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Today’s Roadmap

Today we’ll cover neural sequential models:

• Recurrent neural networks.

• Backpropagation through time.

• Neural language models.

• The vanishing gradient problem.

• Gated units: LSTMs and GRUs.

• Bidirectional LSTMs.

• Example: ELMO representations.

• From sequences to trees: recursive neural networks.

• Other deep auto-regressive models: PixelRNNs.
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Recurrent Neural Networks

Much interesting data is sequential in nature: words in sentences, DNA
sequences, stock market returns, samples of sound signals, ...

How to deal with arbitrarily long sequences?
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Feed-forward vs Recurrent Networks

• Feed-forward neural networks:

h = g(Vx + c)

ŷ = Wh + b

• Recurrent neural networks (Elman, 1990):

ht = g(Vxt + Uht−1 + c)

ŷt = Wht + b
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Unrolling the Graph
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How do We Train the RNN Parameters?

• The unrolled graph is a well-formed (directed and acyclic)
computation graph—we can use gradient backpropagation as usual

• Parameters are tied/shared accross “time”

• Derivatives are aggregated across time steps

• This instantiation is called backpropagation through time (BPTT).

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 9 DL, IST Fall 2021 7 / 79



Parameter Tying

∂L

∂U
=

4∑
t=1

∂ht

∂U
∂L

∂ht

• Same idea as when learning the filters in convolutional neural networks
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What Can RNNs Be Used For?

We’ll see three applications of RNNs:

1 Sequence generation: generates symbols sequentially with an
auto-regressive model (e.g. language modeling)

2 Sequence tagging: takes a sequence as input, and returns a label for
every element in the sequence (e.g., part of speech–POS–tagging)

3 Pooled classification: takes a sequence as input, and returns a
single label by pooling the RNN states.
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Recap: Full History Model

P(start, y1, y2, . . . , yL, stop) =
L+1∏
t=1

P(yt |y0, . . . , yt−1)

• The generation of each word depends on all the previous words

• Huge expressive power!

• But: too many parameters to estimate! (how many?)

• Cannot generalize well, specially for long sequences
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Can We Have Unlimited Memory?

Markov models avoid the full history by considering a limited memory

Alternative: consider all the history, but compress it into a vector!

RNNs do this!
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Auto-Regressive Models

Key ideas:

• Feed the previous output as input to the current step:

xt = yt−1

• Maintain a state vector ht which is a function of the previous state
vector and the current input: this state will compress all the history!

ht = g(V xt + Uht−1 + c)

• Compute next output probability:

P(yt |y0, . . . , yt−1) = softmax(Wht + b)

Let’s see each of these steps in detail
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Language Modeling: Large Softmax

• To generate text, each yt is a word in the vocabulary

• Typically, large vocabulary; e.g., |V | = 100, 000

zt = Wht + b

p(yt = i) =
exp((zt)i )∑
j exp((zt)j)

=
(
softmax(z)

)
i
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Language Modeling: Auto-Regression

P(y1, . . . , yL) = P(y1)× P(y2 | y1)× . . .× P(yL | y1, . . . , yL−1)

= softmax(Wh1 + b)× softmax(Wh2 + b)× . . .
× softmax(WhL + b)
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Three Problems for Sequence Generating RNNs

Algorithms:

• Sampling a sequence from the probability distribution defined by the
RNN

• Obtaining the most probable sequence

• Training the RNN.
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Sampling a Sequence

This is easy!

• Compute h1 from x1 = START

• Sample y1 ∼ softmax(Wh1 + b)

• Compute h2 from h1 and x2 = y1

• Sample y2 ∼ softmax(Wh2 + b)

• ...and so on
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Obtaining the Most Probable Sequence

Unfortunately, this is hard!

• It would require obtaining the y1, y2, . . . that jointly maximize the
product softmax(Wh1 + b)× softmax(Wh2 + b)× . . .

• Note that picking the best yt greedily at each time step doesn’t
guarantee the best sequence

• This is rarely needed in language models. But it is important in
conditional language modelling

• More later, when discussing sequence-to-sequence models
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Training the RNN

• Sequence-generating RNNs are typically trained with maximum
likelihood estimation

• In other words, they are trained to minimize the log-loss
(cross-entropy):

L(Θ, y1:L) = − 1

L + 1

L+1∑
t=1

logPΘ(yt | y0, . . . , yt−1)

• This is equivalent to minimizing perplexity exp(L(Θ, y1:L))

• Intuition: − logPΘ(yt | y0, . . . , yt−1)

measures how “perplexed” (or “surprised”) the model is when the
t-th word is revealed
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Training the RNN

• Unlike Markov (n-gram) models, RNNs never forget!

• However, we will see they might have trouble learning to use their
memories (more soon...)
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Teacher Forcing and Exposure Bias

Note that conditioning is on the true history, not on the model’s
predictions! This is known as teacher forcing.

Teacher forcing cause exposure bias at run time: the model will have
trouble recovering from mistakes early on, since it generates histories that
it has never observed before.

How to improve this is a current area of research!
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Character-Level Language Models

We can also have an RNN over characters instead of words!

Advantage: can generate any combination of characters, not just words in
a closed vocabulary.

Disadvantage: need to remember further away in history!
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A Character-Level RNN Generating Fake Shakespeare

PANDARUS: Alas, I think he shall be come approached and the day When little
srain would be attain’d into being never fed, And who is but a chain and subjects of
his death, I should not sleep.

Second Senator: They are away this miseries, produced upon my soul, Breaking
and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO: Well, your wit is in the care of side and that.

Second Lord: They would be ruled after this chamber, and my fair nues begun
out of the fact, to be conveyed, Whose noble souls I’ll have the heart of the wars.

Clown: Come, sir, I will make did behold your worship.

VIOLA: I’ll drink it.

(Credits: Andrej Karpathy)
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A Char-Level RNN Generating a Math Paper

(Credits: Andrej Karpathy)
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A Char-Level RNN Generating C++ Code

(Credits: Andrej Karpathy)
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Note: these examples are from 5 years ago; we now have much more
impressive language generators (e.g. GPT-3)

Instead of RNNs, the most recent language generators use transformers

We will cover transformers in a later class!
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What Can RNNs Be Used For?

We’ll see three applications of RNNs:

1 Sequence generation: generates symbols sequentially with an
auto-regressive model (e.g. language modeling) X

2 Sequence tagging: takes a sequence as input, and returns a label for
every element in the sequence (e.g., part of speech–POS–tagging)

3 Pooled classification: takes a sequence as input, and returns a
single label by pooling the RNN states.
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Sequence Tagging with RNNs

• In sequence tagging, we are given an input sequence x1, . . . , xL

• The goal is to assign a tag to each element of the sequence, yielding
an output sequence y1, . . . , yL

• Examples: POS tagging, named entity recognition

• Differences with respect to sequence generation:

- The input and output are distinct (no need for auto-regression)

- The length of the output is known (same as that of the input)
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Example: POS Tagging

• Map sentences to sequences of part-of-speech tags.

Time flies like an arrow .
noun verb prep det noun .

• Need to predict a morphological tag for each word of the sentence

• High correlation between adjacent words!
(Ratnaparkhi, 1999; Brants, 2000; Toutanova et al., 2003)
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An RNN-Based POS Tagger

• The inputs x1, . . . , xL ∈ RE×L are word embeddings (found by looking
up rows in an V -by-E embedding matrix, eventually pre-trained)

• As before, maintain a state vector ht , function of ht−1 and the
current xt : this state compresses all the input history!

ht = g(V xt + Uht−1 + c)

• A softmax output layer computes the probability of the current tag
given the current and previous words:

P(yt |x1, . . . , xt) = softmax(Wht + b)
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An RNN-Based POS Tagger

This model can be improved:

• Use a bidirectional RNN to condition also on the following words
(combinining a left-to-right and a right-to-left RNN)—more later!

• Use a nested character-level CNN or RNN to obtain embeddings for
unseen words.

This model achieved SOTA performance on the Penn Treebank and
several other benchmarks (Ling et al., 2015; Wang et al., 2015)!
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Bidirectional RNNs

• We can read a sequence from left to
right to obtain a representation

• Or we can read it from right to left

• Or we can read it from both and
combine the representations

• More later...

(Slide credit: Chris Dyer)
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Example: Named Entity Recognition

From sentences extract named entities.

Louis Elsevier was born in Leuven .
B-PER I-PER O O O B-LOC .

• Identify word segments that refer to entities (person, organization,
location)

• Typically done with sequence models and B-I-O tagging

(Zhang and Johnson, 2003; Ratinov and Roth, 2009)
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RNN-Based NER

• The model we described for POS tagging works just as well for NER

• However, NER has constraints about tag transitions: e.g., we cannot
have I-PER after B-LOC

• The RNN tagger model we described exploits input structure (via the
states encoded in the recurrent layer) but lacks output structure...
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What Can RNNs Be Used For?

We’ll see three applications of RNNs:

1 Sequence generation: generates symbols sequentially with an
auto-regressive model (e.g. language modeling) X

2 Sequence tagging: takes a sequence as input, and returns a label for
every element in the sequence (e.g., POS tagging) X

3 Pooled classification: takes a sequence as input, and returns a
single label by pooling the RNN states.
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Pooled Classification

• What we have seen so far assumes we want to output a sequence of
labels (either to generate or tag a full sequence).

• What about predicting a single label for the whole sequence?

• We can still use an RNN to capture the input sequential structure!

• Just pool the RNNs states, i.e., map them to a single vector

• Use a single softmax to output the final label.
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Pooling Strategies

• The simplest strategy is just to use the last RNN state

• This state results from traversing the full sequence left-to-right, hence
it has information about the full sequence!

• Disadvantage: for long sequences, the influence the earliest words
may vanish

• Other pooling strategies:

- use a bidirectional RNN and combine both last states of the
left-to-right and right-to-left RNN

- average pooling

- ...

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 9 DL, IST Fall 2021 39 / 79



Example: Sentiment Analysis

(Slide credit: Ollion & Grisel)
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Recurrent Neural Networks are Very Versatile

Check out Andrej Karpathy’s blog post “The Unreasonable Effectiveness
of Recurrent Neural Networks”
(http://karpathy.github.io/2015/05/21/rnn-effectiveness/).
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Training the RNN: Backpropagation Through Time

What happens to the gradients as we go back in time?

(Slide credit: Chris Dyer)
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Backpropagation Through Time

What happens to the gradients as we go back in time?

∂F

∂h1
=

∂h2

∂h1

∂h3

∂h2

∂h4

∂h3︸ ︷︷ ︸∏4
t=2

∂ht
∂ht−1

∂ŷ
∂h4

∂F

∂ŷ

where ∏
t

∂ht

∂ht−1
=
∏
t

∂ht

∂zt
∂zt
∂ht−1

=
∏
t

Diag(g ′(zt))U

Three cases:

• largest eigenvalue of U exactly 1: gradient propagation is stable

• largest eigenvalue of U < 1: gradient vanishes (exponential decay)

• largest eigenvalue of U > 1: gradient explodes (exponential growth)
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Vanishing and Exploding Gradients

• Exploding gradients can be dealt with by gradient clipping
(truncating the gradient if it exceeds some magnitude)

• Vanishing gradients are more frequent and harder to deal with

- In practice: long-range dependencies are difficult to learn

• Solutions:

- Better optimizers (second order methods)

- Normalization to keep the gradient norms stable across time

- Clever initialization to start with good spectra (e.g., start with random
orthonormal matrices)

- Alternative parameterizations: LSTMs and GRUs
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Gradient Clipping

• Norm clipping:

∇̃ ←
{ c
‖∇‖∇ if ‖∇‖ ≥ c

∇ otherwise.

• Elementwise clipping:

∇̃i ← min{c , |∇i |} × sign(∇i ), ∀i
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Alternative RNNs

• Gated recurrent unit (GRU)
(Cho et al., 2014)

• Long short-term memorie (LSTM)
(Hochreiter and Schmidhuber, 1997)

Intuition: instead of multiplying across time (which leads to exponential
growth), we want the error to be approximately constant

They solve the vanishing gradient problem, but still have exploding
gradients (still need gradient clipping)
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Gated Recurrent Units (Cho et al., 2014)

• Recall the problem: the error must backpropagate through all the
intermediate nodes:

• Idea: create some kind of shortcut connections:

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

• Create adaptive shortcuts controlled by special gates

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 9 DL, IST Fall 2021 48 / 79



Gated Recurrent Units (Cho et al., 2014)

• Recall the problem: the error must backpropagate through all the
intermediate nodes:

• Idea: create some kind of shortcut connections:

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

• Create adaptive shortcuts controlled by special gates

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 9 DL, IST Fall 2021 48 / 79



Gated Recurrent Units (Cho et al., 2014)

• Recall the problem: the error must backpropagate through all the
intermediate nodes:

• Idea: create some kind of shortcut connections:

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

• Create adaptive shortcuts controlled by special gates

A. Martins, F. Melo, M. Figueiredo (IST) Lecture 9 DL, IST Fall 2021 48 / 79



Gated Recurrent Units (Cho et al., 2014)

(Image credit: Thang Luong, Kyunghyun Cho, Chris Manning)

ht = ut � h̃t + (1− ut)� ht−1

• Candidate update: h̃t = g(Vxt + U(rt � ht−1) + b)

• Reset gate: rt = σ(Vrxt + Urht−1 + br )

• Update gate: ut = σ(Vrxt + Uuht−1 + bu)
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Long Short-Term Memories
(Hochreiter and Schmidhuber, 1997)

• Key idea: use memory cells ct
• To avoid the multiplicative effect, flow information additively through

these cells

• Control the flow with special input, forget, and output gates

(Image credit: Chris Dyer)
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Long Short-Term Memories

(Image credit: Chris Dyer)

ct = ft � ct−1 + it � g(Vxt + Uht−1 + b), ht = ot � g(ct)

• Forget gate: ft = σ(Vf xt + Uf ht−1 + bf )

• Input gate: it = σ(Vixt + Uiht−1 + bi )

• Output gate: ot = σ(Voxt + Uoht−1 + bo)
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Long Short-Term Memories

(Slide credit: Christopher Olah)
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Bidirectional LSTMs

• Same thing as a Bidirectional RNN, but
using LSTM units instead of vanilla
RNN units.

(Slide credit: Chris Dyer)
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LSTMs and BILSTMs: Some Success Stories

• Time series prediction (Schmidhuber et al., 2005)

• Speech recognition (Graves et al., 2013)

• Named entity recognition (Lample et al., 2016)

• Machine translation (Sutskever et al., 2014)

• ELMo (deep contextual) word representations (Peters et al., 2018)

• ... and many others.
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Summary

• Better gradient propagation is possible if we use additive rather than
multiplicative/highly non-linear recurrent dynamics

• Recurrent architectures are an active area of research (but LSTMs are
hard to beat)

• Other variants of LSTMs exist which tie/simplify some of the gates

• Extensions exist for non-sequential structured inputs/outputs (e.g.
trees): recursive neural networks (Socher et al., 2011), PixelRNN
(Oord et al., 2016)
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From Sequences to Trees

• So far we’ve talked about recurrent neural networks, which are
designed to capture sequential structure

• What about other kinds of structure? For example, trees?

• It is also possible to tackle these structures with recursive
computation, via recursive neural networks.
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Recursive Neural Networks

• Proposed by Socher et al. (2011) for parsing images and text

• Assume a binary tree (each node except the leaves has two children)

• Propagate states bottom-up in the tree, computing the parent state p
from the children states c1 and c2:

p = tanh

(
W
[

c1

c2
+ b

])
• Use the same parameters W and b at all nodes

• Can compute scores at the root or at each node by appending a
softmax output layer at these nodes.
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Compositionality in Text

Uses a recurrent net to build a bottom-up parse tree for a sentence.

(Credits: Socher et al. (2011))
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Compositionality in Images

Same idea for images.

(Credits: Socher et al. (2011))
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Tree-LSTMs

• Extend recursive neural networks the same way LSTMs extend RNNs,
with a few more gates to account for the left and right child.

• Extensions exist for non-binary trees.
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Fine-Grained Sentiment Analysis

(Taken from Stanford Sentiment Treebank.)
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What about Images?

• While sequences are 1D, images are 2D.

• PixelRNNs are 2D extensions of RNNs.

• They can be used as auto-regressive models to generate images, by
generating pixels in a particular order, conditioning on neighboring
pixels.

• Several variants...
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RNNs for Generating Images

• Input-to-state and state-to-state mappings for PixelCNN and two
PixelRNN models (Oord et al., 2016):
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RNNs for Generating Images

(Oord et al., 2016)
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Even More General: Graph LSTMs

(Credits: Xiaodan Liang)
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More Tricks of the Trade

• Depth

• Dropout

• Implementation Tricks

• Mini-batching
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Deep RNNs/LSTMs/GRUs

• Depth in recurrent layers helps in practice (2–8 layers seem to be
standard)

• Input connections may or may not be used

(Slide credit: Chris Dyer)
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Dropout in Deep RNNs/LSTMs/GRUs

• Apply dropout between layers, but not on the recurrent connections

• ... Or use the same mask for all recurrent connections (Gal and
Ghahramani, 2015)

(Slide credit: Chris Dyer)
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Implementation Tricks

For speed:

• Use diagonal matrices instead of full matrices (esp. for gates)

• Concatenate parameter matrices for all gates and do a single
matrix-vector multiplication

• Use optimized implementations (from NVIDIA)

• Use GRUs or reduced-gate variant of LSTMs

For learning speed and performance:

• Initialize so that the bias on the forget gate is large (intuitively: at
the beginning of training, the signal from the past is unreliable)

• Use random orthogonal matrices to initialize the square matrices
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Mini-Batching

• RNNs, LSTMs, GRUs all consist of many element-wise operations
(addition, multiplication, nonlinearities), and lots of matrix-vector
products

• Mini-batching: convert many matrix-vector products into a single
matrix-matrix multiplication

• Batch across instances, not across time

• The challenge with working with mini batches of sequences is...
sequences are of different lengths (we’ve seen this when talking about
convolutional nets)

• This usually means you bucket training instances based on similar
lengths, and pad with zeros

• Be careful when padding not to back propagate a non-zero value!
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Conclusions

Recurrent neural networks allow to take advantage of sequential input
structure

They can be used to generate, tag, and classify sequences, and are trained
with backpropagation through time

Vanilla RNNs suffer from vanishing and exploding gradients

LSTMs and other gated units are more complex variants of RNNs that
avoid vanishing gradients

They can be extended to other structures like trees, images, and graphs.
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Thank you!

Questions?
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