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Problem Class 1

[Solutions]

Clearly present your approximations and enclose all pertinent calculations. Try to solve the
problems yourself. Follow the instructions of the Lecturer.

Problem 1. Vlasov equation. As derived in the theory class, the Klimontovich equation for
the α-species of the plasma reads

∂Nα

∂t
+ v ·∇Nα +

F
(m)
α

mα
·∇vNα = 0, (1)

where F(m)
α is the microscopic force (due to the microscopic fields E(m) and B(m)). Define the

smooth distribution function fα(r,v, t), in terms of which we may rewrite the microscopic distri-
bution function as

Nα(r,v, t) = fα(r,v, t) + δNα(r,v, t).

a) Discuss in class with your colleagues the physical meaning of both fα and δNα.

As discussed in class, Nα(r,v, t) =

N0∑
i=1

δ(r − ri(t))δ(v − vi(t)), represents a “fuzzy” distri-

bution function in the 6N− dimensional phase-space for the α−species of the plasma (also
known as the Klomontovich function). By defining the “smooth” distribution function as
fα(r,v, t) = 〈Nα(r,v, t)〉, fα(r,v, t) appears as the averaged distribution function. As such,
since we may decompose the Klimontovich function as

Nα(r,v, t) = fα(r,v, t) + δNα(r,v, t),

we may interpret the last term as the fluctuations on top of the smooth function. Notice
that the latter decomposition is exact, with fα describing the physics at the time scales
t & 1/ωp,α, i.e. it embodies the collective response of the plasma, while δNα contains infor-
mations about short-scale collisions taking place at the timescales t� 1/ωp,α (collisions).



b) Average out the Klimontovich equation and show that the equation for the smooth function
fα now reads

∂fα
∂t

+ v ·∇fα +
Fα
mα
·∇vfα = C[δNα],

specifying the form (and the physical meaning) of C[δNα]. Is the latter equation more or less
accurate than Eq. (1)?

Plugging the decomposition of the previous point in Eq. (1), we obtain

(∂fα + δNα)

∂t
+ v ·∇ (fα + δNα) +

Fα + δF
(m)
α

mα
·∇v (fα + δNα) = 0,

where we have also defined Fα = 〈F(m)
α 〉. We now take the average of the whole equation.

Noticing that the average value of the fast oscillating contributions vanishes, 〈δNα〉 =
〈δF(m)

α 〉 = 0, we have

∂fα
∂t

+ v ·∇fα +
Fα
mα
·∇vfα = −

〈δF(m)
α

mα
·∇vδNα

〉
.

The last term can be readily identified with the collision integral C[δNα].

c) Consider the case of a fully ionized, dilute plasma, for which the free mean path is sufficiently
large, i.e. under the condition nα`3α � 1 (understand the physical meaning of this approxima-
tion). Show that the plasma is appropriately described by the Vlasov equation

∂fα
∂t

+ v ·∇fα +
Fα
mα
·∇vfα ' 0.

Discuss how you would relate the mean-field force Fα to the EM-fields and the distribution
function fα, when dealing with both electrostatic and electromagnetic phenomena.

In the dilute conditions described above, a fully ionized plasma should not undergo too many
short-range collisions, which happens for two main reasons: i) the neutrals are absent, and
ii) the short-range e− e, e− i and i− i Coulomb collisions are not important at the scales
L & λD (i.e. scales larger than the Debye length, above which quasi-neutrality can be
assumed). This last condition is achieved provided that λD . `α (i.e. shielding occurs at
sufficiently short distances, and the rare collisions take place outside the Debye sphere). In
this collisionless limit, we may neglect C[δNα]. The force acting on each species should be
the Lorentz form,

Fα(r, t) =
qα
mα

(E(r, t) + v ×B(r, t)) ,

with the fields E(r, t) and B(r, t) governed by Maxwell’s equations. In the latter, the source
terms (charge density, ρ, and charge current, J) are related to the phase-space distribution
functions fα(r,v, t) as

ρ(r, t) = e

∫
{fi(r,v, t)− fe(r,v, t)} dv, J(r, t) = e

∫
{vfi(r,v, t)− vfe(r,v, t)} dv.



Problem 2. Electrostatic waves. Let us consider small fluctuations around a certain initial
distribution (that we here assume to be the thermal equilibrium) as fα = f0,α + f1,α, where
f1,α � f0,α is a small perturbation.

c) Show that the dielectric function reads

ε(k, ω) = 1 +
∑
α

ω2
pα

k

∫ +∞

−∞

g′0,α(v)

ω − kv
dv, (2)

where v = v · k̂ and f0,α(v) = n0g0,α(v) for homogeneous plasmas (quasi-neutrality is assumed
here, so n0,e = n0,i ≡ n0.

At linear order, i.e. by neglecting terms of the order O
(
f21,α

)
the Vlasov equation for an

unmagnetized plasma reads

∂f1,α
∂t

+ v ·∇f1,α +
qα
mα

E1 ·∇vf0,α ' 0.

Here, we have assumed that the plasma is not electrified, E0 = 0, which is compatible with
the assumption that the plasma is quasi-neutral. Any electric field appearing must be of
first order, being associated with the fluctuations. Since the resulting equation is linear, it
is convenient to introduce the double Fourier transform of a generic quantity A(r, t) over
the spacial and temporal variables, as

Ã(k, ω) =

∫
A(r, t)eik·r−iωt.

After Fourier-transforming the Vlasov equation, we get, for homogeneous plasmas,
f0,α(r,v) = n0,αg0,α(v),

−i (ω − k · v) f̃1,α +
qαn0,α
mα

Ẽ1 ·∇vg0,α = 0 ⇒ f̃1,α = − iqαn0,α
mα

Ẽ1 ·∇vg0,α
ω − k · v

.

At first order, the Poisson equation relates the electric field to the phase-space distributions
as

ik ·E1 =
e

ε0
(ni − ne) '

e

ε0

∫ (
f̃1,i − f̃1,e

)
dv,

where we have assumed the quasi-neutrality condition, ne,0 ≡
∫
dvfe,0 =

∫
dvfi,0 ≡ ni,0.

Putting things together, we get

ik ·E1 = −i

(
e2n0
ε0mi

∫
Ẽ1 ·∇vg0,i
ω − k · v

dv +
e2n0
ε0me

∫
Ẽ1 ·∇vg0,e
ω − k · v

dv

)
.

ik ·E1 = −ik ·

(
ω2
p,i

k

∫
Ẽ1g

′
0,i(v)

ω − kv
dv +

ω2
p,e

k

∫
Ẽ1g

′
0,e

ω − kv
dv

)
,

where v = v · k/k and k = |k|. Finally, by identifying the latter equation as the Poisson
equation for the displacement vector in the plasma, ik · D̃1 = 0, with D̃1 = ε0ε(k, ω)Ẽ1, we
recover the stated result.



b) Let us focus on the case of electronic waves only. As such, we take the limit in which ions are
inertia-less, mi →∞. Assuming that electrons follow the Maxwell-Boltzmann distribution,

g0,e =
1√
2πve

e−v
2/(2v2e),

where ve =
√
kBTe/me is the electron thermal speed. Moreover, it is expected for electron

plasma waves to feature very large phase speeds in the long-wavelength limit k → 0 (why?), i.e.
they satisfy the condition ω/k � ve. Obtain the dispersion relation for the Langmuir waves,

ω =
√
ω2
pe + 3v2ek

2.

Discuss this result in the light of what you have learned from the hydrodynamic formulation
of plasmas, with Prof. Jorge Vieira.

Because of the smallness of the electron-to-ion mass ratio, me/mi � 1, we can assume the
ions to remain immobile at the scale of the electron oscillations. This is the so-called the
inertialess limit of the ions, mi → ∞, which is equivalent to set ωpi → 0 in the expression
for the dielectric permittivity,

ε(k, ω) ' 1 +
ω2
pα

k

∫ +∞

−∞

g′0,e(v)

ω − kv
dv = 1−

ω2
pα

k2

∫ +∞

−∞

g′0,e(v)

v − vϕ
dv = 1−

ω2
pα

k2

∫ +∞

−∞

g0,e(v)

(v − vϕ)2
dv,

where vϕ = ω/k is the phase velocity of the wave (the last step is achieved upon integration
by parts). Since the electron waves feature large phase speeds in the long-wavelength limit
k → 0,

vϕ =
ω

k
' ωpe

k
� ve,

with ve =
√
kBTe/me denoting the electron thermal speed, we may expand the denominator

in the dielectric function in powers of v/vϕ, reads

ε(k, ω) ' 1−
ω2
pα

k2v2ϕ

∫ +∞

−∞
g0,e(v)

(
1 + 2

v

vϕ
+ 3

v2

v2ϕ
+ . . .

)
dv.

The integrals are straight forwardly computed, with the first term yiealding 1 (normalization
condition) and the second term being zero for the obvious reasons (the distribution is an
even function). The third term contributes as 3v2e/v

2
ϕ = 3v2ek

2/ω2, such that

ε(k, ω) ' 1−
ω2
pe

ω2

(
1 + 3

v2ek
2

ω2

)
.

The dispersion relation can then be found by setting ε(k, ω) = 0. For convenience, we ap-
proximate the term ω4 in the denominator as ω4 ' ω2ω2

pe, thus circumventing the handling
of a polynomial equation of fourth order (which is not that complicated in our case, but we
do it for historical reasons). We should finally get the dispersion relation in the statement,

ωp =
√
ω2
pe + 3v2ek

2 ' ωpe +
3

2
v2ek

2.

Without this approximation, we would get

ω =
1√
2

√
ω2
pe +

√
ω2
pe

(
ω2
pe + 12v2ek

2
)
' ωpe +

3

4
v2ek

2.

Not bad, right?



c) Consider now oscillation taking place in the ion sector. For that task, we may anticipate that
some of the previous considerations for the electrons remain valid. However, we can no longer
assume the electrons to be inertialess (why?). On the contrary, we assume that electrons follow
the motion of the ions adiabatically, therefore remaining in thermal equilibrium at all times.
Make the proper adjustments to Eq. (2) to show that the dispersion relation of ion-acoustic
waves is given by

ω ' csk√
1 + k2λ2D

.

Obtain explicit expressions for cs and λD in terms of the basic parameters of the system and
discuss their physical meaning.

Since we are now interested in the motion of the ions, we take into account their mass:
they are not inertialess any longer. As such, we repeat the previous arguments for the ion
contribution and write the dielectric perttimivity as

ε(k, ω) ' 1−
ω2
pi

ω2

(
1 + 3

v2i k
2

ω2

)
−
ω2
pe

k2

∫ +∞

−∞

g′0,e(v)

v − vϕ
dv.

We notice, however, that the phase speed of the ion waves is much smaller than the thermal
speed of the electrons, vϕ � ve, which allows us to approximate the last integral as∫ +∞

−∞

g′0,e(v)

v − vϕ
dv '

∫ +∞

−∞

g′0,e(v)

v
dv =

1√
2πv2e

∫ +∞

−∞

−�ve−v
2/2v2e

�v
dv =

1

v2e
.

The dielectric permittivity now reads

ε(k, ω) ' 1−
ω2
pi

ω2

(
1 + 3

v2i k
2

ω2

)
+

1

k2λ2D
,

where λD = ve/ωpe =
√
ε0kBTe/e2n0. Using again the trick ω4 ' ω2ω2

pi, we get set
ε(k, ω) = 0 to obtain the dispersion relation

ω =
ωpiλDk√
1 + k2λ2D

(
1 + 3

Ti
Te
k2λ2D

)1/2

.

The dispersion relation in the statement can be found in the limit of cold ions, Ti � Te,
and upon definition of the ion-acoustic sound speed, cs ≡ ωpiλD =

√
kBTe/mi. The latter

contains a very peculiar information: the typical speed of the ions is dictated by the ion
inertia (mi) but contains information about the electron temperature (Te). The reason
for that is easy to guess: ions are much slower than electrons; as such, the latter are able
remain in thermal equilibrium as the former move (in other words, the electrons follow the
ion motion adiabatically). Ions therefore feature an acoustic mode because of the Debye
shielding. It is now understandable why the contrary does not happen: the ions do not
provide such a shielding for the electrons.

d) Plot the dispersion relation ω vs k and digress over its features in both limits kλD � 1 and
kλD � 1. Vividly discuss your conclusions with your colleagues.



In the long-wavelength limit, kλD � 1, the dispersion relation of the ion waves is
acoustic

ω ' csk.

This is so since the wavelength is much larger than the Debye length, λ � λD, which
means that the wave does not have enough resolution to “see” what happens inside
the Debye sphere. In this limit, Debye shielding is effective and the resulting ion-ion
interaction is of the form ∼ e−r/λD/r, that of a short-range potential of scale λD (the
potential dies out very quickly outside the Debye sphere). Physically, this means that
excitation of ion waves is local, and requires only an infinitesimal amount of energy
to be produced, ω → 0 as k → 0. This is a general feature of short-range potentials,
and it is ultimately related with the fact that acoustic modes are a consequence of the
Goldstone theorem. Remember what the latter states: for each continuous symmetry
that is broken in the system, there is a massless field kicking in the theory. Here,
the massless field would be ion-acoustic wave, which one could express in terms of a
classical field, while the symmetry (much harder to identify here) is that of a global
phase.

In the short-wavelength limit, however, the dispersion relation reads

ω ' csk

λDk
= ωpi.

As we can observe, the spectrum is gapped, ω → ωpi, similarly to what happens for the
electron plasma (Langmuir) waves. The reason for that stems in the fact that short-
wavelength fluctuations resolve the Debye sphere, does preventing ion shielding to take
place effectively: the ions are no longer shielded and, therefore, feature a potential of
the form 1/r, the so-called “bare” Coulomb potential. As you can imagine, the cost of
energy associated to the excitation of such a mode is finite, since the ions participating
in that motion interact all over the system (there is no typical scale for the interaction).


