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Problem Class 3

Clearly present your approximations and enclose all pertinent calculations. Try to solve the
problems yourself. Follow the instructions of the Lecturer.

(To practice at home) Bernstein-Kruskal-Green modes. Consider a uniform plasma, mag-
netized by an externally imposed magnetic field B0 = B0ez. As you must remember from the
previous plasma course, within the fluid description of plasma, there is an electron mode (electro-
static) propagating at the transverse direction of the magnetic field with dispersion relation

ω2 = ω2
pe + ω2

ce + 3k2v2e ,

where ωce = eB0/me is the electron cyclotron frequency. The quantity ωUH =
√
ω2
pe + ω2

ce receives
the name of upper hybrid frequency. The goal of the present exercise is to look for a kinetic
formulation for the transverse electrostatic modes that can take place in this system. A nice
treatment of this problem can be found in the book “Principles of Plasma Physics”, by Krall &
Trievelpiece.

a) Start by linearizing the Vlasov equation for the electrons (neglect the motion of the ions). Show
that, in order to an equilibrium fe0 to exist, the following condition must hold

∂fe0
∂θ

= 0,

i.e. that the equilibrium is a function of vz and v⊥ ≡
√
v2x + v2y only.

b) At lowest (i.e. unperturbed) order, the velocity of the particles must satisfy the equation

v̇ = − e

me
v ×B0.

With that in mind, show that the linearized Vlasov equation leads to

D

Dt
fe1 =

e

me

(
E1 + v′ ×B1

)
· ∂fe0
∂v′

,

where D/Dt = ∂/∂t+ v ·∇− e

me
(v ×B0) ·∇v is the total phase-space derivative at lowest

order, and B1 is the perturbation to the magnetic field lines due to the wave (which slightly

https://www.amazon.com/Principles-Plasma-Physics-Nicholas-Krall/dp/0911302581
https://www.amazon.com/Principles-Plasma-Physics-Nicholas-Krall/dp/0911302581


changes the helicoidal trajectories of the particles). Explain why the formal solution of the first
order equation is therefore given by

fe1(r,v, t) =
e

me

∫ t

−∞

[
E1(r

′, t′) + v′ ×B1(r
′, t′)

]
· ∂fe0
∂v′

dt′,

where the primes stands for quantities perturbed in phase by the wave.

c) At lowest order, the velocity may be decomposed into its components as v = (v⊥ cos θ, v⊥ sin θ, vz).
In the presence of perturbations, it is easy to understand that a phase proportional to the cy-
clotron frequency must be added, such that the most generic ansatz for the velocities is

v′ = (v⊥ cosχ, v⊥ sinχ, vz),

where χ = θ + ωce(t − t′). Use the chain rule to eliminate v′ in the equations and show that,
for the case of electrostatic waves (B1 = 0), we have

fe1(r,v, t) = − e

me

∫ t

−∞

(
Ex

∂fe0
∂v⊥

cosχ+ Ey
∂fe0
∂v⊥

sinχ

)
dt′.

d) For simplicity, let us assume propagation along xx, E1x(x′, t′) = Ẽ1e
ik(x−x′)−iω(t−t′). First,

integrate the velocity transformation to obtain the relation

x− x′ = v⊥
ωce

(sin θ − sinχ) = − v⊥
ωce

sin[ωce(t− t′)],

where we have taken θ = 0. Second, make use of the Bessel identity,

eia sinx =
+∞∑

n=−∞
Jn(a)einx,

to show that

f̃e1 = − e

me

∫ t

−∞

[
Ẽ1
∂fe0
∂v⊥

cos[ωce(t− t′)]
+∞∑

n=−∞
Jn

(
kv⊥
ωce

)
e−i(nωce−ω)(t−t′)

]
dt′.

= − ie

me

[
Ẽ1
∂fe0
∂v⊥

+∞∑
n=−∞

Jn

(
kv⊥
ωce

)
n(ω − ωce)

n2 (ω − ωce)2 − ω2
ce

]
.

e) Make use of the Poisson equation to show that the dielectric function reads

ε(k, ω) = 1−
ω2
pe

k

+∞∑
n=−∞

∫
Jn

(
kv⊥
ωce

)
n(ω − ωce)

n2 (ω − ωce)2 − ω2
ce

∂ge0
∂v⊥

dv⊥.

The dispersion relation for the case of a Maxwellian plasma must be found numerically. How-
ever, it is possible to obtain analytical solutions for the cold plasma case, g0e(v⊥) = δ(v⊥).



Problem 1. The Kortweg-de Vries equation. Let us consider the propagation of nonlin-
ear ion-acoustic waves in uniform, unmagnetized plasmas. For that, we should rely on a fluid
description of the problem (consider one-dimensional electrostatic waves, for simplicity)

∂nα
∂t

+
∂(nαuα)

∂x
= 0,

∂uα
∂t

+ uα
∂uα
∂x

=
qα
me

E − 1

mαnα

∂Pα
∂x

.

a) At the scale of the ion motion, the electrons are not at rest. On the contrary, they move so
fast that they follow the ions adiabatically, therefore being in thermal equilibrium. Show that
the linearlized Poisson equation yields(

∂2

∂x2
− 1

λ2De

)
φ1 = − e

ε0
n1.

b) Make use of the equations of motion for the ions to show that, in the limit Ti � Te, we obtain

ω =
csk√

1 + k2λ2De

. (1)

c) We now come back to the original equations, but keeping the nonlinearity appearing in the
momentum conservation equation (the so-called convective term). Show that

F
[(

∂

∂t
+ ui

∂ui
∂x

)
ui

]
= −i

ω2
pi

ω

k2λ2De
1 + k2λ2De

ũi1, (2)

where F [A(x, t)] ≡ Ã(k, ω) is the Fourier transform of a certain quantity A(x, t).

d) We are interested in the region of the ion spectrum where the dispersion starts loosing its
acoustic character, kλDe ' 1. For that, we replace ω in the denominator of Eq. (2). Then,
we expand the denominator in the second factor of the RHS to first order. Upon replacing

k → −i ∂
∂x

(momentum operator in quantum mechanics, right?), show that Eq. (2) reduces to
the Kortweg-de Vries equation,

∂ui
∂t

+ ui
∂ui
∂x

+ cs
∂ui
∂x

+
1

2
csλ

2
De

∂3ui
∂x3

= 0.

e) Make use of the Mathematica script available at our webpage to observe what happens in the
following cases: i) neglecting the nonlinear term, ii) neglecting the dispersive term. Discuss
with your colleagues the physics of both numerical solutions.

f) Simulate the case of two solitons colliding against each other. Observe the features of such
collisions. Do the wavepackets break at anytime? What happens to the original form of the
solitons after the collision? Maybe you are ready to explain to your colleagues why these
nonlinear waves receive the name of solitons.

https://fenix.tecnico.ulisboa.pt/disciplinas/FPA/2021-2022/1-semestre/additional-support-material


Problem 2. Trievelpiece-Gould waves. Consider a plasma produced at the interior of a
cylindrical container of radius a. Let us assume, for definiteness, that such a container is metallic.
In the following calculations, we make use of the cylindrical coordinates (r, θ, z), and consider
waves propagating along the column axis, i.e. the z− direction.

a) Start by showing that the Poisson equation can be written as(
∇2
⊥ +

∂2

∂z2

)
Φ =

e

ε0
(ne − ni) ,

where Φ = Φ(r, θ, z) = φ(r, θ)ϕ(z), and ni(x, y, z) and ne(x, y, z) are the 3D ionic and electronic
densities, respectively.

b) Consider the homogeneous Poisson (or Laplace) equation, resulting from the plasma approxi-
mation. Making use of the separation of variables above, show that the transverse component
of the potential satisfies the Helmholtz equation

∇2
⊥φ+ q2φ = 0, (3)

where q is some arbitrary constant.

c) For symmetry reasons, we may expect φ(r, θ) to display radial symmetry. As such, it can be
decomposed as

φ(r, θ) =
∑
`

R`(r)e
i`θ,

where ` is an integer (why?). Show that the R`(r) satisfy the Bessel equation,

x2R
′′
` + xR

′
` +

(
x2 − `2

)
R` = 0,

where x = qr.

d) Make use of the appropriate boundary conditions to show that the formal profile of the trans-
verse potential is given by

φ(r, θ) =
∑
n,`

A`J`(kn,`r)ei`θ,

where kn,` = αn,`/a and αn,` is the nth zero of the `th Bessel function of the first kind, J`(x).

e) We now restrict the discussion to the first harmonic, i.e. ` = 0, corresponding to the lowest
excitation along the transverse direction (i.e. the potential vanishes only at the border of the
container). In what follows, we show that the longitudinal electron waves inherit the structure
of the transverse potential. First, convince yourself that the resulting potential along the z−
direction reads (

∂2

∂z2
− k2n

)
ϕ =

e

ε0
(ne − ni) ,

where kn ≡ αn,0/a. Then, work out the fluid equations to obtain the dispersion relation of the
Trivelpiece-Gould waves

ω2 = ω2
pe

k2

k2 + k2n
+ γev

2
ek

2, (4)

where ve =
√
kBTe/me. Plot the dispersion relation for the first and second harmonics (n = 0

and n = 1) and explain what is happening physically. What is apparently strange with these
waves? Does it remind you of something?

More on this issue... The Trivelpiece-Gould waves have been obtained in the quantum case in
Physics of Plasmas 15, 072109 (2008).

https://doi.org/10.1063/1.2947235

