Speech Processing

Introduction to automatic speech recognition & other speech classification tasks

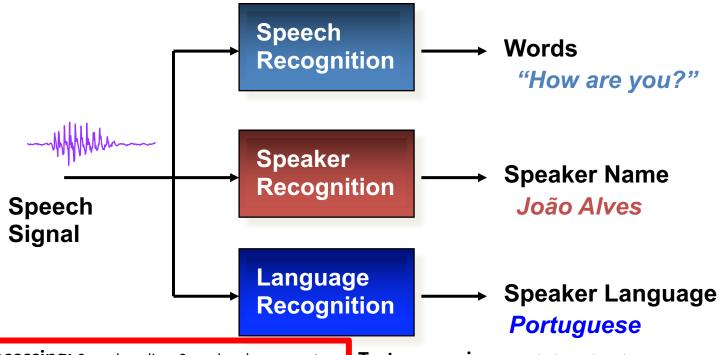
Alberto Abad

IST/INESC-ID

alberto.abad@tecnico.ulisboa.pt

Processamento de Língua Natural – MEIC IST, November, 2020

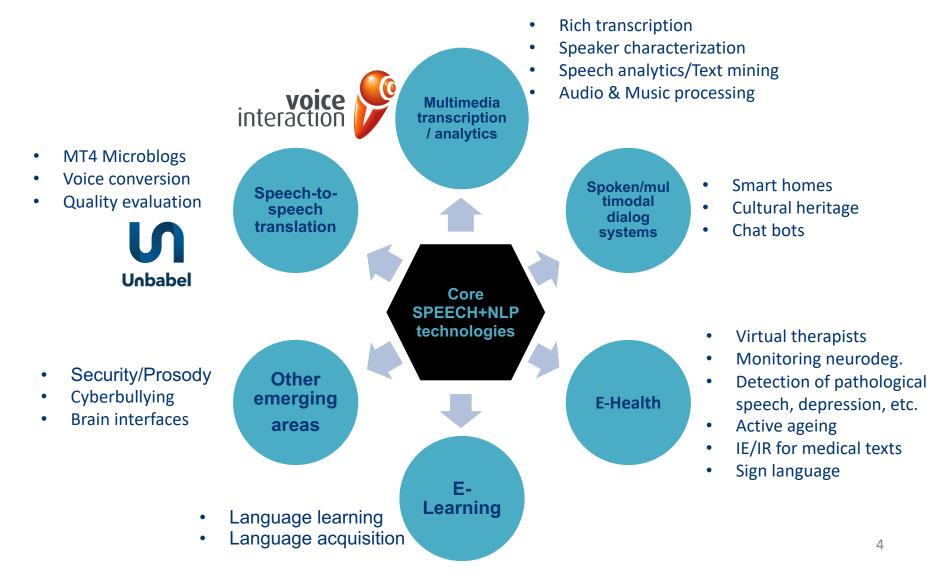
Introduction Human Language Technologies



Speech processing: Speech coding, Speech enhancement, Audio segmentation, Text-to-speech synthesis, Automatic speech recognition, Speaker and language identification; Other speech pattern classification tasks **Text processing:** Morphological analysis, Syntactic analysis, Semantic analysis, Discourse analysis, Named entity extraction, NL Generation, Information retrieval, Summarization, Question answering, Machine translation, Text analytics

Spoken language processing Speech understanding, Speech synthesis from concepts, Spoken/multimodal dialog systems, Classification of multimedia documents, Summarization of spoken documents, Question answering on multimedia documents, Rich Transcription of multimedia documents, Speech-to-speech machine translation, Speech analytics

Introduction Core application areas @ HLT.INESC-ID



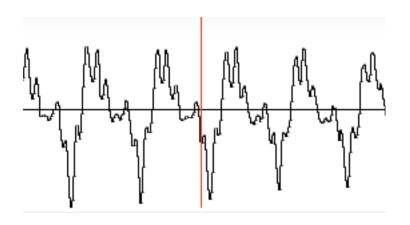
Introduction Related disciplines

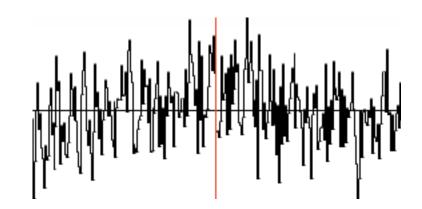
- Speech (and Language) processing is a challenging multidisciplinary research topic, that is related to areas, such as:
 - Digital signal processing
 - Speech sciences: linguistics, phonetics, sintaxis, etc.
 - Acoustics and physics
 - Natural language processing
 - Machine Learning
 - Human computer interaction
 - Artificial intelligence
 - Cognitive science
 - Perceptual psychology

Outline

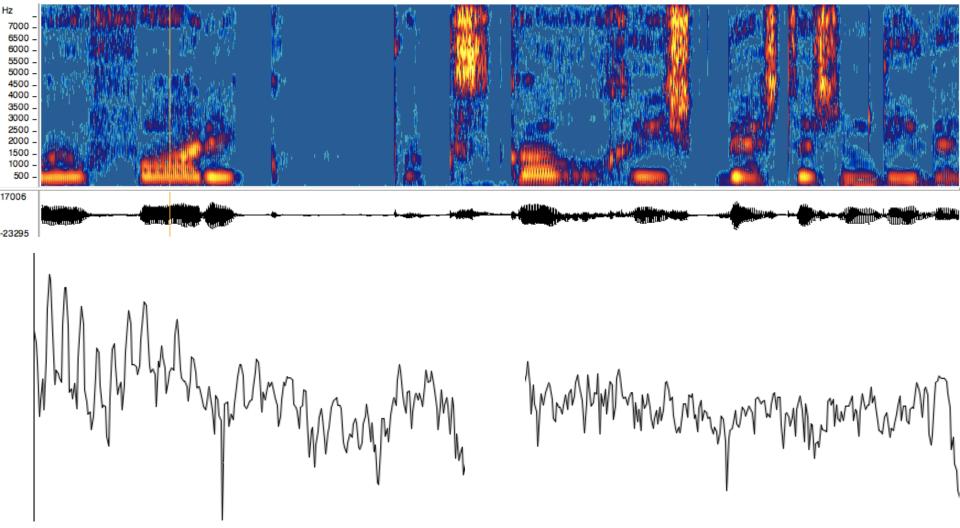
- Introduction to speech processing
- Speech Pattern classification
 - Introduction to SPC
 - Feature Extraction
 - Type of features
 - MFCCs
 - Machine learning
 - Speech common models
 - GMM
 - The "complex" task example: ASR
 - HMM
 - Examples
- ASR & Speech Pattern classification task examples
- Tools and references

Introduction to SPC Speech signal in the time domain

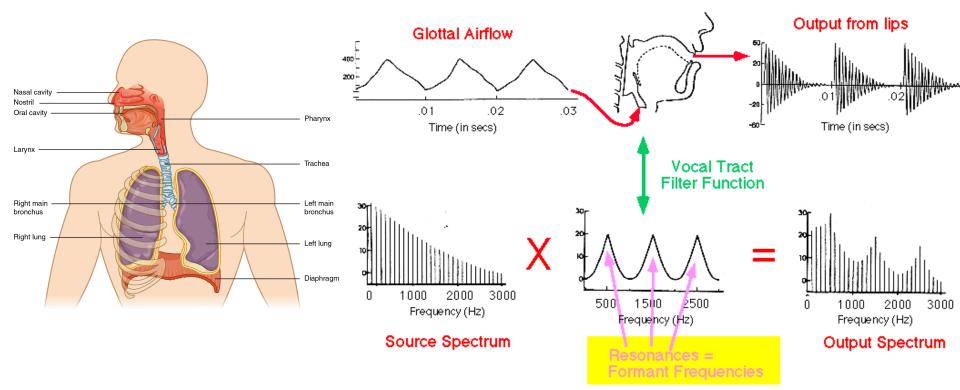




Introduction to SPC Speech signal time / frequency representation



Introduction to SPC Speech signal: Physiology & Source/filter model



Introduction to SPC

- Speech carries a lot of information:
 - Of course information related to the message (LINGUISTIC?)...
 - … but also, speaker traits (NON-LINGUISTIC/PARA-LINGUISTIC?):
 - Gender; Age; Language/accent; ID; Personality; Education; Intoxication; Sleepiness; Friendliness; Mood; Physical Stress; Cognitive Load; Emotion; Pathologies?

- If "Speech" is considered in a wider sense ("Audio") then more information is present:
 - Number of speakers; speakers role; speaker position; audio events; acoustic Scenes;

Introduction to SPC Objectives

• The objective of *speech pattern classification* is to convert a speech input sequence into a sequence of class labels:

- The common blocks of any speech pattern classification task are the front-end/feature extraction and the back-end/classification:
 - The classifier module is "learnt" using data during the training phase and used to classify new unseen data during test
- Some examples are:
 - Automatic speech recognition; speech segmentation; speaker recognition; language recognition; speaker diarization; automatic document indexing; paralinguistic speaker trait recognition

Introduction to SPC Challenges

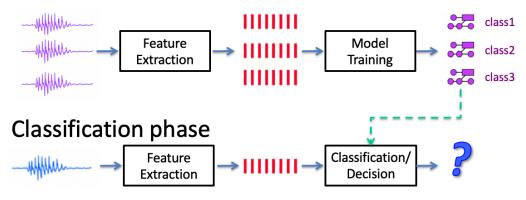
- Speech/audio variability → Samples belonging to the same "class" take extremely different forms due to:
 - Source variation: speaker, gender, accent, state, volume, etc.
 - Channel variation: mikes, acoustic environment, noise, reverberation, etc.
 - Other: Intrinsic nature of the classes, etc.
- From ML perspective, speech is a quite unique problem due to the nature of the input and class label outputs:
 - About the input ightarrow Time sequence
 - Very different length of the input wrt. output \rightarrow Segmentation problem
 - Elasticity of the temporal dimension
 - Discriminative cues often distributed over a long temporal span
 - About the output \rightarrow Output can be a sequence of class labels
 - Too much combinations → Need structure!!!

Introduction to SPC

The "simple" vs. the "complex" task

• The "simple" SPC task:

Learning/Training phase



- Static output:
 - No sequence of output labels
 - No segmentation problem \rightarrow Audio segment corresponds to single class
- No structured knowledge \rightarrow Models correspond to output labels
- Notice that:
 - Although being "simpler" from the ML perspective, they can be very hard
 - Can be classification/identification, verification or regression problems
 - Time-varying input still needs to be addressed

Outline

- Introduction to speech processing
- Speech Pattern classification
 - Introduction to SPC
 - Feature Extraction
 - Type of features
 - MFCCs
 - Machine learning
 - Speech common models
 - GMM
 - The "complex" task example: ASR
 - HMM
 - Examples
- ASR & Speech Pattern classification task examples
- Tools and references

Features for SPC

• Desirable attributes of features for automatic methods:

- Informative

- Similar(dissimilar) sounds have similar (dissimilar) features
- Provides discriminative information wrt the target task
 - Discard stuff irrelevant (ie. pitch in Portuguese ASR)
 - Pattern recognition techniques are rarely independent of the problem domain → proper selection of features affects performance

– Practical

- Occurs naturally and frequently in speech
- Easy to measure

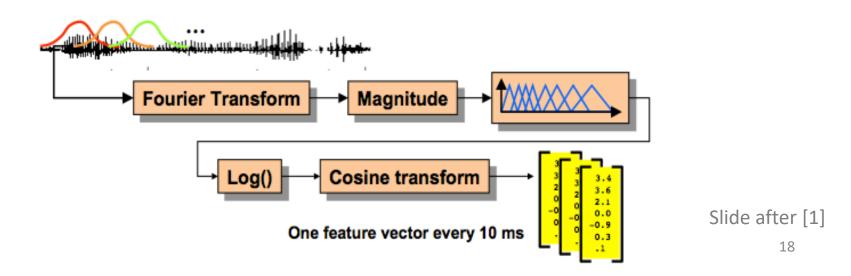
– Robust

- Not change over time
- Not (very) affected by noise and channel

Classical spectral speech features

MFCC (Mel-frequency cepstral coefficients)

- Primary feature used in pattern recognition systems are cepstral feature vectors
- Some form of blind deconvolution is used to remove stationary channel effects
- Time differential cepstra (delta cepstra) are usually appended to cepstral features
- Typically 24-40 dimensional feature vectors are used



Outline

• Introduction to speech processing

• Speech Pattern classification

- Introduction to SPC
- Feature Extraction
 - Type of features
 - MFCCs
- Machine learning
 - Speech common models
 - GMM
- The "complex" task example: ASR
 - HMM
 - Examples
- ASR & Speech Pattern classification task examples
- Tools and references

Introduction to ML

- Assume we have a training set D={(x(i),y(i))} drawn from the distribution p(x,y), x€X y€Y
- The goal of learning is to find a decision function f: $X \rightarrow Y$ that correctly predicts the output of future input from the same distribution:

$$f(x) = argmax_y d_y(x)$$

- ML methods differ on:
 - Type of "discriminant function" (the model)
 - Type of "loss function" (the training objective)
 - How training data is used:
 - Supervised all training samples are labeled
 - Semi-supervised both labeled and unlabeled
 - Unsupervised all training samples are unlabeled

Statistical models is speech pattern classification problems

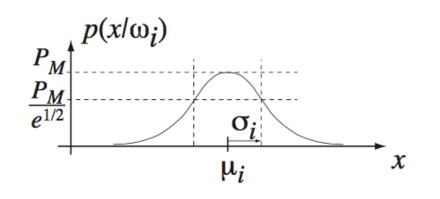
- Several types of models have been used in different speech pattern recognition tasks, including:
 - K-NN K nearest neighbor
 - MLP Multi-layer perceptron
 - SVM Support Vector Machines
 - DNN Deep neural networks
 - etc.
- Traditionally, the most common model has been the Gaussian Mixture Model (GMM)

Gaussian models

- Easiest way to model distributions is via parametric model
 - assume known form, estimate a few parameters
- Gaussian model is simple and useful. In 1D

$$p(x \mid \theta_i) = rac{1}{\sigma_i \sqrt{2\pi}} \exp\left[-rac{1}{2}\left(rac{x-\mu_i}{\sigma_i}
ight)^2
ight]$$

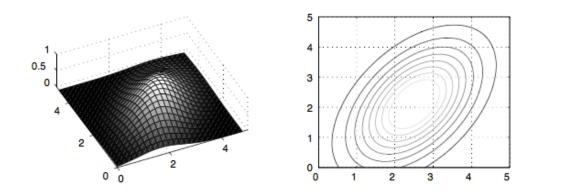
• Parameters mean μ_i and variance $\sigma_i \rightarrow$ fit



Gaussians in *d* dimensions

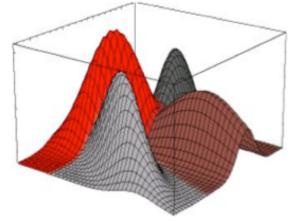
$$p(\mathbf{x} \mid \theta_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i)\right]$$

Described by a *d*-dimensional mean μ_i and a $d \times d$ covariance matrix Σ_i



Gaussian mixture models

- Single Gaussians cannot model
 - distributions with multiple modes
 - distributions with nonlinear correlations
- What about a weighted sum?



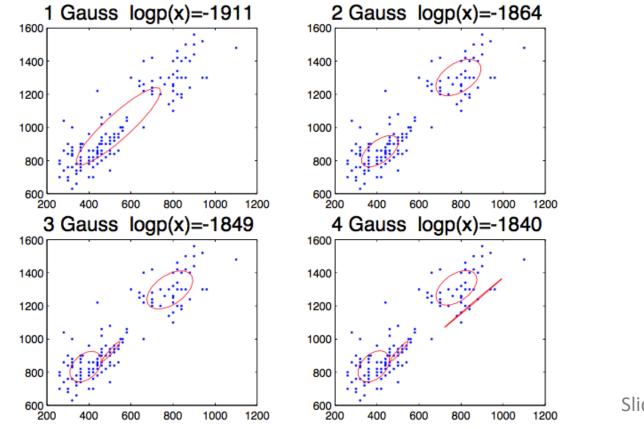
$$p(x) \sim \sum_{k} c_{k} p(x \mid v_{k})$$

 $p(\mathbf{x}) \sim \sum c_{\mathbf{x}} p(\mathbf{x} \mid \boldsymbol{\theta}_{\mathbf{x}})$

- where {c_k} is a set of weights and {p(x | θ_k)} is a set of Gaussian components
- can fit anything given enough components
- Interpretation: each observation is generated by one of the Gaussians, chosen with probability $c_k = p(\theta_k)$

GMM examples

Vowel data fit with different mixture counts



Outline

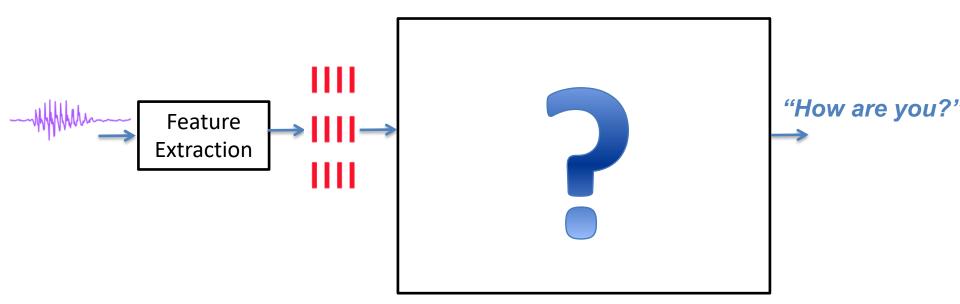
• Introduction to speech processing

• Speech Pattern classification

- Introduction to SPC
- Feature Extraction
 - Type of features
 - MFCCs
- Machine learning
 - Speech common models
 - GMM
- The "complex" task example: ASR
 - HMM
 - Examples
- ASR & Speech Pattern classification task examples
- Tools and references

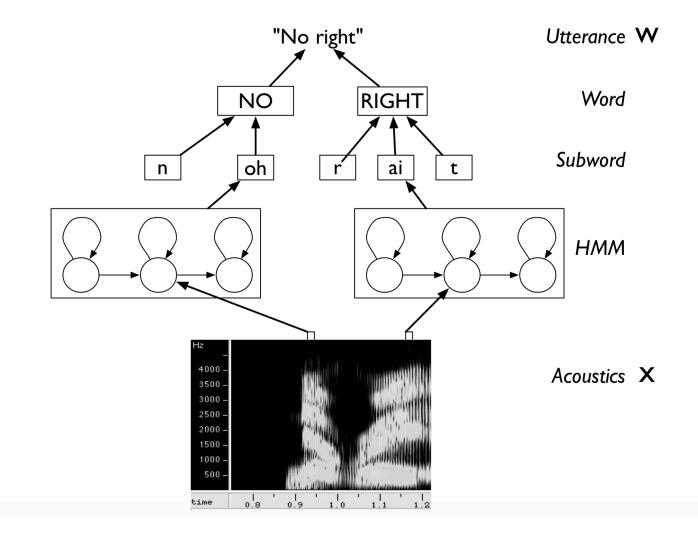
Automatic Speech Recognition (ASR) The "complex" task

• **Goal** Given a sequence of observations determine which is the most likely sequence of words



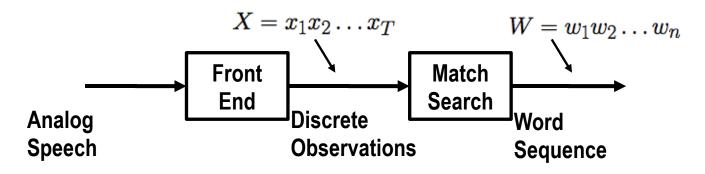
- Already decades of research on ASR (and other SLT related topics)
 → Very challenging!!!
- **Related sub-tasks:** Isolated ASR, Continuous ASR, KWS, LVCSR, STD/Search on Speech, etc.

Automatic Speech Recognition Hierarchical speech modeling



Automatic Speech Recognition The goal of speech recognition

• Given the feature vector sequence $X = x_1 x_2 \dots x_T$ the goal of speech recognition is to find the word sequence $W = w_1 w_2 \dots w_n$ that has the maximum a posteriori P(W|X)

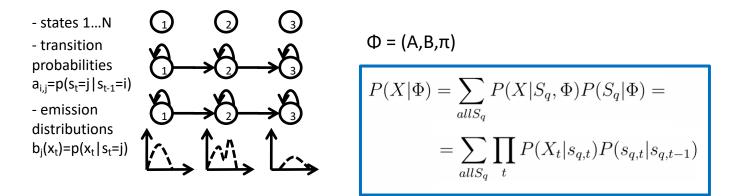


• Bayes Rule:

$$\hat{W} = \arg\max_{w} P(W|X) = \arg\max_{w} \frac{P(W)P(X|W)}{P(X)}$$
$$\hat{W} = \arg\max_{w} P(W)P(X|W)$$
$$\mathsf{LM} \quad \mathsf{AM}$$

Automatic Speech Recognition Acoustic Model: Hidden Markov Model

• Hidden Markov Model (HMM) is a powerful statistical method of characterizing the observed data samples of a discrete-time series (speech), specified by:

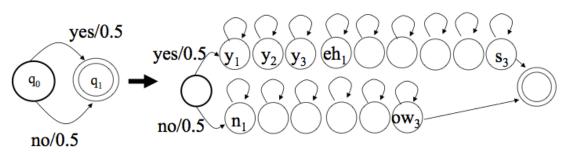


- The HMM assumptions:
 - **1.** Markov process: $P(S_{q,t}|S_{q,t-1},S_{q,t-2},...,S_{q,1}) = P(S_{q,t}|S_{q,t-1})$
 - 2. Observation independence: $P(X_t | S_{q,t}, S_{q,t-1}, S_{q,t-2}, ..., S_{q,1}, X_{t-1}, X_{t-2}, ..., X_1) = P(X_t | S_{q,t})$
 - Under these assumptions, there are good algorithms to use HMMs: Forward, Viterbi, Baum-Welch

Automatic Speech Recognition Language Model: CFG vs n-grams

• CFGs

- + well-adapted to simple phrases (eg. digits)
- -- complex phrases
- -- "wrong" phrases not allowed



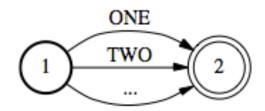
- Statistical LM → n-grams
 - + P(W) depends on n-1 previous words (tractable)

$$P(w_1, w_2, \cdots, w_n) = P(w_1) \prod_{n=2}^{N} P(w_n | w_{n-1})$$

- + "wrong" phrases possible
- -- need large amounts of texts to estimate probabilities
- -- OOVs, no long term, no linguistic knowledge

Automatic Speech Recognition Isolated Word Recognition with HMMs

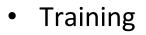
- For every word W we define a HMM model $\Phi_{W:}$
 - A reasonable number of states is 3 states per phoneme
- Training
 - for each class (word) W, collect all training samples X with that label (manual)
 - to train Φ_W , run Baum-Welch on this data
- Decoding
 - Calculate (Viterbi or Forward) $P(X|\Phi_w)$ for every W and pick the best
- Decoding (better)
 - Merge each word HMM in a single big HMM (all words in parallel)
 - use Viterbi to find the best sequence (backtrace to obtain words)



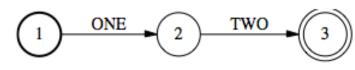
Automatic Speech Recognition Continuous Speech Recognition with HMMs

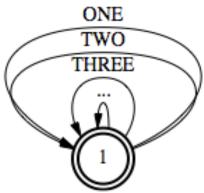
Example Digit string

- We can not build an HMM for each digit sequence
 - define word HMMs for every digit



- glue the sequence HMM, update counts for each word HMM
- Decoding
 - build the (big) HMM (graph) that represents all digit strings
 - Apply Viterbi





Automatic Speech Recognition LVCSR with HMMS

- Basic principals stand, but:
 - Acoustic Models (AM)
 - basic units are sub-word (context-dependent) units:
 - need for a Pronunciation Model
 - need to increase AM complexity
 - Language Model (LM)
 - can not use simple grammar/rules FSA
 - use probabilistic models \rightarrow n-grams
 - Decoding
 - increased complexity affects to the size of the search space (graph)
 - direct Viterbi over the whole graph is not impossible

Automatic Speech Recognition Recent evolution and current trends

- Research in ASR has produced very significant outcomes during last decades (but it is still an open problem).
- Currently, there are two main current trends to tackle the problem:
 - 1. Hierarchical modelling of speech
 - Speech modelling problem is structured in sub-problems
 - This is the conventional approach until ~2012
 - Today still very relevant in certain tasks/conditions
 - 2. end2end
 - Direct mapping from acoustics to words/characters
 - Different flavours from 2012 (CTC, encoder-decoder, etc.)
 - State of the art (in very large data)

Outline

- Introduction to speech processing
- Speech Pattern classification
 - Introduction to SPC
 - Feature Extraction
 - Type of features
 - MFCCs
 - Machine learning
 - Speech common models
 - GMM
 - The "complex" task example: ASR
 - HMM
 - Examples

• ASR & Speech Pattern classification task examples

• Tools and references

Examples Relevant ASR benchmarks

NIST Evaluations

NIST Speech-To-Text transcription (STT)

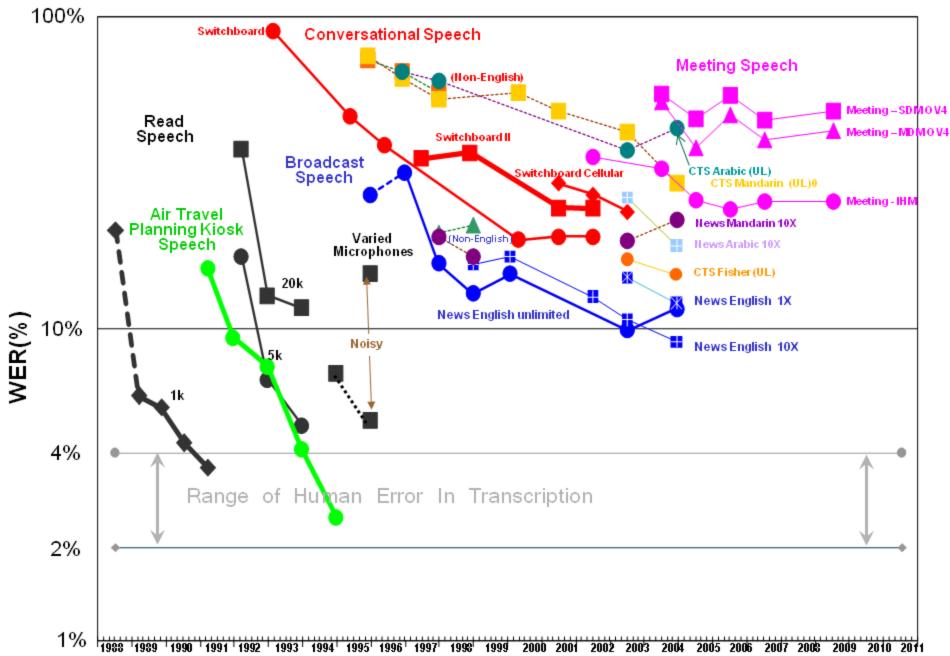
https://www.nist.gov/itl/iad/mig/rich-transcription-evaluation

ASR EVALUATION METRIC: Word error rate (WER)

Scores: (#C #S #D #I) 9 3 1 2REF: was an engineer SO I i was always with **** **** MEN UM and theyHYP: was an engineer ** AND i was always with THEM THEY ALL THAT and theyEval:D SI I S S

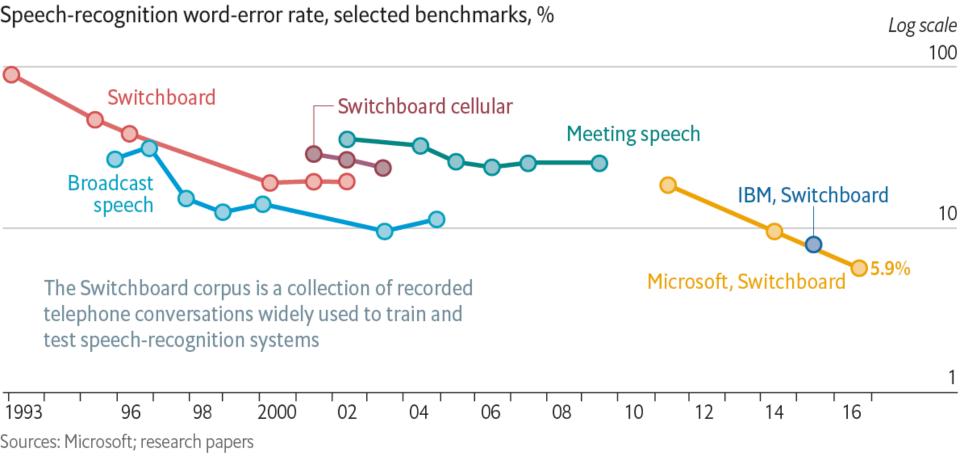
$$WER = \frac{I + S + D}{N}$$

NIST STT Benchmark Test History – May. '09



ASR Benchmark history (more recent)

Loud and clear



Examples

Relevant Paralinguistic/Non-linguistic challenges

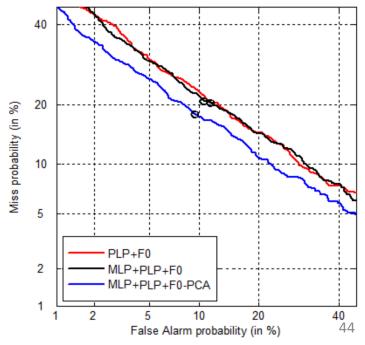
NIST Evaluations

NIST Speaker Recognition Evaluation (SRE)

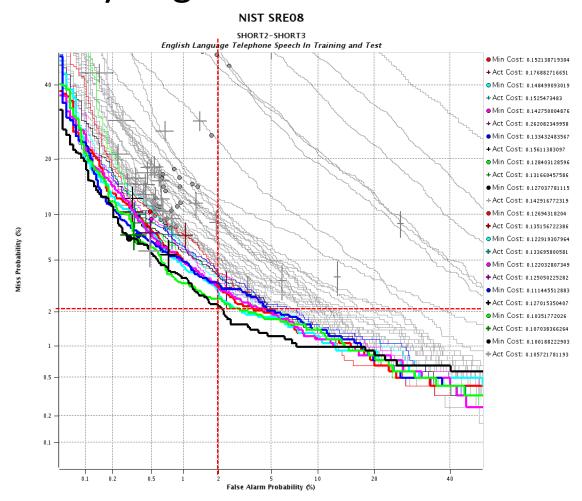
http://www.nist.gov/itl/iad/mig/sre.cfm

SRE Metric: DET curves

• For a large set of trials, plot of false alarm vs miss rate at different operation points

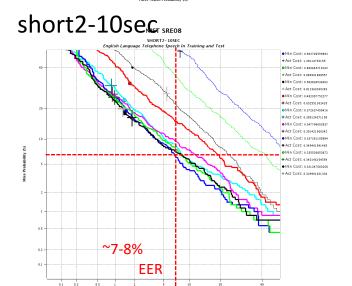


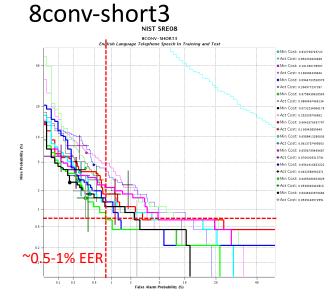
NIST SRE Results NIST SRE 2008 core condition Tel-tel + only English sub-conditions

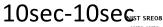


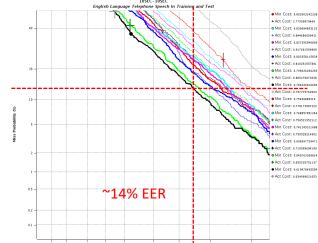
NIST SRE 2008: Importance of speech length

short2-short3 NIST SREOR SHORT2-SHORT3 English Lang Telephone Speech In Training and Test Alin Cost: austication + Act Cost: 0.176882716651 Min Cost: 0.148499093015 + Act Cost: 0.1525473483 Min Cost: 0.142750004070 + Act Cost: 0.26208234995 • Min Cost: 0.13343240356 + Act Cost: 0.15611383897 • Min Cost: 0.128403128594 + Act Cost: 0.13166045758 • Min Cost: 0.127037781115 + Act Cost: 0.142916772319 Min Cost: 0.12694318204 + Act Cost: 0.135156722386 Min Cost: a 122919382964 + Act Cost: 0.133695808581 Min Cost: a 122a128a234 + Act Cost: 0125050225282 • Min Cost: 0.111445512883 + Act Cost: 0.127015350407 Min Cost: 0.10351772026 + Act Cost: 0.107038366264 Min Cost: 0.100188222903 Act Cost: 0.105721781193 ~2% EER



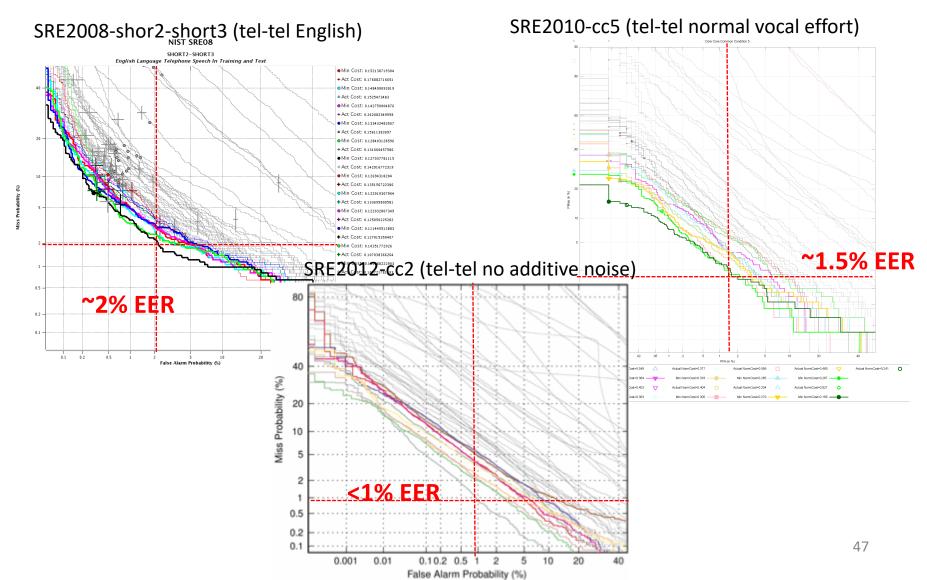






NIST SRE Results

Recent years evolution



Examples

Relevant Paralinguistic/Non-linguistic challenges

COMPARE (Computational Paralinguistic Evaluation) Challenge Series

http://compare.openaudio.eu/

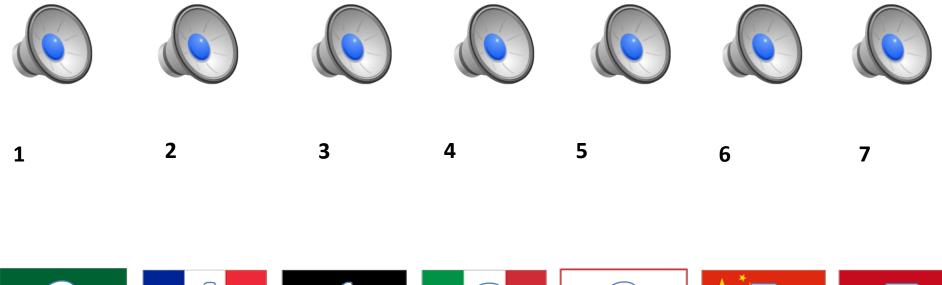
INTERSPEECH 2016 Computational Paralinguistics Challenge

Deception Sub-Challenge Sincerity Sub-Challenge Native Language Sub-Challenge

COMPARE2016 Results of the BEST system in the TEST set

	DEV [UAR %]	TEST [UAR %]
ComPaRe 2016 Official Baseline	45.1%	47.5%
INESC-ID ComPaRe 2016 system	84.6%	81.3%

COMPARE 2016 quiz



Summary

- Speech processing has been the focus of extensive research during the last decades.
- As a result, there is a significant amount of very successful technologies in the market, such as Automatic Speech Recognition (ASR).
- ASR is a particularly difficult case of *speech pattern classification* due to the sequence to sequence nature of the task and the variability of speech:
 - Nevertheless, impressive results are attained nowadays in part thanks to the very positive impact of deep learning.
 - Still, the task presents some open challenges and problems.
- In general, speech processing is becoming mature enough to foresee novel areas of application.

Outline

- Introduction to speech processing
- Speech Pattern classification
 - Introduction to SPC
 - Feature Extraction
 - Type of features
 - MFCCs
 - Machine learning
 - Speech common models
 - GMM
 - The "complex" task example: ASR
 - HMM
 - Examples
- ASR & Speech Pattern classification task examples
- Tools and references

Tools for Feature Extraction: HTK

HTK http://htk.eng.cam.ac.uk

- HMM toolkit primarily used for ASR
 - I has been one of the most important publicly available ASR toolkits for many years
 - Provides source code written in C (Linux/Windows)
 - It does not allow re-distribution
 - Well-documented
- Contains several tools, including HCopy, the tool that allows for feature extraction
 - **HCopy** permits computation of the most relevant classical ASR features and typical pre-/post- processing:
 - LPC, FBE, MFCC, PLP
 - Energy, Delta, double-delta, CMVN, VTLN
 - It can read several audio input formats

Tools for Feature Extraction: openSMILE

openSMILE - Open-Source Audio Feature Extractor SMILE - Speech & Music Interpretation by Large-space Extraction

http://audeering.com/research/opensmile/

- It is a extremely popular and versatile feature extraction tool in the area of paralinguistics:
 - Baseline in ComParE evaluations
- Open-source multi-platform (written in C++)
 - It permits stand-alone tool usage or library access
- Well-documented <u>http://www.audeering.com/research-and-open-source/files/openSMILE-book-latest.pdf</u>
- Popular I/O file formats are supported:
 - HTK, Comma separated value (CSV) text, WEKA, LibSVM

Other public toolboxes for FE

- PRAAT
 - <u>http://www.fon.hum.uva.nl/praat/</u>
 - Phonetics & linguistic oriented
- MIR toolbox

https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/ materials/mirtoolbox

- MATLAB code
- Music oriented, but it also contains speech features
- YAAFE Yet another audio feature extraction <u>http://yaafe.sourceforge.net/</u>
 - Python and MATLAB bindings
 - Collection of audio features

Tools for (speech) data modeling

GMM

- SPEAR: A Speaker Recognition Toolkit based on Bob (Python) <u>https://pythonhosted.org/bob.bio.spear/</u>
- MATLAB Statistics and Machine Learning Toolbox <u>http://www.mathworks.com/help/stats/fitgmdist.html</u>

SVM

LIBSVM -- A Library for Support Vector Machines https://www.csie.ntu.edu.tw/~cjlin/libsvm/

NEURAL NETWORKS

- Neural Network Toolbox http://www.mathworks.com/help/nnet/index.html
- QuickNet http://www1.icsi.berkeley.edu/Speech/qn.html

DNNs

• Theano, TensorFlow, CNTK, Keras, PyTorch

DATA MINING TOOLBOXES

- Weka 3: Data Mining Software in Java http://www.cs.waikato.ac.nz/ml/weka/
- SciKit learn (Python) <u>http://scikit-learn.org/stable/</u>

Tools for ASR development

HTK http://htk.eng.cam.ac.uk

- I has been one of the most important publicly available ASR toolkits for many years
- Provides source code written in C (Linux/Windows)
- Well-documented

KALDI http://kaldi-asr.org

- Provides current state of the art methods (DNNs)
- Many recipes ready to be used

Tools for LM training

- SRILM Toolkit: <u>www.speech.sri.com/projects/srilm</u>
- CMU-Cambridge Statistical LM toolkit: <u>http://mi.eng.cam.ac.uk/~prc14/toolkit.html</u>

References

- These are some presentations that were used for this lecture:
 - [1] Michael Mandel, "Lecture 3: Machine learning, classification, and generative models"

http://www.ee.columbia.edu/~dpwe/e6820/lectures/L03-ml.pdf

- [2] Douglas A. Reynolds, "Overview of Automatic Speaker Recognition" <u>http://www.fit.vutbr.cz/study/courses/SRE/public/prednasky/2009-</u> 10/07 spkid doug/sid tutorial.pdf
- [3] Lawrence Rabiner, "Digital Speech Processing— Lecture 1 Introduction to Digital Speech Processing" <u>http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/digital%20speech%20processing%20</u> course/lectures new/Lecture%201 winter 2012 robot video.pdf
- [4] Steve Renals, "AUTOMATIC SPEECH RECOGNITION (ASR) 2018-19: LECTURES", http://www.inf.ed.ac.uk/teaching/courses/asr/lectures-2019.html
- These are some recommended tutorial-like reading in the topic of ASR:
 - G&Y: MJF Gales and SJ Young (2007). <u>The Application of Hidden Markov Models in</u> <u>Speech Recognition</u>, *Foundations and Trends in Signal Processing*, **1** (3), 195-304.
 - G Hinton et al (2012). <u>Deep neural networks for acoustic modeling in speech</u> recognition: The shared views of four research groups, IEEE Signal Processing Magazine, **29**(6):82-97.