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Problem Class 6

Clearly present your approximations and enclose all pertinent calculations. Try to solve the
problems yourself. Follow the instructions of the Lecturer.

Problem 1. Quantum kinetic equations. Consider the Wigner transport equation governing
the (quantum) phase-space density

fe(r,k, t) =

∫
ψ(r + s/2, t)∗ψ(r− s/2, t)eis·kds,

where ψe(r, t) is the electron wave function. The particle momentum k is related to the particle
velocity as v = ~k/me (in what follows, neglect the motion of the ions, and set ni = n0, and
consider the plasma to be three-dimensional (3D)).

a) The kinetic equation can be formally written as (drop the subscript e for notation simplicity)
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where the arrows indicate that the operators act on the left (f(r,k, t)) and on the right (U(r, t)).
Show that, in the semi-classical limit, we obtain the Vlasov equation. Comment on that.

b) We can further show (check the notes available at the webpage), that the Wigner equation can
be recast in an equivalent form as
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∫
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where Ũ ≡ Ũ(q, t) is the Fourier transform of the potential energy and f± = f(r,k ± q/2, t)
are the displaced Wigner functions. Linearize the kinetic equation, and make use of the usual
definition
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to obtain the quantum kinetic dispersion relation,

ε(ω,q) = 1− e2n0
~ε0q2

∫
g0(k− q/2)− g0(k + q/2)

ω − ~k·q
me

dk.

c) Make a change of variables and write the dispersion relation in a more amenable form,

ε(ω,q) = 1− ω2
p

∫
g0(k)(

ω − ~k·q
me

)2
− ~2q4

4m2
e

dk.

d) Consider a quantum degenerate plasma, described by the Fermi distribution in the T → 0
limit,

g0(k) = NΘ(kF − |k|),

where kF is the Fermi wavevector and N is a normalization. Consider that the plasma waves
propagate along the x̂ direction. Show that the projected one-dimensional distribution is now
given by

g0(kx) =
3

4kF

(
1− k2x

k2F

)
.

Comment the crucial difference that you find here in comparison with the equilibrium of clas-
sical plasmas.

e) Let us come back to velocity variables, v = ~kx/me and write the dispersion as

ε(ω, q) = 1−
3ω2

p

4vF

∫ vF

−vF

1− v2

v2F

(ω − vq)2 + ~2q4/4m2
e

dv.

Show that, in the long-wavelength limit v � ωp/k, the quantum Langmuir (plasmon) dispersion
relation reads
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,

where we have used that 〈v2〉 = v2F /5. If you identify the latter with v2th in classical plasmas,
you can identify a purely quantum contribution to the dispersion relation.



Problem 2. Quantum dark solitons. Another way to describe quantum plasmas is based on
a Schrödinger-Poisson model (see the lecture notes). The basic equations governing the collective
wavefuction ψ(x, t) of a one-dimensional plasma are given by

i~
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∂2ψ
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,

where EF = ~2(3πn0)2/3/me is the Fermi energy. We will look for soliton-like solutions, propa-
gating with a constante velocity v0.

a) Parametrize your wavefunction as ψ(x, t) = U(ξ)eik0x−iω0t, where ξ = x− v0t is the Lagrange
coordinate. Separe the equation into its real and imaginary part to show that solutions are
only possible if

~ω0 = EF −
1

2
mev

2
0.

Comment on the physical meaning of the quantity ~ω0 and interpret the previous result.

b) Show that the equation governing the envelope U(ξ) and the electrostatic potential φ(ξ) are
given by

~2

2m
U ′′ + eφU + EFU −

EF

n20
|U |4U = 0,

φ′′ =
e

ε0

(
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)
,

where A′′ =
∂2A

∂ξ2
for any relevant physical quantity A.

c) Obtain the dimensionless form of the equation, by defining ξ̃ ≡ ξ/λF , φ̃ ≡ eφ/EF and Ũ ≡
U/
√
n0. Write a small Mathematica code to solve the equations above numerically with the

boundary conditions Ũ(±∞) = 1 (i.e. the plasma is unperturbed away from the soliton), and
Ũ ′(0) = 0 (of course, similar boundary conditions should be applied to φ̃). You should obtain
something like this,
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where the blue line is the electron density |Ũ |2 and the red line is the electrostatic potential φ̃.


