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Problem Class 2

Clearly present your approximations and enclose all pertinent calculations. Try to solve the
problems yourself. Follow the instructions of the Lecturer.

(To practice at home) Landau damping. As we have seen in class, the kinetic dispersion
relation requires the evaluation of the integral over the complex plane, since ω = ωr + iωi,
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a) Assuming ωi � ωr, make use of Plemelj’s formula,
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to show that the kinetic dielectric function may be written as
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Identify the first and the second terms with the real and imaginary components of the dielectric
function, εr(k, ω) and εi(k, ω).

b) Since ωi � ωr, we may expand εr and εi around ωr at first order in ωi. Obtain the formula to
compute the imaginary part of the frequency explicitly,
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c) Concretize for the case of the Langmuir waves in a Maxwell-Boltzmann plasma, and show that
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Define y ≡ ωi/ωpe and x ≡ kλD to plot the previous result. Observe its features and interpret
them physically.



Problem 1. Beam-plasma instability. Consider a cold, homogeneous plasma composed by
ions and electrons, where the ions are at rest and the electrons are streaming with velocity v0 =
v0ex. Consider electrostatic perturbations only.

a) Discuss the form of the equilibrium functions g0,e(v) and g0,i(v) and show that the dielectric
function for this problem reads
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with ω0 = kv0 being the streaming frequency.

b) The computation of the dispersion relation involves a fourth-order polynomial, for which we
may expect four real roots. Plot ε(k, ω) and observe that it only contains two real roots for
ω0 < ωc, where ωc is a certain critical value. Discuss with your colleagues how this relates to
the onset of a dynamical instability in the plasma and determine the value of ωc.

c) Show that the instability terminates at the cut-off wavevector kc given by
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What happens for modes k > kc?

d) Its is expected that the instability driven in the ion motion happens at a much slower scale than
that of the streaming mode, i.e. ω � ω0 (why?). So, we may look for the most unstable mode,
kmax, which maximizes the imaginary part of the frequency (ωi,max ≡ max(ωi(k)) = ωi(kmax)).
Expand Eq. (1) and show that
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e) With the help of Mathematica, solve the kinetic dispersion relation numerically and obtain
the ωr(k) and ωi(k) for a certain value of ωpi/ωpe (or, equivalently, for a certain mass ration
mi/me). Identify the features that you estimated analytically in the previous points. Discuss
the results with your colleagues.

Problem 2. The Krook collision integral. Assume that your plasma is sufficiently dense such
that collisions start to become important. A way to take them into account is by adding a collision
integral within the relaxation-time (Krook) approximation to the RHS of the Vlasov equation(
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where f0,e(x,v, t) is the equilibrium distribution function, as usual. We neglect the effect of the
ions, which are considered to be at rest.

a) Show that, at first order in fe − f0,e, we may write
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b) Consider that a constant electric field E is applied to a homogeneous, unmagnetized plasma.
Use the previous result to derive Ohm’s law,

Je = σeE (2)

where σe = e2n0/νme is the electron conductivity and n0 is the plasma density. If the calcula-
tions were repeated in the presence of a transverse magnetic field (B ⊥ E), what kind of effect
would Eq. (2) be describing (argue without calculations)?

c) Consider now the case of particle transport in such a collisional plasma. For that, neglect
the electric field and assume that a temperature gradient ∇T is present at the terminal of the
plasma. You may expect that the system is no longer homogenous (think about the microscopic
meaning of “temperature gradient”). Show that the particle current J = Je/e is given by Fick’s
Law,

J = −κ∇T, κ =
2n0
3νme

CV ,

where κ is the heat conductivity and CV = ∂〈E〉/∂T is the specific heat.


