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Introduction

Challenges from ML perspective (I)
• The common blocks of any speech pattern classification task are the front-end/feature 

extraction and the back-end/classification:

• From ML perspective, ASR is a very challenging problem due to the nature of the input 
and class label outputs
• About the input à Time sequence

• Very different length of the input wrt. output à Segmentation problem
• Elasticity of the temporal dimension 
• Discriminative cues often distributed over a long temporal span

• About the output à Output is a sequence of labels/words

Feature 
Extraction

Classification 
(Machine 
Learning)

class1 class2 class3class1

sequence2sequence 
PROBLEM



Introduction

Challenges from ML perspective (II)
• Research in ASR has produced very significant outcomes during last 

decades (but it is still an open problem).
• Two main current trends to tackle the problem:

1. Hierarchical modelling of speech
• Speech modelling problem is structured in sub-problems
• This is the conventional approach until ~2012
• Today still very relevant in certain tasks/conditions

2. end2end
• Direct mapping from acoustics to words/characters
• Different flavours from 2012 (CTC, encoder-decoder, etc.)
• State of the art (in very large data)
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LAST WEEK è HMM/GMM
+

TODAY è HMM/ANN

NEXT THURSDAY!!!



Introduction

ASR: Hierarchical modeling of speech



Hybrid HMM/ANN 
Automatic Speech Recognition 



Hybrid HMM/ANN ASR

The output observation distribution
• The observation likelihood of conventional HMM/GMM approach:

• It is now replaced by a (scaled) neural-network posterior:



Hybrid HMM/ANN ASR

Simple neural network AM
• Input à Acoustic frame at time t, x(t)
• Output à Phonetic score,  P(S=j|x) 
• Network details:

• Single (or multi) layer neural network 
with softmax output (probabilities)

• The “phonetic score” of training data are 
1s or 0s given by HMM/GMM forced 
alignment

• Back-propagation with cross-entropy 
loss functions

• Forward inference provides real-valued 
numbers corresponding to P(S=j|x) 



Hybrid HMM/ANN ASR
Simple neural network AM with acoustic context

• Input à Acoustic frames at time t 
+/- context, x(t-context), …,x(t), .. 
x(t+context)
• Output à Phonetic score,  P(S=j|x)
• Network as previously



Hybrid HMM/ANN ASR

The connectionist approach (early 1990s)
• Monophone AM MLPs trained on multiple features 

showed:
• Hybrid monophone MLP-based systems were superior 

than GMM-based counterparts (but worse than 
triphone)

• NN can easily model correlated features:
• Correlated feature vector components 
• Input context – multiple frames of data at input 

• NN more flexible than GMMs – GMMs inefficient for 
non-linear class boundaries 

• NNs can model multiple events and learn richer 
representations

• NN posteriors are easy to combine

Morgan and Bourlard (1995). Continuous speech recognition: Introduction to the hybrid 
HMM/connectionist approach, IEEE Signal Processing Mag., 12(3):24-42



Hybrid HMM/ANN ASR

Extensions to the connectionist approach
• Model specific context-dependent units

A. Abad and J. Neto (2008), Incorporating acoustical modelling of phone transitions in an hybrid ANN/HMM 
speech recognizer , In INTERSPEECH-2008, Brisbane (Australia), September 2008

A. Abad et al. (2010), Context Dependent Modelling Approaches for Hybrid Speech 
Recognizers , In Interspeech 2010, ISCA, Makuhari (Japan), September 2010



Hybrid HMM/ANN ASR

Disadvantages of NN until ~2012

• Context-independent (monophone) models
• Weak (speaker) adaptation algorithms
• NN systems less complex than GMMs (fewer parameters): 
• RNN  < 100k parameters, MLP ∼ 1M parameters 

• Computationally expensive (still holds) 
• more difficult to parallelize training than GMM systems



Hybrid HMM/ANN ASR

What is different after 2012?
• DNNs proposed as AM for ASR:

• Deeper networks, typical NNs AMs with 3-7 hidden layers:
• This is partially possible to different advances in ML, including, regularization strategies, 

hidden unit non-linearity (ReLU vs tanh vs sigmoid), architectural choices
• Initially, researchers thought pre-training was THE TRICK

• Now, it is no longer relevant
• Wider networks

• Context-dependent HMM states or senones
• Computer/GPUs

• Permitted an increasing experiments
• Scaling up data and parameters

G. E. Dahl, et al (2012), Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech 
Recognition, in IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 30-42, Jan. 
2012.

Hinton, et al. (2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of 
Four Research Groups. Signal Processing Magazine, IEEE.



Hybrid HMM/ANN ASR

(Early) examples of CI-HMM-DNN in TIMIT
• DNN training targets (time state alignment) 

provided by a ‘baseline’ three state 
monophone HMM/GMM system (61 phones, 3 
state HMMs) 
• DNN has 183 (61*3) outputs 

• About hidden layers 
• exact sizes not highly critical 
• 3–8 hidden layers

1024–3072 units per hidden layer 
• Multiple hidden layers always work better than 

one hidden layer 
• Best systems have lower phone error rate than 

best HMM/GMM systems (using state-of-the-
art techniques such as discriminative training, 
speaker adaptive training) 

A Mohamed et al (2012). “Understanding how deep belief networks perform acoustic modelling”, 
Proc ICASSP-2012. 



Hybrid HMM/ANN ASR

(Early) examples of CD-HMM-DNN in LVCSR

• Train a context-dependent HMM/GMM system, using a phonetic decision tree to 
determine the HMM tied states 
• Perform Viterbi alignment using the trained HMM/GMM and the training data 

• Train a neural network using gradient descent to map the input speech features to a 
label representing a context-dependent tied HMM state 
• The size of the label set is thousands (number of context-dependent tied states)

Hinton, et al. (2012). Deep Neural Networks 
for Acoustic Modeling in Speech Recognition: 
The Shared Views of Four Research Groups. 
IEEE Signal Processing Magazine.



Hybrid HMM/ANN ASR

TDNNs – Richer acoustic context modelling
• Time-delay Neural Networks 

(TDNNs) model richer context:
• each layer processes a context 

window from the previous layer 
• lower hidden layers learn from 

narrower contexts, higher hidden 
layers from wider acoustic 
contexts 
• higher hidden layers have a wider 

receptive field into the input 



Hybrid HMM/ANN ASR

DNNs vs TDNNs vs sub-sampled TDNNs 



Hybrid HMM/ANN ASR
DNNs vs TDNNs results (in SWB and other tasks)

V Peddinti et al (2015). “A time delay neural network architecture for efficient modeling of long temporal 
contexts”, Interspeech 2015. 



Hybrid HMM/ANN ASR

RNNs – Richer acoustic context modelling

• Recurrent Neural Networks (RNNs) allow to model richer context:
• Hidden units at time t take input from their value at time t − 1 
• can be seen as a sequence of T inputs as a T -layer network with shared weights:

• Train with backprop through time (BTT)
• Recurrent hidden units are state units: can keep information through time 

• State units as memory – remember things for (potentially) an infinite time
• State units as information compression – compress the history (sequence observed up until now) into a state representation 



Hybrid HMM/ANN ASR

RNNs – Deep RNNs



Hybrid HMM/ANN ASR

RNNs – Bidirectional RNNs



Hybrid HMM/ANN ASR

RNNs vs LSTMs vs GRUs
• Long-short term memory and Gated-recurrent units are special case of recurrent 

neural network
• Specifically designed to avoid “forgetting” in long input sequence problems (such 

as speech)



Hybrid HMM/ANN ASR

Deep Bidirectional LSTMs example
• LSTM with 4-6 bidirectional layers with: 

• 1024 cells/layer (512 each direction) 
• 256 unit linear bottleneck layer
• 32k context-dependent state outputs

• Input features 
• 40-dimension linearly transformed MFCCs 

(plus ivector)
• 64-dimension log mel filter bank features 

(plus first and second derivatives)
• Training: 14 passes frame-level cross-

entropy training, 1 pass sequence training

Saon et al (2017), “English Conversational Telephone Speech Recognition by Humans 
and Machines”, Interspeech-2017. 



Hybrid HMM/ANN ASR

Deep Bidirectional LSTMs example

Vesely et al. (2013), “Sequence-discriminative training of deep neural networks”, in Proc. Interspeech, 2013. 



Hybrid HMM/ANN ASR

Additional topics for discussion

• Data augmentation
• Multi-lingual, BNF features, etc.
• Multi-stage decoding/re-scoring
• Speaker adaptation (*)
• Sequence-training (*)
• My recent work on domain adaptation (*Alberto)
• Atypical speech in ASR (*Thomas)



Hybrid HMM/ANN ASR

Speaker adaptation: SAT based features



Hybrid HMM/ANN ASR

Speaker adaptation: Speaker coding/i-vectors

G. Saon et al. (2013), “Speaker adaptation of neural network acoustic 
models using i-vectors,” in Proc. ASRU 2013



Hybrid HMM/ANN ASR

Sequence training
• In conventional HMM/GMM systems as alternative discriminative sequence training 

criteria to conventional ML:
• Scalable minimum Bayes risk (sMBR); Minimum phone error (MPE); Maximum mutual information 

(MMI) 

• Similar approaches for DNN à Alternative loss functions to CE that take into account
sequence information:
• First approaches, first CE training followed by sequence discriminative training. Need decoding 

lattices of training data (inefficient).
• Recent approaches, such as Lattice-free MMI (aka in Kaldi recipes as CHAIN model) train DNNs 

directly using a sequence discriminative criteria:
• Actually, CE is used as a regularization step
• No need for previous lattice decoding
• Introduce several tricks, including HMMs topology modifications and frame rate decimation



Hybrid HMM/ANN ASR

Sequence training: Lattice-free MMI
• LF-MMI introduce remarkable improvements:
• In training/decoding times
• WER performance

D. Povey, et al. (2016), “Purely sequence-trained neural networks for ASR based on lattice-free MMI” in 
Proc. Interspeech, 2016. 



Hybrid HMM/ANN ASR
Domain adaptation for low-resource ASR
• Goal: Transfer specific channel/style conditions learnt in a well-resourced (WR) 

language to a low-resourced (LR) language for which training data is not available 
• How? 

• Train multi-lingual/multi-task AM with WR+LR data in a common channel/style (ie. CTS).
• Adapt network using new channel/style WR data (ie. BN):

• Adapt only (at most) up to the last common layer, so the last language specific layers an 
unchanged.

• Transfer adapted first layer weights and concatenate with LR last layers.

• Related with transfer learning, model adaptation, low resource ASR, multi-lingual 
learning, etc.
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Abad et al. (2020), “Cross lingual transfer learning for zero-resource domain adaptation”, 
Proc. ICASSP 2020



Hybrid HMM/ANN ASR
Domain adaptation for low-resource ASR
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Hybrid HMM/ANN ASR
Domain adaptation for low-resource ASR

• CTS (Fisher) is the source condition and BN (hub4) is the target condition 
• Spanish is the LR language and English the WR language
• Experimental set-up:

– TDNN hires + pitch, no LF-MMI, no ivecs, all downsampled to 8kHz
– Use of matched LMs (CTS/BN test data is decoded with CTS/BN LM)
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Test condition

WR language LR language

CTS
source

BN
target

CTS
source

BN
target

mono-ling BN AM --- 11.8 --- 19.2*

mono-ling CTS AM 22.6 19.6 32.3 40.0

multi-ling CTS AM 23.6 19.2 32.6 32.9



Hybrid HMM/ANN ASR
Domain adaptation for low-resource ASR

• From 40.0% to 32.9% thanks to multilang and from 32.9% 
to 28.4 to nnet adapt & transfer learning à NO USE OF 
ANY ADDITIONAL LR TRAINING DATA!!!
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WR language LR language

BN target BN target

Upper bound 11.8 19.2

mono-ling CTS AM 19.6 40.0

multi-ling CTS AM 19.2 32.9

proposed CL adapt AM 14.5 28.4



Hybrid HMM/ANN ASR

Domain adaptation for low-resource ASR: 
Experiments with low-resourced languages
• Use BABEL training set:

• Exact same architecture as previous experiments

• Eval on BABEL dev and Material analysis_* test sets:
• CSTR MATERIAL LM à Trained on webnews
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Tagalog Lithuanian

BN TB avg BN TB avg

mono-ling CTS AM 53.2 58.7 57.3 45.6 43.0 44.0

multi-ling CTS AM 46.5 52.2 50.7 38.2 36.5 37.1

proposed CL adapt AM 41.9 48.5 46.8 31.6 32.1 31.9

• Same network architecture, training, 
decoding recipes and adaptation 
configuration (3 first hidden shared 
layers adapted for 1 epoch)

• Remarkable improvements in any of 
the two wide-band sub-domains:
• BN: relative WER improvements of 

21.2% for Tagalog and 30.7% for 
Lithuanian; 

• TB: 17.4% for Tagalog and 25.3% for 
Lithuanian. 

• Overall, average relative WER 
improvement of 18.3% and 27.5% 
for the Tagalog and Lithuanian.



Summary

• LVCSR has witnessed great improvements since 2012 due to the positive 
impact of deep learning
• First generation deep learning based ASR systems replace the AM of a 

hierarchical/statistical conventional system by a DNN:
• Better leverage of data
• Better context modeling
• Better accuracies (improving by a large margin long-standing SOA)

• Other key components contributed to improvements in HMM/DNN:
• Architectural and ML choices
• Data augmentation techniques
• Side-speaker information for SAT
• Sequence discriminative training
• Transfer learning methods



Proposed exercise (for those interested) using 
KALDI toolkit

• Install and compile KALDI in a machine with GPUs

• Identify in one of the KALDI recipes (for instance, librispeech) the 
different modules and techniques introduced in this seminar:
• Understand the role of each script and technique at an high-level

• Run one of these recipes (for instance, librispeech or minilibirispeech)



References (I)
Gales, M.J.F. & Young, Steve (2007) The Application of Hidden Markov Models in Speech Recognition. Foundations and Trends in 
Signal Processing. 1. 195-304.

Morgan and Bourlard (1995). Continuous speech recognition: Introduction to the hybrid HMM/connectionist approach, IEEE Signal 
Processing Mag., 12(3):24-42

A. Abad and J. Neto (2008), Incorporating acoustical modelling of phone transitions in an hybrid ANN/HMM speech 
recognizer , In INTERSPEECH-2008, Brisbane (Australia), September 2008

A. Abad et al. (2010), Context Dependent Modelling Approaches for Hybrid Speech Recognizers , In Interspeech 2010, ISCA, Makuhari
(Japan), September 2010

G. E. Dahl, et al (2012), Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition, in IEEE 
Transactions on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 30-42, Jan. 2012.

A Mohamed et al (2012). “Understanding how deep belief networks perform acoustic modelling”, Proc ICASSP-2012. 



References (II)
Hinton, et al. (2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. 
IEEE Signal Processing Magazine.

V Peddinti et al (2015). “A time delay neural network architecture for efficient modeling of long temporal contexts”, Interspeech 2015. 

Saon et al (2017), “English Conversational Telephone Speech Recognition by Humans and Machines”, Interspeech-2017. 

Vesely et al. (2013), “Sequence-discriminative training of deep neural networks”, in Proc. Interspeech, 2013. 

G. Saon et al. (2013), “Speaker adaptation of neural network acoustic models using i-vectors,” in Proc. ASRU 2013

D. Povey, et al. (2016), “Purely sequence-trained neural networks for ASR based on lattice-free MMI” in Proc. Interspeech, 2016.

Abad et al. (2020), “Cross lingual transfer learning for zero-resource domain adaptation”, in Proc. ICASSP, 2020.


