
Advanced Plasma Physics
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Problem Class 2

[Solutions]

Clearly present your approximations and enclose all pertinent calculations. Try to solve the
problems yourself. Follow the instructions of the Lecturer.

Problem 1. Beam-plasma instability. Consider a cold, homogeneous plasma composed by
ions and electrons, where the ions are at rest and the electrons are streaming with velocity v0 =
v0ex. Consider electrostatic perturbations only.

a) Discuss the form of the equilibrium functions g0,e(v) and g0,i(v) and show that the dielectric
function for this problem reads

ε(k, ω) = 1−
ω2
pi

ω2
−

ω2
pe

(ω − ω0)
2 , (1)

with ω0 = kv0 being the streaming frequency.

From the linearized version of the Vlasov equation, we can show that the dieletric function
reads,

ε(k, ω) = 1 +
∑
α

ω2
pα

k

∫
g′0(v)

ω − kv
dv = 1−

∑
α

ω2
pα

∫
g0(v)

(ω − kv)2
dv,

with the last term achieved via an integration by parts. Now, for the situation at hands,
we should consider the following equilibria:

g0,i(v) = δ(v), g0,e(v) = δ(v − v0).

By plugging in the dielectric function, the integration over the Dirac-delta functions easily
yields the result we want.

b) The computation of the dispersion relation involves a fourth-order polynomial, for which we
may expect four real roots. Plot ε(k, ω) and observe that it only contains two real roots for
ω0 < ωc, where ωc is a certain critical value. Discuss with your colleagues how this relates to
the onset of a dynamical instability in the plasma and determine the value of ωc.



We start by plotting the dielectric function as a function of ω for distinct values of ω0.
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As we can observe, for sufficiently high values of ω0 (left panel), the dielectric function
contains four real roots (the system is stable). On the contrary, for smaller values of
ω0 (right panel), the dielectric function contains only two real roots. As such, the extra
missing roots must be complex (the system is unstable). The critical points separating the
two situations occurs at a critical streaming frequency ω0 = ωc, which may determine by
imposing the following condition,

∂ε

∂ω

∣∣∣∣
ω=ωc

= 0 ⇔ −
ω2
pi

ω2
pe

=
ω3
c

(ωc − ω0)
3 ⇔ ωc =

(me/mi)
1/3

1 + (me/mi)
1/3

ω0 '
(
me

mi

)1/3

ω0.

c) Show that the instability terminates at the cut-off wavevector kc given by

kc '
ωpe
v0

(
1 +

1

2

(
me

mi

)1/3
)
.

What happens for modes k > kc?

The answer to this question comes directly from the previous point. We now just need to
evaluate for which k point the dielectric function touches zero at the critical point, i.e.

ε(kc, ωc) = 0 ⇔ 1 =
ω2
pi

ω2
c

+
ω2
pe

(ωc − ω0)
2 .

Making use of the result of the previous point, we get

kc =
ωpe
v0

[
1 +

(
me

mi

)1/3
]1/2

' ωpe
v0

[
1 +

1

2

(
me

mi

)1/3
]
.

d) Its is expected that the instability driven in the ion motion happens at a much slower scale than
that of the streaming mode, i.e. ω � ω0 (why?). So, we may look for the most unstable mode,
kmax, which maximizes the imaginary part of the frequency (ωi,max ≡ max(ωi(k)) = ωi(kmax)).
Expand Eq. (1) and show that

ωi,max '
√
3

24/3

(
me

mi

)1/3

ωpe.



The most unstable mode k is the one that is resonant with the electrons in the beam,
which oscillate at the plasma frequency, kv0 ' ωpe. However, the frequency of this mode
also involves the motion of the ion, so the resonant (most unstable mode) should satisfy
kv0 = ωpe � ω ∼ ωpi. As such, we expand the kinetic dispersion relation in powers of
ζ ≡ ω/ωpe

ε(ωpe/v0, ω) = 0 ⇔ 1 =
ω2
pi

ω2
+

1

(ζ − 1)2
⇔ 1 '

ω2
pi

ω2
+ 1− 2ζ.

Rearranging, we may write 2ω3 = −ω2
piωpe, which leads to

ω =

(
−1,−

√
3

2
i,

√
3

2
i

)
1

21/3
(
ω2
piωpe

)1/3
.

The last root is imaginary and positive, which is associated with the growth rate of the
dynamical instability under investigation. Making use of the relation ωpi/ωpe = (me/mi)

1/2,
we finally arrive at the correct result.

e) With the help of Mathematica, solve the kinetic dispersion relation numerically and obtain
the ωr(k) and ωi(k) for a certain value of ωpi/ωpe (or, equivalently, for a certain mass ration
mi/me). Identify the features that you estimated analytically in the previous points. Discuss
the results with your colleagues.
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The plot depicted above represents the numerical solutions ε(k, ω) = 0, obtained with the
help of Mathematica for the illustrative situation ωpi = 0.1ωpe. The imaginary part (blue
line) agrees with the analytical estimates, as it indicates that the instability terminates at
certain cut-off wavevector kc. It also depicts a maximum value near the resonant mode
kmax ' ωpe/v0, as argued in our estimations. Interestingly, we observe a bifurcation in the
real part of the frequency (red line): in the stable regions, two modes exist (a fast e and
a slow one), while in the unstable region (k < kc), both modes coalesce. Physically, this
means that both fast and slow processes participate in the development of the instability,
so they grow together as a whole. Mathematically, this is a mere consequence of the fact
that, in conservative systems, complex roots appear in the form of conjugated pairs. This is
a typical feature in dynamical instabilities, going well beyond the scope of plasma physics.



Problem 2. The Krook collision integral. Assume that your plasma is sufficiently dense such
that collisions start to become important. A way to take them into account is by adding a collision
integral within the relaxation-time (Krook) approximation to the RHS of the Vlasov equation(

∂

∂t
+ v ·∇

)
fe +

F

me
·∇vfe = −ν (fe − f0,e) ,

where f0,e(x,v, t) is the equilibrium distribution function, as usual. We neglect the effect of the
ions, which are considered to be at rest.

a) Show that, at first order in fe − f0,e, we may write

fe ≈ f0,e −
1

ν

(
v ·∇f0 +

F

me
·∇vf0

)
.

By trying to write fe explicitly, we get

fe = f0,e −
1

ν

(
∂fe
∂t

+ v ·∇fe +
F

me
·∇vfe

)
.

Keeping things up to first order in fe − f0,e means that the RHS of the equation must
contain f0,e terms only. Assuming f0 ≡ f0,e to describe equilibrium processes, the partial
derivative in time rules out, therefore leading to stated result.

b) Consider that a constant electric field E is applied to a homogeneous, unmagnetized plasma.
Use the previous result to derive Ohm’s law,

Je = σeE (2)

where σe = e2n0/νme is the electron conductivity and n0 is the plasma density. If the calcula-
tions were repeated in the presence of a transverse magnetic field (B ⊥ E), what kind of effect
would Eq. (2) be describing (argue without calculations)?

Applying the definition, we have that Je = −e〈nev〉 = −e
∫
fevdv. As such, we may write

Je = −e
∫ [

f0,e −
1

ν

(
v ·∇f0 +

F

me
·∇vf0

)]
vdv.

The first term vanishes, as the product f0(v)v is an odd function. The same for the second
term, considering the plasma to be homogeneous at equilibrium. Therefore,

Je = −
e2

νme

∫
(E ·∇vf0)vdv

− e2

νme

∫
(v ·∇vf0) dv E ≡ σeE,

where we have used the fact that E = E(r, t) (i.e. the electric field is not a function of the
velocity). Finally, integrating by parts, and making use of the definition f0(v) = n0g0(v),
we obtain the expression for the electric conductivity as stated. If the calculations were



performed in the presence of an external magnetic field, σe would be given by a tensor
quantity. The off-diagonal part of the conductivity would thus relate to the Hall conductivity
of the electrons in the plasma.

c) Consider now the case of particle transport in such a collisional plasma. For that, neglect
the electric field and assume that a temperature gradient ∇T is present at the terminal of the
plasma. You may expect that the system is no longer homogenous (think about the microscopic
meaning of “temperature gradient”). Show that the particle current J = Je/e is given by Fick’s
Law,

J = −κ∇T, κ =
2n0
3νme

CV ,

where κ is the heat conductivity and CV = ∂〈E〉/∂T is the specific heat.

In this case, we make use of the particle current J = 〈nev〉 =
∫
fevdv. In the absence of

external fields, the only term that survives is the last term

J =

∫ (
−1

ν
v ·∇f0vdv

)
.

= −1

ν

∫ (
v
∂f0
∂T
· vdv

)
∇T.

= − 2

νme

∫ (
1

2
mev

2∂f0
∂T

dv

)
∇T

= − 2

3νme

∫ (
1

2
mev

2∂f0
∂T

dv

)
∇T.

In the last step, we have used the isotropy in space to convert the integral along the direction
of v as 1/3 of the integral along z, for example. Since v does not depend on T (f0, however,
does), we may write

J = − 2n0
3νme

∂

∂T

(∫
1

2
mev

2g0dv

)
︸ ︷︷ ︸

〈E〉

∇T.

The integral is nothing but the average kinetic (internal) energy of the system, and thus
∂T 〈E〉 ≡ CV is the final contribution to the coefficient.


