 76



Attribution in NLP tasks

Can we do this with text?
• Gradient-based attribution

on the word embedding
space

• Discretized integrated
gradients (Sanyal and Ren,
2021)

great

<PAD>

baseline

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 15 DL, IST Fall 2021 40 / 76



Attribution in NLP tasks

Can we do this with text?
• Gradient-based attribution

on the word embedding
space

• Discretized integrated
gradients (Sanyal and Ren,
2021)

great

<PAD>

baseline

good

decent

okay

smart

home
dull

nice

club

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 15 DL, IST Fall 2021 40 / 76



Attention based explanations

Can attention explain model decisions?

Example: sentiment classification

Natural interpretation: how much each word is weighted when
computing the label?
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Is attention explanation?
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Attention based explanations

Can attention explain model decisions?

Example: sentiment classification

Natural interpretation: how much each word is weighted when
computing the label?
Some concerns:

• Low overlap with gradient methods

• Perturbation of weights doesn’t change the predicted label

• Very large weights do not always correspond to meaningful
explanations
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Post-hoc Explainability

What about non intrinsically explainable models?

Local explanations:

• Model Specific Explanations – Attribution-based methods
• Gradient-based explanations

• Integrated Gradients
• SmoothGrad
• GradCAM
• XRAI

• Layer-wise relevance propagation
• Attention-based explanations (?)

• Model Generic Explanations
• Shapley values (SHAP)
• Perturbation-based explanations (LIME)
• Counterfactual explanations (MiCE)
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Model Generic Explanations

▶ Can be applied to any model

 

 

 

Intuition: Which parts of the input influence the prediction? → Which
parts of the input would change the predicted label if altered?
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LIME: Local Interpretable Model-agnostic Explanations

Assume M predicts label ŷ for input x

• Select regions of x – super-features
• Neighboring groups of pixels
• Words / ngrams

• Generate neighbors of x in the feature
space

• Noise over pixels
• MASKS over words

• Fit a glass-box explainer, E that will
have the same predictions as M
▶ A simple linear model would work

✓ E will explain the behaviour of M in the neighborhood of x
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MiCE: Minimal Contrastive Editing

Assume M predicts label ŷ for input x

▶ What needs to be edited for the prediction to change?

Train an editor E to generate edits over x , such that M predicts ŷ ′

✓ E will explain the behaviour of M using contrastive examples
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▶ What needs to be edited for the prediction to change?

Train an editor E to generate edits over x , such that M predicts ŷ ′
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Which is the best explanation?

What is a good explanation?

• Who is the explanation for?
• Model developer / researcher
• Consumer
• Policy maker / regulator

• What is the target task?
• What is the modality?

Text, Image, Sound, . . .
• Is it regression or

classification ?

Some ground rules do apply:
Explanations should ensure:

• Completeness

• Accuracy

• Meaningfulness

• Consistency
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Outline

1 Motivation

2 Uncertainty

3 Explainability

4 Fairness and Ethical AI

5 Conclusions
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What is a fair/ethical model?

Assume a model:

• can achieve high performance

• can provide a confidence interval

• can provide an interpretable explanation

Is that sufficient?

▶ Can a model be (un)ethical?
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Ethical AI

Can a model be (un)ethical?

→ Based on what ethics?

Applied
ethics

Descriptive
ethics 

(beliefs)

What
Ethics?

Deontological

Virtue ethics

Utilitarianism 
(Consequence)

Deity/
supernatural

normative
ethics
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Ethical AI

What ethical concerns could be relevant?

• Discrimination bias

• Accessibility

• Privacy compromise

• Sustainability / energy consumption
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Definitions of Bias

▶ What is bias in statistics?

Statistical bias is a systematic tendency which causes differences between
results and facts [Wikipedia]

▶ What is bias in ML?

Inductive bias (or learning bias) of an ML algorithm is the set of
assumptions that the learner uses to predict outputs of given inputs that it
has not encountered.
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Typology of Bias

Sample Bias: Also Selection / Representation bias. The training dataset
does not contain fair/balanced/sufficient representation of instances in the
testing environment.
Confounding bias: The distortion of the association between the
independent and dependent variables because a third variable is
independently associated with both.
Association bias: Bias occurring from implicit associations in the training
data: features might co-occur or correlate in the training data, without
this association holding in the testing environment.
Observer bias: Also Confirmation bias. The effect of seeing what we
expect to see in data. Subjective opinions influencing the data processing
(labelling, feature manipulation, sampling)
Exclusion bias: Deleting valuable data or features thought to be
unimportant/redundant.
Discrimination Bias: Also demographic / racial bias. The training
dataset is data skewed in favour of particular demographics.
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Bias in practice

“Easier to teach a machine to see than to understand what it has seen”

Kosinski, 2018

Biased ML models is not a recent concern; ML has its own urban legends

▶ Failed DARPA experiment on
distinguishing US vs Russian tanks

The neural net learned to distinguish:

• high vs low resolution

• forest vs open-ground terrain

• cloudy vs clear sky
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Socially concerning ML bias

The hiring algorithm case:

Where does the bias come from?
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Socially concerning ML bias

The criminal justice case:
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Socially concerning ML bias

The vision case:
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Socially concerning ML bias

The vision case:

No snapchat filters on darker
skin

No soap dispenser activation on
darker skin

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 15 DL, IST Fall 2021 58 / 76



Socially concerning ML bias

The vision case:

Fail to recognise human objects when they have darker skin
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Socially concerning ML bias

The machine translation case:

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 15 DL, IST Fall 2021 59 / 76



Socially concerning ML bias

The machine translation case:

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 15 DL, IST Fall 2021 59 / 76



Socially concerning ML bias

The machine translation case:

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 15 DL, IST Fall 2021 59 / 76



Socially concerning ML bias

The machine translation case:

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 15 DL, IST Fall 2021 59 / 76



Biased Language models

Appropriate analogies: Spurious analogies:
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Implicit Association Test

Group 1 Group 2

woman man

�� ��QUEEN�� ��BROTHER
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Implicit Association Test

Group 1 Group 2

woman man

OR OR

career family

�� ��supermodel�� ��CEO�� ��Wedding planning

▶ Delays in response time over several judgements can reveal
association bias
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Biased Language models

▶ What is an appropriate testing for language models (word embeddings)?

• Assume two groups of words we want
to test:

• G1 = {doctor ,CEO, lawyer}
• G2 =

{nurse, homemaker , supermodel}
• Seed groups:

S1 = {woman, female, ...} -
S2 = {man,male, ...}

• What do we expect the distance to
the seed groups to be?

WEAT dataset (Caliskan et al., 2017)
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How do we correct bias?
▶ Pre-training:

• Use diverse datasets

• Counterfactual data augmentation (CDA)

• Use social context during annotation

Assume we can identify and neutralise a gender dimension g ∈ R�� ��w = w⊥ + wg

▶ Training:

• Loss terms that restrict the gender information at the end of the
vector (Zhao et al., 2018)

• Regularization term that penalizes the projection on the gender
direction (Bordia and Bowman, 2019)

▶ Post-training:

• Push biased representations “away” from the gender dimension
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Is it working?

• Debiasing during training / post-processing typically demands
available seed-words

• Sometimes the bias is just hidden a bit better (Gonen and Goldberg,

2019)
• Some other options:

• Context-aware models: machine translation, coreference resolution
• Gender-tagging: What if we tell the model the correct gender?
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Bias is not the only issue: Accessibility

Who has access to ML applications?

Who are ML applications designed for?

▶ Let’s look at NLP applications:

• Are NLP models covering all languages?

• Are multilingual models equally efficient for all covered languages?

>100Β documents online, large annotated datasets, multiple domains,
multiple language models / NLP applications, large Wiki 

±1M documents online, some annotated datasets, mainly
news, some language models / NLP applications, medium Wiki 

Few documents online, no annotated datasets, few
language models / NLP applications, small Wiki 

No documents online, no language models / NLP
applications 

Few to no documents available offline 

High resource

Medium resource

Low resource

No resource

Endangered
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Bias is not the only issue: Privacy

Privacy in ML: When is it a concern?

• Should we be tracked?

• Should we be tracked if we
consent?

• Is it informed consent? Do we
know how the data will be
used?

• What if we change our mind?
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Profiling, Privacy and Anonymisation

▶ Sensitive Personal Information (SPI): information that can be used
on its own or with other information to identify, contact, or locate a single
person, or to identify an individual in context [wikipedia]

• Full name (if not common)

• Home address

• Email address

• National identification number

• Passport number

• IP address

• Vehicle registration plate number

• Driver’s license number

• Face, fingerprints, or handwriting

• Credit card numbers

• Date of birth

• Birthplace

• Genetic information

• Telephone number

• Login name, screen name,
nickname, or handle

▶ Solution: Anonymise data before using it to develop ML models
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Is anonymisation enough?

SPI can still be uncovered:

• Combination of databases

• Use of non-sensitive data

• Can SPI be learned?

• Is user generated content revealing SPI?

• I everyone equally sensitive?
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Bias is not the only issue: Sustainability

AI does not come for free:

• Human resources

• Materials (hardware)

• Power consumption

▶ CO2 emissions:
• Training BERT ≈ trans-american jet flight
• 100h of GPU computation: 7-30 kg CO2

• Hardware
• Cloud provider
• Location (cheaper in the west)
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Sustainable AI

Can AI be sustainable?

• Consider sustainability at every step
of the AI life cycle

• Keep humans in the loop

• Sustainable AI development
• Are large models always

necessary?
• Distillation of large models to

smaller student models for
inference?

• Share – Adapt – Reuse

• Many providers offset their carbon
emissions

• AI solutions can provide sustainable
solutions for several domains
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Outline

1 Motivation

2 Uncertainty

3 Explainability

4 Fairness and Ethical AI

5 Conclusions
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Pointers to topics not discussed

▶ Uncertainty:

• Active learning using uncertainty criteria

• Calibration

• Direct uncertainty prediction

▶ Explanability

• Global explanations

• Shapley values

• Robustness to adversarial attacks

▶ Ethical AI

• Concerns on intellectual property

• Conversational agents
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Conclusions

Trust the process
Trustworthy model development can be an involved process

Things that can help:

• Confidence-aware models
• Quantify data uncertainty
• Quantify model uncertainty

• Explainable models
• Local explanations
• Global epxlanations

• Ethical models
• Unbiased
• Accessible
• Sustainable
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Thank you!

Questions?
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