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Today’s Roadmap

Last lecture we talked about sequence tagging and sequence generation.
Today we’ll talk about sequence-to-sequence models.

• Machine translation

• Sequence vector representation

• Encoder-decoder architecture

• Sequence matrix representation

• Attention mechanism

• Encoder-decoder with attention
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Sequence-to-Sequence

Sequence-to-sequence models map a source sequence (of arbitrary length)
into a target sequence (also of arbitrary length)

This is different from sequence tagging, where the two sequences are of
the same length
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Example: Machine Translation

Goal: translate a source sentence x in one language into a target
sentence y in another language.

Example (Portuguese to English):

x : “A ilha de Utopia tem 200 milhas de diâmetro na parte central.”

↓

y : “The island of Utopia is two hundred miles across in the middle part.”
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Outline

1 Statistical Machine Translation

2 Neural Machine Translation

Encoder-Decoder Architecture

Encoder-Decoder with Attention

3 Conclusions
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1950s: Early Machine Translation

(Source: https://youtu.be/K-HfpsHPmvw)

• MT research began in early 1950s

• Mostly Russian-English (motivated by the Cold War!)

• Systems were mostly rule-based, using a bilingual dictionary
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Noisy Channel Model (Shannon and Weaver, 1949)

“When I look at an article in Russian, I say:
‘This is really written in English, but it has been
coded in some strange symbols. I will now
proceed to decode.’ ”
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A very simple model: builds a generative story that works “backwards”
(flips source and target)

Yet, the dominant paradigm in MT for several decades (until 2014)

In 2014: neural machine translation (later)
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1990s-2010s: Statistical Machine Translation

Goal: find the best English sentence y , given Russian sentence x

ŷ = arg max
y

P(y | x)

Key idea: use Bayes’ rule to break this down into two components:

ŷ = arg max
y

P(x | y) P(y)

• Translation model: models how words/phrases are translated (learnt
from parallel data)

• Language model: models how to generate fluent English (learn from
monolingual data)
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How to Learn the Language Model?

• Need large amounts of monolingual data
(easy to get for most languages).

• How to learn a language model from these data?

• We covered language models in previous lectures:

- Markov models (maybe with smoothing)

- Neural language models

- ...

• Pick your favorite!
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How to Learn the Translation Model?

Need large amounts of parallel data!

(e.g., pairs of human translated Russian/English sentences.)
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Rosetta Stone

• (Re-)discovered in 1799 near
Alexandria

• Parallel corpora: ancient
Egyptian, demotic Egyptian,
ancient Greek
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Europarl

• Proceedings from the European parliament sessions, translated into
all EU official languages

• Around 1M parallel sentences for some language pairs

• Other corpora: Hansard, MultiUN, News Commentary, Wikipedia,
OpenSubtitles, Paracrawl, ...
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1990s: IBM Models for Statistical MT

• How to learn the translation model P(x | y)?

• Assume we have enough parallel training data.

• Break it down further: consider instead

P(x , a | y),

where a are word alignments, i.e., word-level correspondences
between Russian sentence x and English sentence y

• Word alignments are generally a latent/missing variable at training
time, and need to be marginalized over at test time,

P(x | y) =
∑
a

P(x , a | y),
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Word Alignments

Example for English-French:

Some words may be unaligned (no counterpart in the other language)!
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Word Alignments

Alignment can be one-to-many (word fertility):

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 10 DL, IST Fall 2021 16 / 69



Word Alignments

Alignment can be many-to-one:
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Word Alignments

Alignment can be many-to-many (phrase-level): phrase-based MT:
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1990s: IBM Models for Statistical MT

• How to learn the translation model P(x | y)?

• ...assuming we have enough parallel training data.

• Break it down further: consider instead

P(x , a | y).

• Learn P(x , a | y) as a combination of several factors:

- Probability of particular words aligning (co-occurrence, relative
position, etc.)

- Probability of words having a particular fertility

- ...

• This leads to IBM models 1, 2, 3, 4, ...

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 10 DL, IST Fall 2021 19 / 69



1990s: IBM Models for Statistical MT

• How to learn the translation model P(x | y)?

• ...assuming we have enough parallel training data.

• Break it down further: consider instead

P(x , a | y).

• Learn P(x , a | y) as a combination of several factors:

- Probability of particular words aligning (co-occurrence, relative
position, etc.)

- Probability of words having a particular fertility

- ...

• This leads to IBM models 1, 2, 3, 4, ...

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 10 DL, IST Fall 2021 19 / 69



1990s: IBM Models for Statistical MT

• How to learn the translation model P(x | y)?

• ...assuming we have enough parallel training data.

• Break it down further: consider instead

P(x , a | y).

• Learn P(x , a | y) as a combination of several factors:

- Probability of particular words aligning (co-occurrence, relative
position, etc.)

- Probability of words having a particular fertility

- ...

• This leads to IBM models 1, 2, 3, 4, ...

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 10 DL, IST Fall 2021 19 / 69



1990s: IBM Models for Statistical MT

• How to learn the translation model P(x | y)?

• ...assuming we have enough parallel training data.

• Break it down further: consider instead

P(x , a | y).

• Learn P(x , a | y) as a combination of several factors:

- Probability of particular words aligning (co-occurrence, relative
position, etc.)

- Probability of words having a particular fertility

- ...

• This leads to IBM models 1, 2, 3, 4, ...

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 10 DL, IST Fall 2021 19 / 69



1990s: IBM Models for Statistical MT

• To search the best translation, we need to solve

ŷ = arg max
y

∑
a

P(x , a| y)P(y),

combining the translation and language models.

• Enumerating all possible hypothesis and alignments is intractable.

• Typical approach: heuristic search to gradually build the translation,
discarding hypotheses that are too low probability.
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Searching for the Best Translation

(Slide credit: https://web.stanford.edu/class/cs224n/lectures/lecture10.pdf)
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Summarizing: Statistical Machine Translation

We only saw the tip of the iceberg: SMT is (was?) a huge research field.

• The best systems are extremely complex

• It’s a big pipeline with many separately-designed subcomponents
(translation and language model are only two examples)

• Lots of feature engineering

• System design is very language-dependent

• Requires compiling and maintaining resources (e.g., phrase tables)

• Models are disk/memory hungry

• Lots of human effort to maintain.
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2014: Neural Machine Translation
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Outline

1 Statistical Machine Translation

2 Neural Machine Translation

Encoder-Decoder Architecture

Encoder-Decoder with Attention

3 Conclusions
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What is Neural Machine Translation (NMT)?

• NMT = MT with a single neural network

• End-to-end training with parallel data (no more complex pipelines!)

• The underlying architecture is an encoder-decoder (also called a
sequence-to-sequence model)

• In fact, NMT is also statistical; however, historically, “statistical MT”
refers to non-neural models, and NMT to NN-based models.
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Recap: Recurrent Neural Networks

Lecture 9 covered RNNs and showed they can have several uses...
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Recap: RNNs for Pooled Classification

(Slide credit: Ollion & Grisel)
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Recap: Auto-Regressive RNNs for Sequence Generation
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Sequence-to-Sequence Learning
(Cho et al., 2014; Sutskever et al., 2014)

• Can we put the two things together?

• Idea:

1 Encoder RNN encodes source sentence, generating a vector state

2 Decoder RNN generates target sentence conditioned on vector state.
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Encode a Sequence as a Vector

(Slide credit: Chris Dyer)

What is a vector representation of a sequence x?

c = RNN(x)

What is the probability of a sequence y | x?

y | x ∼ RNNLM(c)
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Encoder-Decoder Architecture

(Slide credit: Chris Dyer)
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Encoder-Decoder Architecture

Another way of depicting it (from Sutskever et al. (2014)):
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Some Problems

• If the source sentence is long, the encoder may forget the initial words
and the translation will be degraded

- Poor man’s solution: reverse the source sentence.

• The decoder does greedy search—this leads to error propagation

- Solution: beam search.
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Beam Search

Ideally we want to find the target sentence y that maximizes

ŷ = arg max
y

P(y | x) = arg max
y1,...,yL

P(y | x) =
L∏

i=1

P(yi | y1:i−1, x)

Enumerating all y is intractable!

Beam Search:

• approximate search strategy

• on each step of the decoder, keep track of the k most probable partial
translations; discard the rest

• k is the beam size

• if k = 1, we recover greedy search.
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Beam Search

(Source: https://web.stanford.edu/class/cs224n/lectures/lecture10.pdf)
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Beam Search

• A little better than greedy search, but still greedy

• Runtime linear as a function of beam size k: trade-off speed/accuracy

• In practice: beam sizes ∼ 4–12
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Some Additional Tricks

From Sutskever et al. (2014):

• Deep LSTMs

• Reversing the source
sentence

At run time:

• Beam search

• Ensembling: combine N independently trained models and obtaining
a “consensus” (always helps!)
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End-to-End Neural Machine Translation

• Previous statistical machine translation models were complicated
pipelines (word alignments → phrase table extraction → language
model → decoding a phrase lattice)

• As an alternative, can do end-to-end NMT using a simple
encoder-decoder

• Doesn’t quite work yet, but gets close to top performance
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Caption Generation
Works for image inputs too!

(Slide credit: Chris Dyer)
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Progress in Machine Translation

Slide credit: Rico Sennrich
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NMT: A Success Story

• Neural MT went from a fringe research activity in 2014 to the leading
standard method in 2016

- 2014: First seq2seq paper published

- 2016: Google Translate switches from SMT to NMT

• This is amazing!

• SMT systems, built by hundreds of engineers over many years,
outperformed by NMT trained by a handful of engineers in a few
months.
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So Is Machine Translation Solved?

No. Many difficulties remain:

• Out-of-vocabulary words

• Domain mismatch between train and test data

• Low-resource language pairs

• Maintaining context over longer text (coming next!)
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Limitations

A possible conceptual problem:

• Sentences have unbounded lengths

• Vectors have finite capacity

“You can’t cram the meaning of a whole %&$# sen-
tence into a single $&# vector!” (Ray Mooney)

A possible practical problem:

• Distance between “translations” and their sources are distant—can
LSTMs learn this?
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Outline

1 Statistical Machine Translation

2 Neural Machine Translation

Encoder-Decoder Architecture

Encoder-Decoder with Attention

3 Conclusions

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 10 DL, IST Fall 2021 45 / 69



Encode Sentences as Matrices, Not Vectors

Problem with the fixed-size vector model:

• Sentences are of different sizes but vectors are of the same size

• Bottleneck problem: a single vector needs to represent the full source
sentence!

Solution: use matrices instead!

• Fixed number of rows, but number of columns depends on the
number of words

• Then, before generating each word in the decoder, use an attention
mechanism to condition on the relevant source words only
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How to Encode a Sentence as a Matrix?

First shot: define the sentence words’ vectors as the columns

(Image credit: Chris Dyer)

• Not very effective, since the word vectors carry no contextual
information
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How to Encode a Sentence as a Matrix?

Other strategies:

• Convolutional neural networks (Kalchbrenner et al., 2014): can
capture context

• Typical choice: bidirectional LSTMs (Bahdanau et al., 2015)

• Later: Transformer networks (Vaswani et al., 2017).
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Bidirectional LSTM Encoder

(Slide credit: Chris Dyer)
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Generation from Matrices

• We now have a matrix F representing the input.

• How to generate from it?

• Answer: use attention! (Bahdanau et al., 2015)

• Attention is the neural counterpart of word alignments.

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 10 DL, IST Fall 2021 50 / 69



Generation from Matrices with Attention

• Generate the output sentence word by word using an RNN

• At each output position t, the RNN receives two inputs:

- a fixed-size vector embedding of the previous output symbol yt−1

- a fixed-size vector encoding a “view” of the input matrix F , via a
weighted sum of its columns (i.e., words): Fat

• The weighting of the input columns at each time-step (at) is called
the attention distribution.
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Attention Mechanism (Bahdanau et al., 2015)

Let s1, s2, . . . be the states produced by the decoder RNN

When predicting the t-th target word:

1 Compute “similarity” with each of the source words:

zt,i = v · g(Whi + Ust−1 + b), for i = 1, ..., L

where hi is the ith column of F (representation of the ith source
word), and v , W , U , b are parameters of the model

2 Form vector zt = (zt,1, . . . , zt,i , . . . , zt,L) and compute attention
at = softmax(zt)

3 Use attention to compute input conditioning state ct = Fat

4 Update RNN state st based on st−1, yt−1, ct

5 Predict yt ∼ p(yt | st)
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Encoder-Decoder with Attention

(Slide credit: Chris Dyer)
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Putting It All Together

obtain input matrix F with a bidirectional LSTM
t = 0, y0 = start (the start symbol)
s0 = w (learned initial state)
repeat
t = t + 1
zt = v · g(WF + Ust−1 + b)
compute attention at = softmax(zt)
compute input conditioning state ct = Fat
st = RNN(st−1, [E (yt−1), ct ])
yt |y<t , x ∼ softmax(Pst + b)

until yt 6= stop
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Attention Mechanisms

• Attention is closely related to “pooling” operations in convnets (and
other architectures)

• Attention in MT plays a similar role as alignment, but leads to “soft”
alignment instead of “hard” alignment

• Bahdanau et al. (2015)’s model has no bias in favor of diagonals,
short jumps, fertility, etc.

• Some recent work adds some “structural” biases (Luong et al., 2015;
Cohn et al., 2016)

• Other works constrains the amount of attention each word can
receive (based on its fertility): Malaviya et al. (2018).
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Attention is Great!

• Attention significantly improves NMT performance!

• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem (by allowing the decoder to
look directly at source)

• Attention helps with vanishing gradient problem (provides shortcut to
faraway states)

• Attention provides some interpretability (we can see what the decoder
was focusing on)

• This is good because we never explicitly trained a word aligner; the
network learns it by itself!
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Attention Map
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Example: Machine Translation
Some positive examples where NMT has impressive performance:

(From Wu et al. (2016))
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Example: Machine Translation

... But also some negative examples:

• Dropping source words (lack of attention)

• Repeated source words (too much attention)

Source: 1922 in Wien geboren, studierte Mang während und nach dem Zweiten
Weltkrieg Architektur an der Technischen Hochschule in Wien bei
Friedrich Lehmann.

Human: Born in Vienna in 1922, Meng studied architecture at the Technical Uni-
versity in Vienna under Friedrich Lehmann during and after the second
World War.

NMT: *Born in Vienna in 1922, Mang studied architecture at the Technical
College in Vienna with Friedrich Lehmann.

Source: Es ist schon komisch, wie dies immer wieder zu dieser Jahreszeit auf-
taucht.

Human: It’s funny how this always comes up at this time of year.
NMT: *It’s funny how this time to come back to this time of year.
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Example: Machine Translation

... And an example where neural MT failed miserably:

(Credit: Barry Haddow)
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Example: Caption Generation

Attention over images:

(Slide credit to Yoshua Bengio)
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A More Extreme Example...

(Slide credit to Dhruv Batra)
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Attention and Memories

Attention is used in several problems, sometimes under different names:

• image caption generation (Xu et al., 2015)

• speech recognition (Chorowski et al., 2015)

• memory networks for reading comprehension (Sukhbaatar et al., 2015;
Hermann et al., 2015)

• neural Turing machines and other “differentiable computers” (Graves
et al., 2014; Grefenstette et al., 2015)
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Other Attentions

• Can we have more interpretable attention? Closer to hard alignments?

• Can we upper bound how much attention a word receives? This may
prevent a common problem in neural MT, repetitions

• Sparse attention via sparsemax (Martins and Astudillo, 2016)

• Constrained attention with constrained softmax/sparsemax (Malaviya
et al., 2018)
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Outline

1 Statistical Machine Translation

2 Neural Machine Translation

Encoder-Decoder Architecture

Encoder-Decoder with Attention

3 Conclusions
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Conclusions

• Machine translation has been a key problem in AI since the 1950s

• Neural machine translation with sequence-to-sequence models was a
breakthrough

• Representing a full sentence with a single vector is a bottleneck

• Attention mechanisms allow focusing on different parts of the input
and solve the bottleneck problem

• Other applications: speech recognition, image captioning, etc.
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Thank you!

Questions?
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