

DISTRIBUTED SYSTEMS
Concepts and Design
Fifth Edition

 229

6

INDIRECT COMMUNICATION
6.1 Introduction
6.2 Group communication
6.3 Publish-subscribe systems
6.4 Message queues
6.5 Shared memory approaches
6.6 Summary

This chapter completes our tour of communication paradigms by examining indirect
communication; it builds on our studies of interprocess communication and remote
invocation in Chapters 4 and 5, respectively. The essence of indirect communication is to
communicate through an intermediary and hence have no direct coupling between the
sender and the one or more receivers. The important concepts of space and time
uncoupling are also introduced.

The chapter examines a range of indirect communication techniques:

• group communication, in which communication is via a group abstraction with the
sender unaware of the identity of the recipients;

• publish-subscribe systems, a family of approaches that all share the common
characteristic of disseminating events to multiple recipients through an
intermediary;

• message queue systems, wherein messages are directed to the familiar abstraction
of a queue with receivers extracting messages from such queues;

• shared memory–based approaches, including distributed shared memory and tuple
space approaches, which present an abstraction of a global shared memory to
programmers.

Case studies are used throughout the chapter to illustrate the main concepts introduced.

230 CHAPTER 6 INDIRECT COMMUNICATION

6.1 Introduction

This chapter concludes our examination of communication paradigms by examining
indirect communication, building on the studies of interprocess communication and
remote invocation in Chapters 4 and 5, respectively. Indirection is a fundamental
concept in computer science, and its ubiquity and importance are captured nicely by the
following quote, which emerged from the Titan Project at the University of Cambridge
and is attributable to Roger Needham, Maurice Wilkes and David Wheeler:

All problems in computer science can be solved by another level of indirection.

In terms of distributed systems, the concept of indirection is increasingly applied to
communication paradigms.

Indirect communication is defined as communication between entities in a
distributed system through an intermediary with no direct coupling between the sender
and the receiver(s). The precise nature of the intermediary varies from approach to
approach, as will be seen in the rest of this chapter. In addition, the precise nature of
coupling varies significantly between systems, and again this will be brought out in the
text that follows. Note the optional plural associated with the receiver; this signifies that
many indirect communication paradigms explicitly support one-to-many communication.

The techniques considered in Chapters 4 and 5 are all based on a direct coupling
between a sender and a receiver, and this leads to a certain amount of rigidity in the
system in terms of dealing with change. To illustrate this, consider a simple client-server
interaction. Because of the direct coupling, it is more difficult to replace a server with
an alternative one offering equivalent functionality. Similarly, if the server fails, this
directly affects the client, which must explicitly deal with the failure. In contrast,
indirect communication avoids this direct coupling and hence inherits interesting
properties. The literature refers to two key properties stemming from the use of an
intermediary:

Space uncoupling, in which the sender does not know or need to know the identity
of the receiver(s), and vice versa. Because of this space uncoupling, the system
developer has many degrees of freedom in dealing with change: participants (senders
or receivers) can be replaced, updated, replicated or migrated.

Time uncoupling, in which the sender and receiver(s) can have independent
lifetimes. In other words, the sender and receiver(s) do not need to exist at the same
time to communicate. This has important benefits, for example, in more volatile
environments where senders and receivers may come and go.

For these reasons, indirect communication is often used in distributed systems where
change is anticipated – for example, in mobile environments where users may rapidly
connect to and disconnect from the global network – and must be managed to provide
more dependable services. Indirect communication is also heavily used for event
dissemination in distributed systems where the receivers may be unknown and liable to
change – for example, in managing event feeds in financial systems, as featured in
Chapter 1. Indirect communication is also exploited in key parts of the Google
infrastructure, as discussed in the major case study in Chapter 21.

SECTION 6.1 INTRODUCTION 231

The discussion above charts the advantages associated with indirect
communication. The main disadvantage is that there will inevitably be a performance
overhead introduced by the added level of indirection. Indeed, the quote above on
indirection is often paired by the following quote, attributable to Jim Gray:

There is no performance problem that cannot be solved by eliminating a
level of indirection.

In addition, systems developed using indirect communication can be more difficult to
manage precisely because of the lack of any direct (space or time) coupling.

A closer look at space and time uncoupling • It may be assumed that indirection implies
both space and time uncoupling, but this is not always the case. The precise relationship
is summarized in Figure 6.1

Figure 6.1 Space and time coupling in distributed systems

Time-coupled Time-uncoupled

Space coupling

Properties: Communication directed
towards a given receiver or receivers;
receiver(s) must exist at that moment in
time
Examples: Message passing, remote
invocation (see Chapters 4 and 5)

Properties: Communication directed
towards a given receiver or receivers;
sender(s) and receiver(s) can have
independent lifetimes
Examples: See Exercise 6.3

Space uncoupling

Properties: Sender does not need to
know the identity of the receiver(s);
receiver(s) must exist at that moment in
time
Examples: IP multicast (see Chapter 4)

Properties: Sender does not need to know
the identity of the receiver(s); sender(s)
and receiver(s) can have independent
lifetimes
Examples: Most indirect communication
paradigms covered in this chapter

.
From this table, it is clear that most of the techniques considered in this book are

either coupled in both time and space or indeed uncoupled in both dimensions. The top-
left box represents the communication paradigms featured in Chapters 4 and 5 where
communication is direct with no space or time uncoupling. For example, message
passing is both directed towards a particular entity and requires the receiver to be present
at the time of the message send (but see Exercise 6.2 for an added dimension introduced
by DNS name resolution). The range of remote invocation paradigms are also coupled
in both space and time. The bottom-right box represents the main indirect
communication paradigms that exhibit both properties. A small number of
communication paradigms sit outside these two areas:

• IP multicast, as featured in Chapter 4, is space-uncoupled but time-coupled. It is
space-uncoupled because messages are directed towards the multicast group, not
any particular receiver. It is time-coupled, though, as all receivers must exist at the
time of the message send to receive the multicast. Some implementations of group
communication and indeed publish-subscribe systems, also fall into this category
(see Section 6.6). This example illustrates the importance of persistency in the

232 CHAPTER 6 INDIRECT COMMUNICATION

communication channel to achieve time uncoupling – that is, the communication
paradigm must store messages so that they can be delivered when the receiver(s)
is ready to receive. IP multicast does not support this level of persistency.

• The case in which communication is space-coupled but time-uncoupled is more
subtle. Space coupling implies that the sender knows the identity of a specific
receiver or receivers, but time uncoupling implies that the receiver or receivers
need not exist at the time of sending. Exercises 6.3 and 6.4 invite the reader to
consider whether such a paradigm exists or could be constructed.

Returning to our definition, we treat all paradigms that involve an intermediary as
indirect and recognize that the precise level of coupling will vary from system to system.
We revisit the properties of different indirect communication paradigms in Section 6.6,
once we have had a chance to study the precise characteristics of each approach.

The relationship with asynchronous communication • Note that, to fully understand this
area, it is important to distinguish between asynchronous communication (as defined in
Chapter 4) and time uncoupling. In asynchronous communication, a sender sends a
message and then continues (without blocking), and hence there is no need to meet in
time with the receiver to communicate. Time uncoupling adds the extra dimension that
the sender and receiver(s) can have independent existences; for example, the receiver
may not exist at the time communication is initiated. Eugster et al. also recognize the
important distinction between asynchronous communication (synchronization
uncoupling) and time uncoupling [2003].

Many of the techniques examined in this chapter are time-uncoupled and
asynchronous, but a few, such as the MessageDispatcher and RpcDispatcher operations
in JGroups, discussed in Section 6.2.3, offer a synchronous service over indirect
communication.

The rest of the chapter examines specific examples of indirect communication
starting with group communication in Section 6.2. Section 6.3 then examines the
fundamentals of publish-subscribe systems, with Section 6.4 examining the contrasting
approach offered by message queues. Following this, Section 6.5 considers approaches
based on shared memory abstractions, specifically distributed shared memory and tuple
space–based approaches.

6.2 Group communication

Group communication provides our first example of an indirect communication
paradigm. Group communication offers a service whereby a message is sent to a group
and then this message is delivered to all members of the group. In this action, the sender
is not aware of the identities of the receivers. Group communication represents an
abstraction over multicast communication and may be implemented over IP multicast or
an equivalent overlay network, adding significant extra value in terms of managing
group membership, detecting failures and providing reliability and ordering guarantees.
With the added guarantees, group communication is to IP multicast what TCP is to the
point-to-point service in IP.

SECTION 6.2 GROUP COMMUNICATION 233

Group communication is an important building block for distributed systems, and
particularly reliable distributed systems, with key areas of application including:

• the reliable dissemination of information to potentially large numbers of clients,
including in the financial industry, where institutions require accurate and up-to-
date access to a wide variety of information sources;

• support for collaborative applications, where again events must be disseminated
to multiple users to preserve a common user view – for example, in multiuser
games, as discussed in Chapter 1;

• support for a range of fault-tolerance strategies, including the consistent update of
replicated data (as discussed in detail in Chapter 18) or the implementation of
highly available (replicated) servers;

• support for system monitoring and management, including for example load
balancing strategies.

We look at group communication in more detail below, examining the programming
model offered and the associated implementation issues. We examine the JGroups
toolkit as a case study of a group communication service.

6.2.1 The programming model
In group communication, the central concept is that of a group with associated group
membership, whereby processes may join or leave the group. Processes can then send a
message to this group and have it propagated to all members of the group with certain
guarantees in terms of reliability and ordering. Thus, group communication implements
multicast communication, in which a message is sent to all the members of the group by
a single operation. Communication to all processes in the system, as opposed to a
subgroup of them, is known as broadcast, whereas communication to a single process
is known as unicast.

The essential feature of group communication is that a process issues only one
multicast operation to send a message to each of a group of processes (in Java this
operation is aGroup.send(aMessage)) instead of issuing multiple send operations to
individual processes.

The use of a single multicast operation instead of multiple send operations
amounts to much more than a convenience for the programmer: it enables the
implementation to be efficient in its utilization of bandwidth. It can take steps to send
the message no more than once over any communication link, by sending it over a
distribution tree; and it can use network hardware support for multicast where this is
available. The implementation can also minimize the total time taken to deliver the
message to all destinations, as compared with transmitting it separately and serially.

To see these advantages, compare the bandwidth utilization and the total
transmission time taken when sending the same message from a computer in London to
two computers on the same Ethernet in Palo Alto, (a) by two separate UDP sends, and (b)
by a single IP multicast operation. In the former case, two copies of the message are sent
independently, and the second is delayed by the first. In the latter case, a set of multicast-
aware routers forward a single copy of the message from London to a router on the
destination LAN in California. That router then uses hardware multicast (provided by the
Ethernet) to deliver the message to both destinations at once, instead of sending it twice.

234 CHAPTER 6 INDIRECT COMMUNICATION

The use of a single multicast operation is also important in terms of delivery
guarantees. If a process issues multiple independent send operations to individual
processes, then there is no way for the implementation to provide guarantees that affect
the group of processes as a whole. If the sender fails halfway through sending, then some
members of the group may receive the message while others do not. In addition, the
relative ordering of two messages delivered to any two group members is undefined.
Group communication, however, has the potential to offer a range of guarantees in terms
of reliability and ordering, as discussed in Section 6.2.2 below.

Group communication has been the subject of many research projects, including
the V-system [Cheriton and Zwaenepoel 1985], Chorus [Rozier et al. 1988], Amoeba
[Kaashoek et al. 1989; Kaashoek and Tanenbaum 1991], Trans/Total [Melliar-Smith et
al. 1990], Delta-4 [Powell 1991], Isis [Birman 1993], Horus [van Renesse et al. 1996],
Totem [Moser et al. 1996] and Transis [Dolev and Malki 1996] – and we shall cite other
notable work in the course of this chapter and indeed throughout the book (particularly
in Chapters 15 and 18).

Process groups and object groups • Most work on group services focuses on the
concept of process groups, that is, groups where the communicating entities are
processes. Such services are relatively low-level in that:

• Messages are delivered to processes and no further support for dispatching is
provided.

• Messages are typically unstructured byte arrays with no support for marshalling
of complex data types (as provided, for example, in RPC or RMI – see Chapter 5).

The level of service provided by process groups is therefore similar to that of sockets,
as discussed in Chapter 4. In contrast, object groups provide a higher-level approach to
group computing. An object group is a collection of objects (normally instances of the
same class) that process the same set of invocations concurrently, with each returning
responses. Client objects need not be aware of the replication. They invoke operations
on a single, local object, which acts as a proxy for the group. The proxy uses a group
communication system to send the invocations to the members of the object group.
Object parameters and results are marshalled as in RMI and the associated calls are
dispatched automatically to the right destination objects/methods.

Electra [Maffeis 1995] is a CORBA-compliant system that supports object
groups. An Electra group can be interfaced to any CORBA-compliant application.
Electra was originally built on top of the Horus group communication system, which it
uses to manage the membership of the group and to multicast invocations. In
‘transparent mode’, the local proxy returns the first available response to a client object.
In ‘non-transparent mode’, the client object can access all the responses returned by the
group members. Electra uses an extension of the standard CORBA Object Request
Broker interface, with functions for creating and destroying object groups and managing
their membership. Eternal [Moser et al. 1998] and the Object Group Service [Guerraoui
et al. 1998] also provide CORBA-compliant support for object groups.

Despite the promise of object groups, however, process groups still dominate in
terms of usage. For example, the popular JGroups toolkit, discussed in Section 6.2.3, is
a classical process group approach.

SECTION 6.2 GROUP COMMUNICATION 235

Other key distinctions • A wide range of group communication services has been
developed, and they vary in the assumptions they make:

Closed and open groups: A

Figure 6.2 Open and closed groups

Closed group Open group

group is said to be closed if only members of the group
may multicast to it (Figure 6.2). A process in a closed group delivers to itself any
message that it multicasts to the group. A group is open if processes outside the group
may send to it. (The categories ‘open’ and ‘closed’ also apply with analogous
meanings to mailing lists.) Closed groups of processes are useful, for example, for
cooperating servers to send messages to one another that only they should receive.
Open groups are useful, for example, for delivering events to groups of interested
processes.

Overlapping and non-overlapping groups: In overlapping groups, entities (process-
es or objects) may be members of multiple groups, and non-overlapping groups im-
ply that membership does not overlap (that is, any process belongs to at most one
group). Note that in real-life systems, it is realistic to expect that group membership
will overlap.

Synchronous and asynchronous systems: There is a requirement to consider group
communication in both environments.

Such distinctions can have a significant impact on the underlying multicast algorithms.
For example, some algorithms assume that groups are closed. The same effect as
openness can be achieved with a closed group by picking a member of the group and
sending it a message (one-to-one) for it to multicast to its group. Rodrigues et al. [1998]
discuss multicast to open groups. Issues related to open and closed groups arise in
Chapter 15, when algorithms for reliability and ordering are considered. That chapter
also considers the impact of overlapping groups and whether the system is synchronous
or asynchronous on such protocols.

236 CHAPTER 6 INDIRECT COMMUNICATION

6.2.2 Implementation issues

We now turn to implementation issues for group communication services, discussing the
properties of the underlying multicast service in terms of reliability and ordering and
also the key role of group membership management in dynamic environments, where
processes can join and leave or fail at any time.

Reliability and ordering in multicast • In group communication, all members of a group
must receive copies of the messages sent to the group, generally with delivery
guarantees. The guarantees include agreement on the set of messages that every process
in the group should receive and on the delivery ordering across the group members.

Group communication systems are extremely sophisticated. Even IP multicast,
which provides minimal delivery guarantees, requires a major engineering effort.

So far, we have discussed reliability and ordering in rather general terms. We now
look in more detail at what such properties mean.

Reliability in one-to-one communication was defined in Section 2.4.2 in terms of
two properties: integrity (the message received is the same as the one sent, and no
messages are delivered twice) and validity (any outgoing message is eventually
delivered). The interpretation for reliable multicast builds on these properties, with
integrity defined the same way in terms of delivering the message correctly at most once,
and validity guaranteeing that a message sent will eventually be delivered. To extend the
semantics to cover delivery to multiple receivers, a third property is added – that of
agreement, stating that if the message is delivered to one process, then it is delivered to
all processes in the group.

As well as reliability guarantees, group communication demands extra guarantees
in terms of the relative ordering of messages delivered to multiple destinations. Ordering
is not guaranteed by underlying interprocess communication primitives. For example, if
multicast is implemented by a series of one-to-one messages, they may be subject to
arbitrary delays. Similar problems may occur if using IP multicast. To counter this,
group communication services offer ordered multicast, with the option of one or more
of the following properties (with hybrid solutions also possible):

FIFO ordering: First-in-first-out (FIFO) ordering (also referred to as source
ordering) is concerned with preserving the order from the perspective of a sender
process, in that if a process sends one message before another, it will be delivered in
this order at all processes in the group.

Causal ordering: Causal ordering takes into account causal relationships between
messages, in that if a message happens before another message in the distributed
system this so-called causal relationship will be preserved in the delivery of the
associated messages at all processes (see Chapter 14 for a detailed discussion of the
meaning of ‘happens before’).

Total ordering: In total ordering, if a message is delivered before another message
at one process, then the same order will be preserved at all processes.

Reliability and ordering are examples of coordination and agreement in distributed
systems, and hence further consideration of this is deferred to Chapter 15, which focuses
exclusively on this topic. In particular, Chapter 15 provides more complete definitions

SECTION 6.2 GROUP COMMUNICATION 237

of integrity, validity, agreement and the various ordering properties and also examines
in detail algorithms to realize reliable and ordered multicast.

Group membership management • The key elements of group communication
management are summarized in Figure 6.3, which shows an open group

Figure 6.3 The role of group membership management

Join

Group
address

expansion

Multicast
communication

Group
send

Fail Group membership
management

Leave

Group

. This diagram
illustrates the important role of group membership management in maintaining an
accurate view of the current membership, given that entities may join, leave or indeed
fail. In more detail, a group membership service has four main tasks:

Providing an interface for group membership changes: The membership service
provides operations to create and destroy process groups and to add or withdraw a
process to or from a group. In most systems, a single process may belong to several
groups at the same time (overlapping groups, as defined above). This is true of IP
multicast, for example.

Failure detection: The service monitors the group members not only in case they
should crash, but also in case they should become unreachable because of a
communication failure. The detector marks processes as Suspected or Unsuspected.
The service uses the failure detector to reach a decision about the group’s
membership: it excludes a process from membership if it is suspected to have failed
or to have become unreachable.

Notifying members of group membership changes: The service notifies the group’s
members when a process is added, or when a process is excluded (through failure or
when the process is deliberately withdrawn from the group).

Performing group address expansion: When a process multicasts a message, it
supplies the group identifier rather than a list of processes in the group. The
membership management service expands the identifier into the current group

238 CHAPTER 6 INDIRECT COMMUNICATION

membership for delivery. The service can coordinate multicast delivery with
membership changes by controlling address expansion. That is, it can decide
consistently where to deliver any given message, even though the membership may
be changing during delivery.

Note that IP multicast is a weak case of a group membership service, with some but not
all of these properties. It does allow processes to join or leave groups dynamically and
it performs address expansion, so that senders need only provide a single IP multicast
address as the destination for a multicast message. But IP multicast does not itself
provide group members with information about current membership, and multicast
delivery is not coordinated with membership changes. Achieving these properties is
complex and requires what is known as view-synchronous group communication.
Further consideration of this important issue is deferred to Chapter 18, which discusses
the maintenance of group views and how to realize view-synchronous group
communication in the context of supporting replication in distributed systems.

In general, the need to maintain group membership has a significant impact on the
utility of group-based approaches. In particular, group communication is most effective
in small-scale and static systems and does not operate as well in larger-scale
environments or environments with a high degree of volatility. This can be traced to the
need for a form of synchrony assumption. Ganesh et al [2003] present a more
probabilistic approach to group membership designed to operate in more large-scale and
dynamic environments, using an underlying gossip protocol (see Section 10.5.3).
Researchers have also developed group membership protocols specifically for ad hoc
networks and mobile environments [Prakash and Baldoni 1998; Roman et al. 2001; Liu
et al. 2005].

6.2.3 Case study: the JGroups toolkit

JGroups is a toolkit for reliable group communication written in Java. The toolkit is a
part of the lineage of group communication tools that have emerged from Cornell
University, building on the fundamental concepts developed in ISIS [Birman 1993],
Horus [van Renesse et al. 1996] and Ensemble [van Renesse et al. 1998]. The toolkit is
now maintained and developed by the JGroups open source community
[www.jgroups.org], which is part of the JBoss middleware community, as discussed in
Chapter 8 [www.jboss.org].

JGroups supports process groups in which processes are able to join or leave a
group, send a message to all members of the group or indeed to a single member, and
receive messages from the group. The toolkit supports a variety of reliability and
ordering guarantees, which are discussed in more detail below, and also offers a group
membership service.

The architecture of JGroups is shown in Figure 6.4, which shows the main
components of the JGroups implementation:

• Channels represent the most primitive interface for application developers,
offering the core functions of joining, leaving, sending and receiving.

• Building blocks offer higher-level abstractions, building on the underlying service
offered by channels.

www.jgroups.org
www.jboss.org

Figure 6.4 The architecture of JGroups

Network

UDP
FRAG

MERGE
GMS

CAUSAL

Protocol stack

Channel

Building
blocks

Applications

SECTION 6.2 GROUP COMMUNICATION 239

• The protocol stack provides the underlying communication protocol, constructed
as a stack of composable protocol layers.

We look at each in turn below.

Channels • A process interacts with a group through a channel object, which acts as a
handle onto a group. When created, it is disconnected, but a subsequent connect
operation binds that handle to a particular named group; if the named group does not
exist, it is implicitly created at the time of the first connect. To leave the group, the
process executes the corresponding disconnect operation. A close operation is also
provided to render the channel unusable. Note that a channel can only be connected to
one group at a time; if a process wants to connect to two or more groups, it must create
multiple channels. When connected, a process can send or receive via a channel.
Messages are sent by reliable multicast, with the precise semantics defined by the
protocol stack deployed (as discussed further below).

A range of other operations are defined on channels, most notably to return
management information associated with the channel. For example, getView returns the
current view defined in terms of the current member list, while getState returns the
historical application state associated with the group (this can be used, for example, by
a new group member to catch up with previous events).

Note that the term channel should not be confused with channel-based publish-
subscribe, as introduced in Section 6.3.1. A channel in JGroups is synonymous with an
instance of a group as defined in Section 6.2.1.

240 CHAPTER 6 INDIRECT COMMUNICATION

We illustrate the use of channels further by a simple example, a service whereby
an intelligent fire alarm can send a “Fire!” multicast message to any registered receivers.
The code for the fire alarm is as shown in Figure 6.5

Figure 6.5 Java class FireAlarmJG

import org.jgroups.JChannel;

public class FireAlarmJG {
public void raise() {

try {
JChannel channel = new JChannel();
channel.connect("AlarmChannel");
Message msg = new Message(null, null, "Fire!");
channel.send(msg);

}
catch(Exception e) {
}

}
}

.
When an alarm is raised, the first step is to create a new instance of JChannel (the

class representing channels in JGroups) and then connect to a group called
AlarmChannel. If this is the first connect, then the group will be created at this stage
(unlikely in this example, or the alarm is not going to be very effective). The constructor
for a message takes three parameters: the destination, the source and the payload. In this
case, the destination is null, which specifies that the message is to be sent to all members
(if an address is specified, it is sent to that address only). The source is also null; this
need not be provided in JGroups as it will be included automatically. The payload is an
unstructured byte array that is delivered to all members of the group through the send
method. The code to create a new instance of the FireAlarmJG class and then raise an
alarm would be:

FireAlarmJG alarm = new FireAlarmJG();
alarm.raise();

The corresponding code for the receiver end has a similar structure and is shown in
Figure 6.6. In this case, however, after connecting a receive method is called. This
method takes one parameter, a timeout. If it is set to zero, as in this case, the receive
message will block until a message is received. Note that in JGroups incoming messages
are buffered and receive returns the top element in the buffer. If no messages are present,
then receive blocks awaiting the next message. Strictly speaking, receive can return a
range of object types – for example, notification of a change in membership or of a
suspected failure of a group member (hence the cast to Message above).

A given receiver must include the following code to await an alarm:

FireAlarmConsumerJG alarmCall = new FireAlarmConsumerJG();
String msg = alarmCall.await();
System.out.println("Alarm received: " + msg);

Figure 6.6 Java class FireAlarmConsumerJG

import org.jgroups.JChannel;

public class FireAlarmConsumerJG {
public String await() {

try {
JChannel channel = new JChannel();
channel.connect("AlarmChannel");
Message msg = (Message) channel.receive(0);
return (String) msg.GetObject();

}
catch(Exception e) {

return null;
}

}
}

SECTION 6.2 GROUP COMMUNICATION 241

Building blocks • Building blocks are higher-level abstractions on top of the channel
class discussed above. Channels are similar in level to sockets. Building blocks are
analogous to the more advanced communication paradigms discussed in Chapter 5,
offering support for commonly occurring patterns of communication (but in this case
targeted at multicast communication). Examples of building blocks in JGroups are:

• MessageDispatcher is the most intuitive of the building blocks offered in
JGroups. In group communication, it is often useful for a sender to send a message
to a group and then wait for some or all of the replies. MessageDispatcher
supports this by providing a castMessage method that sends a message to a group
and blocks until a specified number of replies are received (for example, until a
specified number n, a majority, or all messages are received).

• RpcDispatcher takes a specific method (together with optional parameters and
results) and then invokes this method on all objects associated with a group. As
with MessageDispatcher, the caller can block awaiting some or all of the replies.

• NotificationBus is an implementation of a distributed event bus, in which an event
is any serializable Java object. This class is often used to implement consistency
in replicated caches.

The protocol stack • JGroups follows the architectures offered by Horus and Ensemble
by constructing protocol stacks out of protocol layers (initially referred to as micro-
protocols in the literature [van Renesse et al. 1996, 1998]). In this approach, a protocol
is a bidirectional stack of protocol layers with each layer implementing the following
two methods:

public Object up (Event evt);
public Object down (Event evt);

Protocol processing therefore happens by passing events up and down the stack. In
JGroups, events may be incoming or outgoing messages or management events, for
example related to view changes. Each layer can carry out arbitrary processing on the

242 CHAPTER 6 INDIRECT COMMUNICATION

message, including modifying its contents, adding a header or indeed dropping or re-
ordering the message.

To illustrate the concept further, let us examine the protocol stack shown in Figure
6.4. This shows a protocol that consists of five layers:

• The layer referred to as UDP is the most common transport layer in JGroups. Note
that, despite the name, this is not entirely equivalent to the UDP protocol; rather,
the layer utilizes IP multicast for sending to all members in a group and UDP
datagrams specifically for point-to-point communication. This layer therefore
assumes that IP multicast is available. If it is not, the layer can be configured to
send a series of unicast messages to members, relying on another layer for
membership discovery (in particular, a layer known as PING). For larger-scale
systems operating over wide area networks, a TCP layer may be preferred (using
the TCP protocol to send unicast messages and again relying on PING for
membership discovery).

• FRAG implements message packetization and is configurable in terms of the
maximum message size (8,192 bytes by default).

• MERGE is a protocol that deals with unexpected network partitioning and the
subsequent merging of subgroups after the partition. A series of alternative merge
layers are actually available, ranging from the simple to ones that deal with, for
example, state transfer.

• GMS implements a group membership protocol to maintain consistent views of
membership across the group (see Chapter 18 for further details of algorithms for
group membership management).

• CAUSAL implements causal ordering, introduced in Section 6.2.2 (and discussed
further in Chapter 15).

A wide range of other protocol layers are available, including protocols for FIFO and
total ordering, for membership discovery and failure detection, for encryption of
messages and for implementing flow-control strategies (see the JGroups web site for
details [www.jgroups.org]). Note that because all layers implement the same interface,
they can be combined in any order, although many of the resultant protocol stacks would
not make sense. All members of a group must share the same protocol stack.

6.3 Publish-subscribe systems

We now turn our attention to the area of publish-subscribe systems [Baldoni and
Virgillito 2005], sometimes also referred to as distributed event-based systems [Muhl et
al. 2006]. These are the most widely used of all the indirect communication techniques
discussed in this chapter. Chapter 1 has already highlighted that many classes of system
are fundamentally concerned with the communication and processing of events (for
example financial trading systems). More specifically, whereas many systems naturally
map onto a request-reply or a remote invocation pattern of interaction as discussed in
Chapter 5, many do not and are more naturally modelled by the more decoupled and
reactive style of programming offered by events.

www.jgroups.org%5D

SECTION 6.3 PUBLISH-SUBSCRIBE SYSTEMS 243

A publish-subscribe system is a system where publishers publish structured
events to an event service and subscribers express interest in particular events through
subscriptions which can be arbitrary patterns over the structured events. For example, a
subscriber could express an interest in all events related to this textbook, such as the
availability of a new edition or updates to the related web site. The task of the publish-
subscribe system is to match subscriptions against published events and ensure the
correct delivery of event notifications. A given event will be delivered to potentially
many subscribers, and hence publish-subscribe is fundamentally a one-to-many
communications paradigm.

Applications of publish-subscribe systems • Publish-subscribe systems are used in a
wide variety of application domains, particularly those related to the large-scale
dissemination of events. Examples include:

• financial information systems;

• other areas with live feeds of real-time data (including RSS feeds);

• support for cooperative working, where a number of participants need to be
informed of events of shared interest;

• support for ubiquitous computing, including the management of events emanating
from the ubiquitous infrastructure (for example, location events);

• a broad set of monitoring applications, including network monitoring in the
Internet.

Publish-subscribe is also a key component of Google’s infrastructure, including for
example the dissemination of events related to advertisements, such as ‘ad clicks’, to
interested parties (see Chapter 21).

To illustrate the concept further, we consider a simple dealing room system as an
example of the broader class of financial information systems.

Dealing room system: Consider a simple dealing room system whose task is to allow
dealers using computers to see the latest information about the market prices of the
stocks they deal in. The market price for a single named stock is represented by an
associated object. The information arrives in the dealing room from several different
external sources in the form of updates to some or all of the objects representing the
stocks and is collected by processes we call information providers. Dealers are typically
interested only in their own specialist stocks. A dealing room system could be
implemented by processes with two different tasks:

• An information provider process continuously receives new trading information
from a single external source. Each of the updates is regarded as an event. The
information provider publishes such events to the publish-subscribe system for
delivery to all of the dealers who have expressed an interest in the corresponding
stock. There will be a separate information provider process for each external
source.

• A dealer process creates a subscription representing each named stock that the
user asks to have displayed. Each subscription expresses an interest in events
related to a given stock at the relevant information provider. It then receives all the
information sent to it in notifications and displays it to the user. The
communication of notifications is illustrated in Figure 6.7.

Figure 6.7 Dealing room system

Dealer's computer

Information
provider

Dealer

External
source

External
source

Information
provider

Dealer

Dealer Dealer

Notification

Notification

Notification

Notification

Notification Notification

Notification

Notification
Noti

fica
tio

n

Notific
atio

n

Dealer's computer

Dealer's computerDealer's computer

244 CHAPTER 6 INDIRECT COMMUNICATION

Characteristics of publish-subscribe systems • Publish-subscribe systems have two
main characteristics:

Heterogeneity: When event notifications are used as a means of communication,
components in a distributed system that were not designed to interoperate can be
made to work together. All that is required is that event-generating objects publish
the types of events they offer, and that other objects subscribe to patterns of events
and provide an interface for receiving and dealing with the resultant notifications. For
example, Bates et al. [1996] describe how publish-subscribe systems can be used to
connect heterogeneous components in the Internet. They describe a system in which
applications can be made aware of users’ locations and activities, such as using
computers, printers or electronically tagged books. They envisage its future use in the
context of a home network supporting commands such as: ‘if the children come
home, turn on the central heating’.

Asynchronicity: Notifications are sent asynchronously by event-generating
publishers to all the subscribers that have expressed an interest in them to prevent
publishers needing to synchronize with subscribers – publishers and subscribers need
to be decoupled. Mushroom [Kindberg et al. 1996] is an object-based publish-
subscribe system designed to support collaborative work, in which the user interface
displays objects representing users and information objects such as documents and
notepads within shared workspaces called network places. The state of each place is
replicated at the computers of users currently in that place. Events are used to
describe changes to objects and to a user’s focus of interest. For example, an event

SECTION 6.3 PUBLISH-SUBSCRIBE SYSTEMS 245

could specify that a particular user has entered or left a place or has performed a
particular action on an object. Each replica of any object to which particular types of
events are relevant expresses an interest in them through a subscription and receives
notifications when they occur. But subscribers to events are decoupled from objects
experiencing events, because different users are active at different times.

In addition, a variety of different delivery guarantees can be provided for notifications
– the one that is chosen should depend on the application requirements. For example, if
IP multicast is used to send notifications to a group of receivers, the failure model will
relate to the one described for IP multicast in Section 4.4.1 and will not guarantee that
any particular recipient will receive a particular notification message. This is adequate
for some applications – for example, to deliver the latest state of a player in an Internet
game – because the next update is likely to get through.

However, other applications have stronger requirements. Consider the dealing
room application: to be fair to the dealers interested in a particular stock, we require that
all the dealers for the same stock receive the same information. This implies that a
reliable multicast protocol should be used.

In the Mushroom system mentioned above, notifications about changes in object
state are delivered reliably to a server, whose responsibility it is to maintain up-to-date
copies of objects. However, notifications may also be sent to object replicas in users’
computers by means of unreliable multicast; in the case that the latter lose notifications,
they can retrieve an object’s state from the server. When the application requires it,
notifications may be ordered and sent reliably to object replicas.

Some applications have real-time requirements.These include events in a nuclear
power station or a hospital patient monitor. It is possible to design multicast protocols
that provide real-time guarantees as well as reliability and ordering in a system that
satisfies the properties of a synchronous distributed system.

We discuss publish-subscribe systems in more detail in the following sections,
considering the programming model they offer before examining some of the key
implementation challenges, particularly related to large-scale dissemination of events in
the Internet.

6.3.1 The programming model

The programming model in publish-subscribe systems is based on a small set of
operations, captured in Figure 6.8. Publishers disseminate an event e through a
publish(e) operation and subscribers express an interest in a set of events through
subscriptions. In particular, they achieve this through a subscribe(f) operation where f
refers to a filter – that is, a pattern defined over the set of all possible events. The
expressiveness of filters (and hence of subscriptions) is determined by the subscription
model; which we discuss in more detail below. Subscribers can later revoke this interest
through a corresponding unsubscribe(f) operation. When events arrive at a subscriber,
the events are delivered using a notify(e) operation.

Some systems complement the above set of operations by introducing the concept
of advertisements. With advertisements, publishers have the option of declaring the
nature of future events through an advertise(f) operation. The advertisements are defined
in terms of the types of events of interest (these happen to take the same form as filters).

Figure 6.8 The publish-subscribe paradigm

Publishers Subscribers

publish(e1)

subscribe(t2)

subscribe(t1)

publish(e2)

advertise(t1)
notify(e1)

Publish-subscribe system

246 CHAPTER 6 INDIRECT COMMUNICATION

In other words, subscribers declare their interests in terms of subscriptions and
publishers optionally declare the styles of events they will generate through
advertisements. Advertisements can be revoked through a call of unadvertise(f).

As mentioned above, the expressiveness of publish-subscribe systems is
determined by the subscription (filter) model, with a number of schemes defined and
considered here in increasing order of sophistication:

Channel-based: In this approach, publishers publish events to named channels and
subscribers then subscribe to one of these named channels to receive all events sent
to that channel. This is a rather primitive scheme and the only one that defines a
physical channel; all other schemes employ some form of filtering over the content
of events as we shall see below. Although simple, this scheme has been used
successfully in the CORBA Event Service (see Chapter 8).

Topic-based (also referred to as subject-based): In this approach, we make the
assumption that each notification is expressed in terms of a number of fields, with one
field denoting the topic. Subscriptions are then defined in terms of the topic of
interest. This approach is equivalent to channel-based approaches, with the
difference that topics are implicitly defined in the case of channels but explicitly
declared as one of the fields in topic-based approaches. The expressiveness of topic-
based approaches can also be enhanced by introducing hierarchical organization of
topics. For example, let us consider a publish-subscribe system for this book.
Subscriptions could be defined in terms of indirect_communication or
indirect_communication/publish-subscribe. Subscribers expressing interest in the
former will receive all events related to this chapter, whereas with the latter
subscribers can instead express an interest in the more specific topic of publish-
subscribe.

SECTION 6.3 PUBLISH-SUBSCRIBE SYSTEMS 247

Content-based: Content-based approaches are a generalization of topic-based
approaches allowing the expression of subscriptions over a range of fields in an event
notification. More specifically, a content-based filter is a query defined in terms of
compositions of constraints over the values of event attributes. For example, a
subscriber could express interest in events that relate to the topic of publish-subscribe
systems, where the system in question is the ‘CORBA Event Service’ and where the
author is ‘Tim Kindberg’ or ‘Gordon Blair’. The sophistication of the associated
query languages varies from system to system, but in general this approach is
significantly more expressive than channel- or topic-based approaches, but with
significant new implementation challenges (discussed below).

Type-based: These approaches are intrinsically linked with object-based approaches
where objects have a specified type. In type-based approaches, subscriptions are
defined in terms of types of events and matching is defined in terms of types or
subtypes of the given filter. This approach can express a range of filters, from coarse-
grained filtering based on overall type names to more fine-grained queries defining
attributes and methods of a given object. Such fine-grained filters are similar in
expressiveness to content-based approaches. The advantages of type-based
approaches are that they can be integrated elegantly into programming languages and
they can check the type correctness of subscriptions, eliminating some kinds of
subscription errors.

As well as these classical categories, a number of commercial systems are based on
subscribing directly to objects of interest. Such systems are similar to type-based
approaches in that they are intrinsically linked to object-based approaches, although
they differ by focusing on changes of state of the objects of interest rather than
predicates associated with the types of objects. They allow one object to react to a
change occurring in another object. Notifications of events are asynchronous and
determined by their receivers. In particular, in interactive applications, the actions that
the user performs on objects – for example, by manipulating a button with the mouse or
entering text in a text box via the keyboard – are seen as events that cause changes in the
objects that maintain the state of the application. The objects that are responsible for
displaying a view of the current state are notified whenever the state changes.

Rosenblum and Wolf [1997] describe a general architecture for this style of
publish-subscribe system. The main component in their architecture is an event service
that maintains a database of event notifications and of interests of subscribers. The event
service is notified of events that occur at objects of intetest. Subscribers inform the event
service about the types of events they are interested in. When an event occurs at an
object of interest a message containing the notification is sent directly to the subscribers
of that type of event.

The Jini distributed event specification described by Arnold et al. [1999] is one
leading example of this approach, and a case study on Jini, together with further
background information on this style of approach, can be found on the companion web
site for the book [www.cdk5.net/rmi]. Note, however, that Jini is a relatively primitive
example of a distributed event-based system that allows direct connectivity between
producers and consumers of events (hence compromising time and space uncoupling).

A number of more experimental approaches are also being investigated. For
example, some researchers are considering the added expressiveness of context [Frey

www.cdk5.net/rmi

248 CHAPTER 6 INDIRECT COMMUNICATION

and Roman 2007, Meier and Cahill 2010]. Context and context-awareness are major
concepts in mobile and ubiquitous computing. Context is defined in Chapter 19 as an
aspect of the physical circumstances of relevance to the system behaviour. One intuitive
example of context is location, and such systems have the potential for users to subscribe
to events associated with a given location – for example, any emergency messages
associated with the building where a user is located. Cilia et al. [2004] have also
introduced concept-based subscription models whereby filters are expressed in terms of
the semantics as well as the syntax of events. More specifically, data items have an
associated semantic context that captures the meaning of those items, allowing for
interpretation and possible translation into different data formats, thus addressing
heterogeneity.

For some classes of application, such as the financial trading system described in
Chapter 1, it is not enough for subscriptions to express queries over individual events.
Rather, there is a need for more complex systems that can recognize complex event
patterns. For example, Chapter 1 introduced the example of buying and selling shares
based on observing temporal sequences of events related to share prices, demonstrating
the need for complex event processing (or composite event detection, as it is sometimes
called). Complex event processing allows the specification of patterns of events as they
occur in the distributed environment – for example, ‘inform me if water levels rise by at
least 20% in the River Eden in at least three places and simulation models are also
reporting a risk of flooding’. A further example of an event pattern arose in Chapter 1,
concerned with detecting share price movements over a given time period. In general,
patterns can be logical, temporal or spatial. For further information on complex event
processing, refer to Muhl et al. [2006].

6.3.2 Implementation issues

From the description above, the task of a publish-subscribe system is clear: to ensure that
events are delivered efficiently to all subscribers that have filters defined that match the
event. Added to this, there may be additional requirements in terms of security,
scalability, failure handling, concurrency and quality of service. This makes the
implementation of publish-subscribe systems rather complex, and this has been an area
of intense investigation in the research community. We consider key implementation
issues below, examining centralized versus distributed implementations before moving
on to consider the overall system architecture required to implement publish-subscribe
systems (particularly distributed implementations of content-based approaches). We
conclude the section by summarizing the design space of publish-subscribe systems,
with associated pointers to the literature.

Centralized versus distributed implementations • A number of architectures for the
implementation of publish-subscribe systems have been identified. The simplest
approach is to centralize the implementation in a single node with a server on that node
acting as an event broker. Publishers then publish events (and optionally send
advertisements) to this broker, and subscribers send subscriptions to the broker and
receive notifications in return. Interaction with the broker is then through a series of
point-to-point messages; this can be implemented using message passing or remote
invocation.

SECTION 6.3 PUBLISH-SUBSCRIBE SYSTEMS 249

This approach is straightforward to implement, but the design lacks resilience and
scalability, since the centralized broker represents a single point for potential system
failure and a performance bottleneck. Consequently, distributed implementations of
publish-subscribe systems are also available. In such schemes, the centralized broker is
replaced by a network of brokers that cooperate to offer the desired functionality as
illustrated in Figure 6.9

Figure 6.9 A network of brokers

Broker networkP1

P2

P3

Publishers Subscribers

S1

S2

S3

. Such approaches have the potential to survive node failure and
have been shown to be able to operate well in Internet-scale deployments.

Taking this a step further, it is possible to have a fully peer-to-peer
implementation of a publish-subscribe system. This is a very popular implementation
strategy for recent systems. In this approach, there is no distinction between publishers,
subscribers and brokers; all nodes act as brokers, cooperatively implementing the
required event routing functionality (as discussed further below).

Overall systems architecture • As mentioned above, the implementation of centralized
schemes is relatively straightforward, with the central service maintaining a repository
of subscriptions and matching event notifications with this set of subscriptions.
Similarly, the implementations of channel-based or topic-based schemes are relatively
straightforward. For example, a distributed implementation can be achieved by mapping
channels or topics onto associated groups (as defined in Section 6.2) and then using the
underlying multicast communication facilities to deliver events to interested parties
(using reliable and ordered variants, as appropriate). The distributed implementation of
content-based (or by extrapolation, type-based) approaches is more complex and
deserving of further consideration. The range of architectural choices for such
approaches is captured in Figure 6.10 (adapted from Baldoni and Virgillito [2005]).

In the bottom layer, publish-subscribe systems make use of a range of interprocess
communication services, such as TCP/IP, IP multicast (where available) or more
specialized services, as offered for example by wireless networks. The heart of the

Figure 6.10 The architecture of publish-subscribe systems

Network protocols

Matching

Event routing

Overlay networks

TCP/IP MAC bcast802.11gIP mcast

Flooding Filtering Rendezvous Informed
gossip

Broker
network

Group GossipDHTmulticast

Publish-subscribe architecture

250 CHAPTER 6 INDIRECT COMMUNICATION

architecture is provided by the event routing layer supported by a network overlay
infrastructure. Event routing performs the task of ensuring that event notifications are
routed as efficiently as possible to appropriate subscribers, whereas the overlay
infrastructure supports this by setting up appropriate networks of brokers or peer-to-peer
structures. For content-based approaches, this problem is referred to as content-based
routing (CBR), with the goal being to exploit content information to efficiently route
events to their required destination. The top layer implements matching – that is,
ensuring that events match a given subscription. While this can be implemented as a
discrete layer, often matching is pushed down into the event routing mechanisms, as will
become apparent shortly.

Within this overall architecture, there is a wide variety of implementation
approaches. We step through a select set of implementations to illustrate the general
principles behind content-based routing:

Flooding: The simplest approach is based on flooding, that is, sending an event
notification to all nodes in the network and then carrying out the appropriate
matching at the subsciber end. As an alternative, flooding can be used to send
subscriptions back to all possible publishers, with the matching carried out at the
publishing end and matched events sent directly to the relevant subscribers using
point-to-point communication. Flooding can be implemented using an underlying
broadcast or multicast facility. Alternatively, brokers can be arranged in an acyclic
graph in which each forwards incoming event notifications to all its neighbours
(effectively providing a multicast overlay, as discussed in Section 4.5.1). This
approach has the benefit of simplicity but can result in a lot of unnecessary network

Figure 6.11 Filtering-based routing

upon receive publish(event e) from node x 1
matchlist := match(e, subscriptions) 2
send notify(e) to matchlist; 3
fwdlist := match(e, routing); 4
send publish(e) to fwdlist - x; 5

upon receive subscribe(subscription s) from node x 6
if x is client then 7

add x to subscriptions; 8
else add(x, s) to routing; 9
send subscribe(s) to neighbours - x; 10

SECTION 6.3 PUBLISH-SUBSCRIBE SYSTEMS 251

traffic. Hence, the alternative schemes described below try to optimize the number of
messages exchanged through consideration of content.

Filtering: One principle that underpins many approaches is to apply filtering in the
network of brokers. This is referred to as filtering-based routing. Brokers forward
notifications through the network only where there is a path to a valid subscriber.
This is achieved by propagating subscription information through the network
towards potential publishers and then storing associated state at each broker. More
specifically, each node must maintain a neighbours list containing a list of all
connected neighbours in the network of brokers, a subscription list containing a list
of all directly connected subscribers serviced by this node, and a routing table.
Crucially, this routing table maintains a list of neighbours and valid subscriptions for
that pathway.

This approach also requires an implementation of matching on each node in the
network of brokers: in particular, a match function takes a given event notification
and a list of nodes together with associated subscriptions and returns a set of nodes
where the notification matches the subscription. The specific algorithm for this
filtering approach is captured in Figure 6.11 (taken from Baldoni and Virgillito
[2005]). When a broker receives a publish request from a given node, it must pass
this notification to all connected nodes where there is a corresponding matching
subscription and also decide where to propagate this event through the network of
brokers. Lines 2 and 3 achieve the first goal by matching the event against the
subscription list and then forwarding the event to all the nodes with matching
subscriptions (the matchlist). Lines 4 and 5 then use the match function again, this
time matching the event against the routing table and forwarding only to the paths
that lead to a subscription (the fwdlist). Brokers must also deal with incoming
subscription events. If the subscription event is from an immediately connected
subscriber, then this subscription must be entered in the subscriptions table (lines 7
and 8). Otherwise, the broker is an intermediary node; this node now knows that a
pathway exists towards this subscription and hence an appropriate entry is added to
the routing table (line 9). In both cases, this subscription event is then passed to all
neighbours apart from the originating node (line 10).

252 CHAPTER 6 INDIRECT COMMUNICATION

Advertisements: The pure filtering-based approach described above can generate a
lot of traffic due to propagation of subscriptions, with subscriptions essentially using
a flooding approach back towards all possible publishers. In systems with
advertisements this burden can be reduced by propagating the advertisements
towards subscribers in a similar (actually, symmetrical) way to the propagation of
subscriptions. There are interesting trade-offs between the two approaches, and some
systems adopt both approaches in tandem [Carzaniga et al. 2001].

Figure 6.12 Rendezvous-based routing

upon receive publish(event e) from node x at node i
rvlist := EN(e);
if i in rvlist then begin

matchlist <- match(e, subscriptions);
send notify(e) to matchlist;

end
send publish(e) to rvlist - i;

upon receive subscribe(subscription s) from node x at node i
rvlist := SN(s);
if i in rvlist then

add s to subscriptions;
else

send subscribe(s) to rvlist - i;

Rendezvous: Another approach to control the propagation of subscriptions (and to
achieve a natural load balancing) is the rendezvous approach. To understand this
approach, it is necessary to view the set of all possible events as an event space and
to partition responsibility for this event space between the set of brokers in the
network. In particular, this approach defines rendezvous nodes, which are broker
nodes responsible for a given subset of the event space. To achieve this, a given
rendezvous-based routing algorithm must define two functions. First, SN(s) takes a
given subscription, s, and returns one or more rendezvous nodes that take
responsibility for that subscription. Each such rendezvous node maintains a
subscription list as in the filtering approach above, and forwards all matching events
to the set of subscribing nodes. Second, when an event e is published, the function
EN(e) also returns one or more rendezvous nodes, this time responsible for matching
e against subscriptions in the system. Note that both SN(s) and EN(e) return more
than one node if reliability is a concern. Note also that this approach only works if
the intersection of EN(e) and SN(s) is non-empty for a given e that matches s (known
as the mapping intersection rule, as defined by Baldoni and Virgillito [2005]). The
corresponding code for rendezvous-based routing is shown in Figure 6.12 (again
taken from Baldoni and Virgillito [2005]). This time, we leave the interpretation of
the algorithm as an exercise for the reader (see Exercise 6.11).

One interesting interpretation of rendezvous-based routing is to map the event
space onto a distributed hash table (DHT). Distributed hash tables were introduced
briefly in Section 4.5.1 and are examined in more detail in Chapter 10. A distributed

SECTION 6.3 PUBLISH-SUBSCRIBE SYSTEMS 253

hash table is a style of network overlay that distributes a hash table over a set of nodes
in a peer-to-peer network. The key observation for rendezvous-based routing is that the
hash function can be used to map both events and subscriptions onto a corresponding
rendezvous node for the management of such subscriptions.

Figure 6.13 Example publish-subscribe systems

System (and further reading) Subscription
model

Distribution
model

Event routing

CORBA Event Service (Chapter 8) Channel-based Centralized -
TIB Rendezvouz [Oki et al. 1993] Topic-based Distributed Ffiltering
Scribe [Castro et al. 2002b] Topic-based Peer-to-peer

(DHT)
Rendezvous

TERA [Baldoni et al. 2007] Topic-based Peer-to-peer Informed gossip
Siena [Carzaniga et al. 2001] Content-based Distributed Filtering
Gryphon [www.research.ibm.com] Content-based Distributed Filtering
Hermes [Pietzuch and Bacon 2002] Topic- and

content-based
Distributed Rendezvous and

filtering
MEDYM [Cao and Singh 2005] Content-based Distributed Flooding
Meghdoot [Gupta et al. 2004] Content-based Peer-to-peer Rendezvous
Structure-less CBR [Baldoni et al. 2005] Content-based Peer-to-peer Informed gossip

It is possible to employ other peer-to-peer middleware approaches to underpin
event routing in publish-subscribe systems. Indeed, this is a very active area of research
with many novel and interesting proposals emerging, particularly for very large-scale
systems [Carzaniga et al. 2001]. One specific approach is to adopt gossiping as a means
of supporting event routing. Gossip-based approaches are a popular mechanism for
achieving multicast (including reliable multicast), as discussed in Section 18.4.1. They
operate by nodes in the network periodically and probabilistically exchanging events (or
data) with neighbouring nodes. Through this approach, it is possible to propagate events
effectively through the network without the structure imposed by other approaches. A
pure gossip approach is effectively an alternative strategy for implementing flooding, as
described above. However, it is possible to take into account local information and, in
particular, content to achieve what is referred to as informed gossip. Such approaches
can be particularly attractive in highly dynamic environments where network or node
churn can be high [Baldoni et al. 2005].

6.3.3 Examples of publish-subscribe systems
We conclude this section by listing some major examples of publish-subscribe systems,
providing references for further reading (see Figure 6.13). This figure also captures the
design space for publish-subscribe systems, illustrating how different designs can result
from decisions on subscription and distribution models and, especially, the underlying
event routing strategy. Note that event routing is not required for centralized schemes,
hence the blank entry in the table.

www.research.ibm.com

254 CHAPTER 6 INDIRECT COMMUNICATION

6.4 Message queues

Message queues (or more accurately, distributed message queues) are a further
important category of indirect communication systems. Whereas groups and publish-
subscribe provide a one-to-many style of communication, message queues provide a
point-to-point service using the concept of a message queue as an indirection, thus
achieving the desired properties of space and time uncoupling. They are point-to-point
in that the sender places the message into a queue, and it is then removed by a single
process. Message queues are also referred to as Message-Oriented Middleware. This is
a major class of commercial middleware with key implementations including IBM’s
WebSphere MQ, Microsoft’s MSMQ and Oracle’s Streams Advanced Queuing (AQ).
The main use of such products is to achieve Enterprise Application Integration (EAI) –
that is, integration between applications within a given enterprise – a goal that is
achieved by the inherent loose coupling of message queues. They are also extensively
used as the basis for commercial transaction processing systems because of their
intrinsic support for transactions, discussed further in Section 6.4.1.

We examine message queues in more detail below, considering the programming
model offered by message queueing systems before addressing implementation issues.
The section then concludes by presenting the Java Messaging Service (JMS) as an
example of a middleware specification supporting message queues (and also publish-
subscribe).

6.4.1 The programming model

The programming model offered by message queues is very simple. It offers an
approach to communication in distributed systems through queues. In particular,
producer processes can send messages to a specific queue and other (consumer)
processes can then receive messages from this queue. Three styles of receive are
generally supported:

• a blocking receive, which will block until an appropriate message is available;

• a non-blocking receive (a polling operation), which will check the status of the
queue and return a message if available, or a not available indication otherwise;

• a notify operation, which will issue an event notification when a message is
available in the associated queue.

This overall approach is captured pictorially in Figure 6.14.
A number of processes can send messages to the same queue, and likewise a

number of receivers can remove messages from a queue. The queuing policy is normally
first-in-first-out (FIFO), but most message queue implementations also support the
concept of priority, with higher-priority messages delivered first. Consumer processes
can also select messages from the queue based on properties of a message. In more
detail, a message consists of a destination (that is, a unique identifier designating the
destination queue), metadata associated with the message, including fields such as the
priority of the message and the delivery mode, and also the body of the message. The
body is normally opaque and untouched by the message queue system. The associated

Figure 6.14 The message queue paradigm

Message queue systemProducers

Poll

Message

Send

Receive
Consumers

Notify

.

.
Send

Send

SECTION 6.4 MESSAGE QUEUES 255

content is serialized using any of the standard approaches described in Section 4.3; that
is, marshalled data types, object serialization or XML structured messages. Message
sizes are configurable and can be very large – for example, on the order of a 100 Mbytes
Given the fact that message bodies are opaque, message selection is normally expressed
through predicates defined over the metadata.

Oracle’s AQ introduces an interesting twist on this basic idea to achieve better
integration with (relational) databases; in Oracle AQ, messages are rows in a database
table, and queues are database tables that can be queried using the full power of a
database query language.

One crucial property of message queue systems is that messages are persistent –
that is, message queues will store the messages indefinitely (until they are consumed)
and will also commit the messages to disk to enable reliable delivery. In particular,
following the definition of reliable communication in Section 2.4.2, any message sent is
eventually received (validity) and the message received is identical to the one sent, and
no messages are delivered twice (integrity). Message queue systems therefore guarantee
that messages will be delivered (and delivered once) but cannot say anything about the
timing of the delivery.

Message passing systems can also support additional functionality:

• Most commercially available systems provide support for the sending or receiving
of a message to be contained within a transaction. The goal is to ensure that all the
steps in the transaction are completed, or the transaction has no effect at all (the
‘all or nothing’ property). This relies on interfacing with an external transaction
service, provided by the middleware environment. Detailed consideration of
transactions is deferred until Chapter 16.

• A number of systems also support message transformation, whereby an arbitrary
transformation can be performed on an arriving message. The most common
application of this concept is to transform messages between formats to deal with
heterogeneity in underlying data representations. This could be as simple as

256 CHAPTER 6 INDIRECT COMMUNICATION

transforming from one byte order to another (big-endian to little-endian) or more
complex, involving for example a transformation from one external data
representation to another (such as SOAP to IIOP). Some systems also allow
programmers to develop their own application-specific transformation in response
to triggers from the underlying message queuing system. Message transformation
is an important tool in dealing with heterogeneity generally and achieving
Enterprise Application Integration in particular (as discussed above). Note that the
term message broker is often used to denote a service responsible for message
transformation.

• Some message queue implementations also provide support for security. For
example, WebSphere MQ provides support for the confidential transmission of
data using the Secure Sockets Layer (SSL) together with support for
authentication and access control. See Chapter 11.

As a final word on the programming abstraction offered by message queues, it is helpful
to compare the style of programming with other communication paradigms. Message
queues are similar in many ways to the message-passing systems considered in Chapter
4. The difference is that whereas message-passing systems have implicit queues
associated with senders and receivers (for example, the message buffers in MPI),
message queuing systems have explicit queues that are third-party entities, separate
from the sender and the receiver. It is this key difference that makes message queues an
indirect communication paradigm with the crucial properties of space and time
uncoupling.

6.4.2 Implementation issues

The key implementation issue for message queuing systems is the choice between
centralized and distributed implementations of the concept. Some implementations are
centralized, with one or more message queues managed by a queue manager located at
a given node. The advantage of this scheme is simplicity, but such managers can become
rather heavyweight components and have the potential to become a bottleneck or a
single point of failure. As a result, more distributed implementations have been
proposed. To illustrate distributed architectures, we briefly consider the approach
adopted in WebSphere MQ as representative of the state-of-the-art in this area.

Case study: WebSphere MQ • WebSphere MQ is middleware developed by IBM based
on the concept of message queues, offering an indirection between senders and receivers
of messages [www.redbooks.ibm.com]. Queues in WebSphere MQ are managed by
queue managers which host and manage queues and allow applications to access queues
through the Message Queue Interface (MQI). The MQI is a relatively simple interface
allowing applications to carry out operations such as connecting to or disconnecting
from a queue (MQCONN and MQDISC) or sending/receiving messages to/from a queue
(MQPUT and MQGET). Multiple queue managers can reside on a single physical server.

Client applications accessing a queue manager may reside on the same physical
server. More generally, though, they will be on different machines and must then
communicate with the queue manager through what is known as a client channel. Client
channels adopt the rather familiar concept of a proxy, as introduced in Chapters 2 and 5,

www.redbooks.ibm.com

SECTION 6.4 MESSAGE QUEUES 257

whereby MQI commands are issued on the proxy and then sent transparently to the
queue manager for execution using RPC. An example of such a configuration is shown
in Figure 6.15

Figure 6.15 A simple networked topology in WebSphere MQ

Queue manager

T
Proxy

Stub

Client channel

Client

Services

. In this configuration, a client application is sending messages to a remote
queue manager and multiple services (on the same machine as the server) are then
consuming the incoming messages.

This is a very simple use of WebSphere MQ, and in practice it is more common
for queue managers to be linked together into a federated structure, mirroring the
approach often adopted in publish-subscribe systems (with networks of brokers). To
achieve this, MQ introduces the concept of a message channel as a unidirectional
connection between two queue managers that is used to forward messages
asynchronously from one queue to another. Note the terminology here: a message
channel is a connection between two queue managers, whereas a client channel is a
connection between a client application and a queue manager. A message channel is
managed by a message channel agent (MCA) at each end. The two agents are
responsible for establishing and maintaining the channel, including an initial negotiation
to agree on the properties of the channel (including security properties). Routing tables
are also included in each queue manager, and together with channels this allows
arbitrary topologies to be created.

This ability to create customized topologies is crucial to WebSphere MQ,
allowing users to determine the right topology for their application domain, for example
to deliver certain requirements in terms of scalability and performance. Tools are
provided for systems administrators to create suitable topologies and to hide the
complexities of establishing message channels and routing strategies.

A wide range of topologies can be created, including trees, meshes or a bus-based
configuration. To illustrate the concept of topologies further, we present one example
topology often used in WebSphere MQ deployments, the hub-and-spoke topology.

258 CHAPTER 6 INDIRECT COMMUNICATION

The hub-and-spoke approach: In the hub-and-spoke topology, one queue manager is
designated as the hub. The hub hosts a range of services. Client applications do not
connect directly to this hub but rather connect through queue managers designated as
spokes. Spokes relay messages to the message queue of the hub for processing by the
various services. Spokes are placed strategically around the network to support different
clients. The hub is placed somewhere appropriate in the network, on a node with
sufficient resources to deal with the volume of traffic. Most applications and services are
located on the hub, although it is also possible to have some more local services on
spokes.

This topology is heavily used with WebSphere MQ, particularly in large-scale
deployments covering significant geographical areas (and possibly crossing
organizational boundaries). The key to the approach is to be able to connect to a local
spoke over a high-bandwidth connection, for example over a local area network (spokes
may even be placed in the same physical machine as client applications to minimize
latency).

Recall that communication between a client application and a queue manager uses
RPC, whereas internal communication between queue managers is asynchronous (non-
blocking). This means that the client application is only blocked until the message is
deposited in the local queue manager (the local spoke); subsequent delivery, potentially
over wide area networks, is asynchronous but guaranteed to be reliable by the
WebSphere MQ middleware.

 Clearly, the drawback of this architecture is that the hub can be a potential
bottleneck and a single point of failure. WebSphere MQ also supports other facilities to
overcome these problems, including queue manager clusters, which allow multiple
instances of the same service to be supported by multiple queue managers with implicit
load balancing across the different instantiations [www.redbooks.ibm.com].

6.4.3 Case study: The Java Messaging Service (JMS)

The Java Messaging Service (JMS) [java.sun.com XI] is a specification of a
standardized way for distributed Java programs to communicate indirectly. Most
notably, as will be explained, the specification unifies the publish-subscribe and
message queue paradigms at least superficially by supporting topics and queues as
alternative destinations of messages. A wide variety of implementations of the common
specification are now available, including Joram from OW2, Java Messaging from
JBoss, Sun’s Open MQ, Apache ActiveMQ and OpenJMS. Other platforms, including
WebSphere MQ, also provide a JMS interface on to their underlying infrastructure.

JMS distinguishes between the following key roles:

• A JMS client is a Java program or component that produces or consumes
messages, a JMS producer is a program that creates and produces messages and a
JMS consumer is a program that receives and consumes messages.

• A JMS provider is any of the multiple systems that implement the JMS
specification.

• A JMS message is an object that is used to communicate information between
JMS clients (from producers to consumers).

www.redbooks.ibm.com

SECTION 6.4 MESSAGE QUEUES 259

• A JMS destination is an object supporting indirect communication in JMS. It is
either a JMS topic or a JMS queue.

Programming with JMS • The programming model offered by the JMS API is captured
in Figure 6.16

Figure 6.16 The programming model offered by JMS

Connection factory

Connection

Session MessageMessage
producer consumer

Creates

Destination:
Topic
Queue

Destination:
Topic
Queue

Message

Sends to Receives from

Communicates

. To interact with a JMS provider, it is first necessary to create a
connection between a client program and the provider. This is created through a
connection factory (a service responsible for creating connections with the required
properties). The resultant connection is a logical channel between the client and
provider; the underlying implementation may, for example, map onto a TCP/IP socket
if implemented over the Internet. Note that two types of connection can be established,
a TopicConnection or a QueueConnection, thus enforcing a clear separation between the
two modes of operation within given connections.

Connections can be used to create one or more sessions – a session is a series of
operations involving the creation, production and consumption of messages related to a
logical task. The resultant session object also supports operations to create transactions,
supporting all-or-nothing execution of a series of operations, as discussed in Section
6.4.1. There is a clear distinction between topic sessions and queue sessions in that a
TopicConnection can support one or more topic sessions and a QueueConnection can
support one or more queue sessions, but it is not possible to mix session styles in a
connection. Thus, the two styles of operation are integrated in a rather superficial way.

The session object is central to the operation of JMS, supporting methods for the
creation of messages, message producers and message consumers:

• In JMS, a message consists of three parts: a header, a set of properties and the
body of the message. The header contains all the information needed to identify
and route the message, including the destination (a reference to either a topic or a

Figure 6.17 Java class FireAlarmJMS

import javax.jms.*;
import javax.naming.*;

public class FireAlarmJMS {

public void raise() {
try { 1

Context ctx = new InitialContext(); 2
TopicConnectionFactory topicFactory = 3

(TopicConnectionFactory)ctx.lookup("TopicConnectionFactory"); 4
Topic topic = (Topic)ctx.lookup("Alarms"); 5
TopicConnection topicConn = 6

topicConnectionFactory.createTopicConnection(); 7
TopicSession topicSess = topicConn.createTopicSession(false, 8

Session.AUTO_ACKNOWLEDGE); 9
TopicPublisher topicPub = topicSess.createPublisher(topic); 10
TextMessage msg = topicSess.createTextMessage(); 11
msg.setText("Fire!"); 12
topicPub.publish(message); 13
} catch (Exception e) { 14

} 15
}

260 CHAPTER 6 INDIRECT COMMUNICATION

queue), the priority of the message, the expiration date, a message ID and a
timestamp. Most of these fields are created by the underlying system, but some
can be filled in specifically through the associated constructor methods. Properties
are all user-defined and can be used to associate other application-specific
metadata elements with a message. For example, if implementing a context-aware
system (as discussed in Chapter 19), the properties can be used to express
additional context associated with the message, including a location field. As in
the general description of message queue systems, this body is opaque and
untouched by the system. In JMS, the body can be any one of a text message, a
byte stream, a serialized Java object, a stream of primitive Java values or a more
structured set of name/value pairs.

• A message producer is an object used to publish messages under a particular topic
or to send messages to a queue.

• A message consumer is an object used to subscribe to messages concerned with a
given topic or to receive messages from a queue. The consumer is more
complicated than the producer, for two reasons. First, it is possible to associate
filters with message consumers by specifying what is known as a message selector
– a predicate defined over the values in the header and properties parts of a
message (not the body). A subset of the database query language SQL is used to
specify properties. This could be used, for example, to filter messages from a

SECTION 6.4 MESSAGE QUEUES 261

given location in the context-aware example above. Second, there are two modes
provided for receiving messages: the program either can block using a receive
operation or it can establish a message listener object which must provide an
onMessage method that is invoked whenever a suitable message is identified.

Figure 6.18 Java class FireAlarmConsumerJMS

import javax.jms.*;
import javax.naming.*;

public class FireAlarmConsumerJMS {
public String await() {
try { 1

Context ctx = new InitialContext(); 2
TopicConnectionFactory topicFactory = 3

(TopicConnectionFactory)ctx.lookup("TopicConnectionFactory"); 4
Topic topic = (Topic)ctx.lookup("Alarms"); 5
TopicConnection topicConn = 6

topicConnectionFactory.createTopicConnection(); 7
TopicSession topicSess = topicConn.createTopicSession(false, 8

Session.AUTO_ACKNOWLEDGE); 9
TopicSubscriber topicSub = topicSess.createSubscriber(topic); 10
topicSub.start(); 11
TextMessage msg = (TextMessage) topicSub.receive(); 12
return msg.getText(); 13
} catch (Exception e) { 14

return null; 15
} 16

}

A simple example • To illustrate the use of JMS, we return to our example of Section
6.2.3, the fire alarm service, and show how this would be implemented in JMS. We
choose the topic-based publish-subscribe service as this is intrinsically a one-to-many
application, with the alarm producing alarm messages targeted towards many consumer
applications.

The code for the fire alarm object is shown in Figure 6.17. It is more complicated
than the equivalent JGroups example mainly because of the need to create a connection,
session, publisher and message, as shown in lines 6–11. This is relatively
straightforward apart from the parameters of createTopicSession, which are whether the
session should be transactional (false in this case) and the mode of acknowledging
messages (AUTO_ACKNOWLEDGE in this example, which means a session
automatically acknowledges the receipt of a message). There is additional complexity
associated with finding the connection factory and topic in the distributed environment
(the complexity of connecting to a named channel in JGroups is all hidden in the connect
method). This is achieved using JNDI (the Java Naming and Directory Interface) in lines
2 to 5. This is included for completeness and it is assumed that readers can appreciate

262 CHAPTER 6 INDIRECT COMMUNICATION

the purpose of these lines of code without further explanation. Lines 12 and 13 contain
the crucial code to create a new message and then publish it to the appropriate topic. The
code to create a new instance of the FireAlarmJMS class and then raise an alarm is:

FireAlarmJMS alarm = new FireAlarmJMS();
alarm.raise();

The corresponding code for the receiver end is very similar and is shown in Figure 6.18.
Lines 2–9 are identical and create the required connection and session, respectively.
This time, though, an object of type TopicSubscriber is created next (line 10), and the
start method in line 11 starts this subscription, enabling messages to be received. The
blocking receive in line 12 then awaits an incoming message and line 13 returns the
textual contents of this message as a string. This class is used as follows by a consumer:

FireAlarmConsumerJMS alarmCall = new FireAlarmConsumerJMS();
String msg = alarmCall.await();
System.out.println("Alarm received: "+msg);

Overall this case study has illustrated how both publish-subscribe and message queues
can be supported by a single middleware solution (in this case JMS), offering the
programmer the choice of one-to-many or point-to-point variants of indirect
communication, respectively.

6.5 Shared memory approaches

In this section, we examine indirect communication paradigms that offer an abstraction
of shared memory. We look briefly at distributed shared memory techniques that were
developed principally for parallel computing before moving on to tuple space
communication, an approach that allows programmers to read and write tuples from a
shared tuple space. Whereas distributed shared memory operates at the level of reading
and writing bytes, tuple spaces offer a higher-level perspective in the form of semi-
structured data. In addition, whereas distributed shared memory is accessed by address,
tuple spaces are associative, offering a form of content-addressable memory [Gelernter
1985].

Chapter 18 of the fourth edition of this book provided in-depth coverage of
distributed shared memory, including consistency models and several case studies. This
chapter can be found on the companion web site for the book [www.cdk5.net/dsm].

6.5.1 Distributed shared memory

Distributed shared memory (DSM) is an abstraction used for sharing data between
computers that do not share physical memory. Processes access DSM by reads and
updates to what appears to be ordinary memory within their address space. However, an
underlying runtime system ensures transparently that processes executing at different
computers observe the updates made by one another. It is as though the processes access
a single shared memory, but in fact the physical memory is distributed (see Figure 6.19).

www.cdk5.net/dsm

Figure 6.19 The distributed shared memory abstraction

Physical
memory

Process
accessing DSM

DSM appears as
memory in address
space of process

Physical
memory

Physical
memory

Distributed shared memory

Mappings

SECTION 6.5 SHARED MEMORY APPROACHES 263

The main point of DSM is that it spares the programmer the concerns of message
passing when writing applications that might otherwise have to use it. DSM is primarily
a tool for parallel applications or for any distributed application or group of applications
in which individual shared data items can be accessed directly. DSM is in general less
appropriate in client-server systems, where clients normally view server-held resources
as abstract data and access them by request (for reasons of modularity and protection).

Message passing cannot be avoided altogether in a distributed system: in the
absence of physically shared memory, the DSM runtime support has to send updates in
messages between computers. DSM systems manage replicated data: each computer has
a local copy of recently accessed data items stored in DSM, for speed of access. The
problems of implementing DSM are related to the replication issues to be discussed in
Chapter 18, as well as to those of caching shared files, discussed in Chapter 12.

One of the first notable examples of a DSM implementation was the Apollo
Domain file system [Leach et al. 1983], in which processes hosted by different
workstations share files by mapping them simultaneously into their address spaces. This
example shows that distributed shared memory can be persistent. That is, it may outlast
the execution of any process or group of processes that accesses it and be shared by
different groups of processes over time.

The significance of DSM first grew alongside the development of shared-memory
multiprocessors (discussed further in Section 7.3). Much research has gone into
investigating algorithms suitable for parallel computation on these multiprocessors. At
the hardware architectural level, developments include both caching strategies and fast
processor-memory interconnections, aimed at maximizing the number of processors
that can be sustained while achieving fast memory access latency and throughput
[Dubois et al. 1988]. Where processes are connected to memory modules over a
common bus, the practical limit is on the order of 10 processors before performance
degrades drastically due to bus contention. Processors sharing memory are commonly
constructed in groups of four, sharing a memory module over a bus on a single circuit
board. Multiprocessors with up to 64 processors in total are constructed from such
boards in a Non-Uniform Memory Access (NUMA) architecture. This is a hierarchical

264 CHAPTER 6 INDIRECT COMMUNICATION

architecture in which the four-processor boards are connected using a high-performance
switch or higher-level bus. In a NUMA architecture, processors see a single address
space containing all the memory of all the boards. But the access latency for on-board
memory is less than that for a memory module on a different board – hence the name of
this architecture.

In distributed-memory multiprocessors and clusters of off-the-shelf computing
components (again, see Section 7.3), the processors do not share memory but are
connected by a very high speed network. These systems, like general-purpose
distributed systems, can scale to much greater numbers of processors than a shared-
memory multiprocessor’s 64 or so. A central question that has been pursued by the DSM
and multiprocessor research communities is whether the investment in knowledge of
shared memory algorithms and the associated software can be directly transferred to a
more scalable distributed memory architecture.

Message passing versus DSM • As a communication mechanism, DSM is comparable
with message passing rather than with request-reply-based communication, since its
application to parallel processing, in particular, entails the use of asynchronous
communication. The DSM and message-passing approaches to programming can be
contrasted as follows:

Service offered: Under the message-passing model, variables have to be marshalled
from one process, transmitted and unmarshalled into other variables at the receiving
process. By contrast, with shared memory the processes involved share variables
directly, so no marshalling is necessary – even of pointers to shared variables – and
thus no separate communication operations are necessary. Most implementations
allow variables stored in DSM to be named and accessed similarly to ordinary
unshared variables. In favour of message passing, on the other hand, is that it allows
processes to communicate while being protected from one another by having private
address spaces, whereas processes sharing DSM can, for example, cause one another
to fail by erroneously altering data. Furthermore, when message passing is used
between heterogeneous computers, marshalling takes care of differences in data
representation; but how can memory be shared between computers with, for example,
different integer representations?

Synchronization between processes is achieved in the message model through
message passing primitives themselves, using techniques such as the lock server
implementation discussed in Chapter 16. In the case of DSM, synchronization is via
normal constructs for shared-memory programming such as locks and semaphores
(although these require different implementations in the distributed memory
environment). Chapter 7 briefly discusses such synchronization objects in the context
of programming with threads.

Finally, since DSM can be made persistent, processes communicating via DSM
may execute with non-overlapping lifetimes. A process can leave data in an agreed
memory location for the other to examine when it runs. By contrast, processes
communicating via message passing must execute at the same time.

Efficiency: Experiments show that certain parallel programs developed for DSM can
be made to perform about as well as functionally equivalent programs written for
message-passing platforms on the same hardware [Carter et al. 1991] – at least in the

SECTION 6.5 SHARED MEMORY APPROACHES 265

case of relatively small numbers of computers (10 or so). However, this result cannot
be generalized. The performance of a program based on DSM depends upon many
factors, as we shall discuss below – particularly the pattern of data sharing (such as
whether an item is updated by several processes).

There is a difference in the visibility of costs associated with the two types of
programming. In message passing, all remote data accesses are explicit and therefore
the programmer is always aware of whether a particular operation is in-process or
involves the expense of communication. Using DSM, however, any particular read
or update may or may not involve communication by the underlying runtime support.
Whether it does or not depends upon such factors as whether the data have been
accessed before and the sharing pattern between processes at different computers.

There is no definitive answer as to whether DSM is preferable to message passing for
any particular application. DSM remains a tool whose ultimate status depends upon the
efficiency with which it can be implemented.

6.5.2 Tuple space communication

Tuple spaces were first introduced by David Gelernter from Yale University as a novel
form of distributed computing based on what he refers to as generative communication
[Gelernter 1985]. In this approach, processes communicate indirectly by placing tuples
in a tuple space, from which other processes can read or remove them. Tuples do not
have an address but are accessed by pattern matching on content (content-addressable
memory, as discussed by Gelernter [1985]). The resultant Linda programming model
has been highly influential and has led to significant developments in distributed
programming including systems such as Agora [Bisiani and Forin 1988] and, more
significantly, JavaSpaces from Sun (discussed below) and IBM’s TSpaces. Tuple space
communication has also been influential in the field of ubiquitous computing, for
reasons that are explored in depth in Chapter 19.

This section provides an examination of the tuple space paradigm as it applies to
distributed computing. We start by examining the programming model offered by tuple
spaces before briefly considering the associated implementation issues. The section then
concludes by examining the JavaSpaces specification as a case study, illustrating how
tuple spaces have evolved to embrace the object-oriented world.

The programming model • In the tuple space programming model, processes
communicate through a tuple space – a shared collection of tuples. Tuples in turn consist
of a sequence of one or more typed data fields such as <"fred", 1958>, <"sid", 1964>
and <4, 9.8, "Yes">. Any combination of types of tuples may exist in the same tuple
space. Processes share data by accessing the same tuple space: they place tuples in tuple
space using the write operation and read or extract them from tuple space using the read
or take operation. The write operation adds a tuple without affecting existing tuples in
the space. The read operation returns the value of one tuple without affecting the
contents of the tuple space. The take operation also returns a tuple, but in this case it also
removes the tuple from the tuple space.

When reading or removing a tuple from tuple space, a process provides a tuple
specification and the tuple space returns any tuple that matches that specification – as
mentioned above, this is a type of associative addressing. To enable processes to

<"Capital", "Scotland", "Edinburgh">

<"Capital", "Wales", "Cardiff">

<"Capital", "England", "London">
<"Capital", "N. Ireland", "Belfast">

<"Population", "Scotland", 5168000>

<"Population", "UK", 61000000>

take(<String, "Scotland", Integer>)

write(<"Population", "Wales", 2900000>)

read(<"Population", String, Integer>)

take(<String, "Scotland", String>)

Figure 6.20 The tuple space abstraction

266 CHAPTER 6 INDIRECT COMMUNICATION

synchronize their activities, the read and take operations both block until there is a
matching tuple in the tuple space. A tuple specification includes the number of fields and
the required values or types of the fields. For example, take(<String, integer>) could
extract either <"fred", 1958> or <"sid", 1964>; take(<String, 1958>) would extract only
<"fred", 1958> of those two.

In the tuple space paradigm, no direct access to tuples in tuple space is allowed
and processes have to replace tuples in the tuple space instead of modifying them. Thus,
tuples are immutable. Suppose, for example, that a set of processes maintains a shared
counter in tuple space. The current count (say, 64) is in the tuple <"counter", 64>. A
process must execute code of the following form in order to increment the counter in a
tuple space myTS:

<s, count> := myTS.take(<"counter", integer>);
myTS.write(<"counter", count+1>);

A further illustration of the tuple space paradigm is given in Figure 6.20. This tuple
space contains a range of tuples representing geographical information about countries
in the United Kingdom, including populations and capital cities. The take operation
take(<String, "Scotland", String>) will match <"Capital", "Scotland", "Edinburgh">,
whereas take(<String, "Scotland", Integer>) will match <"Population", "Scotland",
5168000>. The write operation write(<"Population", "Wales, 2900000>) will insert a
new tuple in the tuple space with information on the population of Wales. Finally,
read(<"Population", String, Integer) can match the equivalent tuples for the
populations of the UK, Scotland or indeed Wales, if this operation is executed after the
corresponding write operation. One will be selected nondeterministically by the tuple

SECTION 6.5 SHARED MEMORY APPROACHES 267

space implementation and, with this being a read operation, the tuple will remain in the
tuple space.

Note that write, read and take are known as out, rd and in in Linda; we use the
more descriptive former names throughout this book. This terminology is also used in
JavaSpaces, discussed in a case study below.

Properties associated with tuple spaces: Gelernter [1985] presents some interesting
properties associated with tuple space communication, highlighting in particular both
space and time uncoupling as discussed in Section 6.1:

Space uncoupling: A tuple placed in tuple space may originate from any number of
sender processes and may be delivered to any one of a number of potential recipients.
This property is also referred to as distributed naming in Linda.

Time uncoupling: A tuple placed in tuple space will remain in that tuple space until
removed (potentially indefinitely), and hence the sender and receiver do not need to
overlap in time.

Together, these features provide an approach that is fully distributed in space and time
and also provide for a form of distributed sharing of shared variables via the tuple space.

Gelernter [1985] also explores a range of other properties associated with the
rather flexible style of naming employed in Linda (referred to as free naming). The
interested reader is directed to Gelernter’s paper for more information on this topic.

Variations on a theme: Since the introduction of Linda, refinements have been proposed
to the original model:

• The original Linda model proposed a single, global tuple space. This is not
optimal in large systems, as it leads to the danger of unintended aliasing of tuples:
as the number of tuples in a tuple space increases, there is an increasing chance of
a read or take matching a tuple by accident. This is particularly likely when
matching on types, such as with take(<String, integer>), as mentioned above.
Given this, a number of systems have proposed multiple tuple spaces, including
the ability to dynamically create tuple spaces, introducing a degree of scoping into
the system (see, for example, the JavaSpaces case study below).

• Linda was anticipated to be implemented as a centralized entity but later systems
have experimented with distributed implementations of tuple spaces (including
strategies to provide more fault tolerance). Given the importance of this topic to
this book, we focus on this in the implementation issues subsection below.

• Researchers have also experimented with modifying or extending the operations
provided in tuple spaces and adapting the underlying semantics. One rather
interesting proposal is to unify the concepts of tuples and tuple spaces by
modelling everything as (unordered) sets – that is, tuple spaces are sets of tuples
and tuples are sets of values, which may now also include tuples. This variant is
known as Bauhaus Linda [Carriero et al. 1995].

• Perhaps most interestingly, recent implementations of tuple spaces have moved
from tuples of typed data items to data objects (with attributes), turning the tuple
space into an object space. This proposal is adopted, for example, in the influential
system JavaSpaces, discussed in more detail below.

268 CHAPTER 6 INDIRECT COMMUNICATION

Implementation issues • Many of the implementations of tuple spaces adopt a
centralized solution where the tuple space resource is managed by a single server. This
has advantages in terms of simplicity, but such solutions are clearly not fault tolerant and
also will not scale. Because of this, distributed solutions have been proposed.

Replication: Several systems have proposed the use of replication to overcome the
problems identified above [Bakken and Schlichting 1995, Bessani et al. 2008, Xu and
Liskov 1989].

The proposals from Bakken and Schlichting [1995] and Bessani et al. [2008]
adopt a similar approach to replication, referred to as the state machine approach and
discussed further in Chapter 18. This approach assumes that a tuple space behaves like
a state machine, maintaining state and changing this state in response to events received
from other replicas or from the environment. To ensure consistency the replicas (i) must
start in the same state (an empty tuple space), (ii) must execute events in the same order
and (iii) must react deterministically to each event. The key second property can be
guaranteed by adopting a totally ordered multicast algorithm, as discussed in Section
6.2.2.

Xu and Liskov [1989] adopt a different approach, which optimizes the replication
strategy by using the semantics of the particular tuple space operations. In this proposal,
updates are carried out in the context of the current view (the agreed set of replicas) and
tuples are also partitioned into distinct tuple sets based on their associated logical names
(designated as the first field in the tuple). The system consists of a set of workers
carrying out computations on the tuple space, and a set of tuple space replicas. A given
physical node can contain any number of workers, replicas or indeed both; a given
worker therefore may or may not have a local replica. Nodes are connected by a
communications network that may lose, duplicate or delay messages and can deliver
messages out of order. Network partitions can also occur.

A write operation is implemented by sending a multicast message over the
unreliable communications channel to all members of the view. On receipt, members
place this tuple into their replica and acknowledge receipt. The write request is repeated
until all acknowledgements are received. For the correct operation of the protocol,
replicas must detect and acknowledge duplicate requests, but not carry out the
associated write operations.

The read operation consists of sending a multicast message to all replicas. Each
replica seeks a match and returns this match to the requesting site. The first tuple
returned is delivered as the result of the read. This may come from a local node, but
given that many workers will not have a local replica, this is not guaranteed.

The take operation is more complex because of the need to agree on the tuple to
be selected and to remove this agreed tuple from all copies. The algorithm proceeds in
two phases. In phase 1, the tuple specification is sent to all replicas, and the replica
attempts to acquired the lock on the associated tuple set to serialize take requests on the
replicas (write and read operations are unaffected by the lock); if the lock cannot be
acquired, the take request is refused. Each replica that succeeds in obtaining the lock
responds with the set of matching tuples. This step is repeated until all replicas have
accepted the request and responded. The initiating process can then select one tuple from
the intersection of all the replies and return this as the result of the take request. If it is

SECTION 6.5 SHARED MEMORY APPROACHES 269

not possible to obtain a majority of locks, the replicas are asked to release their locks and
phase 1 repeats.

Figure 6.21 Replication and the tuple space operations [Xu and Liskov 1989]

write 1. The requesting site multicasts the write request to all members of the view;
2. On receiving this request, members insert the tuple into their replica and acknowledge this action;
3. Step 1 is repeated until all acknowledgements are received.

read 1. The requesting site multicasts the read request to all members of the view;
2. On receiving this request, a member returns a matching tuple to the requestor;
3. The requestor returns the first matching tuple received as the result of the operation (ignoring others);
4. Step 1 is repeated until at least one response is received.

take Phase 1: Selecting the tuple to be removed
1. The requesting site multicasts the take request to all members of the view;
2. On receiving this request, each replica acquires a lock on the associated tuple set and, if the lock

cannot be acquired, the take request is rejected;
3. All accepting members reply with the set of all matching tuples;
4. Step 1 is repeated until all sites have accepted the request and responded with their set of tuples and

the intersection is non-null;
5. A particular tuple is selected as the result of the operation (selected randomly from the intersection

of all the replies);
6. If only a minority accept the request, this minority are asked to release their locks and phase 1 repeats.

Phase 2: Removing the selected tuple
1. The requesting site multicasts a remove request to all members of the view citing the tuple to be

removed;
2. On receiving this request, members remove the tuple from their replica, send an acknowledgement

and release the lock;
3. Step 1 is repeated until all acknowledgements are received.

In phase 2, this tuple must be removed from all replicas. This is achieved by
repeated multicasts to the replicas in the view until all have acknowledged deletion. As
with write requests, it is necessary for replicas to detect repeat requests in phase 2 and
to simply send another acknowledgement without carrying out another deletion
(otherwise multiple tuples could erroneously be deleted at this stage).

The steps involved for each operation are summarized in Figure 6.21. Note that a
separate algorithm is required to manage view changes if node failures occur or the
network partitions (see Xu and Liskov [1989] for details).

This algorithm is designed to minimize delay given the semantics of the three
tuple space operations:

read operations only block until the first replica responds to the request.

take operations block until the end of phase 1, when the tuple to be deleted has been
agreed.

write operations can return immediately.

270 CHAPTER 6 INDIRECT COMMUNICATION

This, though, introduces unacceptable levels of concurrency. For example, a read
operation may access a tuple that should have been deleted in the second phase of a take
operation. Therefore additional levels of concurrency control are required. In particular,
Xu and Liskov [1989] introduce the following additional constraints:

• The operations of each worker must be executed at each replica in the same order
as they were issued by the worker;.

• A write operation must not be executed at any replica until all previous take
operations issued by the same worker have completed at all replicas in the
worker's view.

A further example of using replication is provided in Chapter 19, where we present the
L2imbo approach, which uses replication to provide high availability in mobile
environments [Davies et al. 1998].

Other approaches: A range of other approaches have been employed in the
implementation of the tuple space abstraction, including partitioning of the tuple space
over a number of nodes and mapping onto peer-to-peer overlays:

• The Linda Kernel developed at the University of York [Rowstron and Wood
1996] adopts an approach in which tuples are partitioned across a range of
available tuple space servers (TSSs), as illustrated in Figure 6.22

Figure 6.22 Partitioning in the York Linda Kernel

Local tuple
space manager

User process

Local tuple
space manager

User process

Local tuple
space manager

User process

Local tuple
space manager

User process

Local tuple
space manager

User process

Local tuple
space manager

User process

TSS TSS TSSTSS TSS

. There is no
replication of tuples; that is, there is only one copy of each tuple. The motivation
is to increase performance of the tuple space, especially for highly parallel
computation.When a tuple is placed in tuple space, a hashing algorithm is used to
select one of the tuple space servers to be used. The implementation of read or
take is slightly more complex, as a tuple specification is provided that may specify
types or values of the associated fields. The hashing algorithm uses this

SECTION 6.5 SHARED MEMORY APPROACHES 271

specification to generate a set of possible servers that may contain matching
tuples, and a linear search must then be employed until a matching tuple is
discovered. Note that because there is only a single copy of a given tuple, the
implementation of take is greatly simplified.

• Some implementations of tuple spaces have adopted peer-to-peer approaches in
which all nodes cooperate to provide the tuple space service. This approach is
particularly attractive given the intrinsic availability and scalability of peer-to-peer
solutions. Examples of peer-to-peer implementations include PeerSpaces [Busi et
al. 2003], which is developed using the JXTA peer-to-peer middleware
[jxta.dev.java.net], LIME and TOTA (the latter two systems feature in Chapter 19).

Case study: JavaSpaces • JavaSpaces

Figure 6.23 The JavaSpaces API

Operation Effect

Lease write(Entry e, Transaction txn, long lease) Places an entry into a particular
JavaSpace

Entry read(Entry tmpl, Transaction txn, long timeout) Returns a copy of an entry matching
a specified template

Entry readIfExists(Entry tmpl, Transaction txn, long timeout) As above, but not blocking

Entry take(Entry tmpl, Transaction txn, long timeout) Retrieves (and removes) an entry
matching a specified template

Entry takeIfExists(Entry tmpl, Transaction txn, long timeout) As above, but not blocking

EventRegistration notify(Entry tmpl, Transaction txn,
RemoteEventListener listen, long lease,
MarshalledObject handback)

Notifies a process if a tuple matching
a specified template is written to a
JavaSpace

 is a tool for tuple space communication
developed by Sun [java.sun.com X, [java.sun.com VI]. More specifically, Sun provides
the specification of a JavaSpaces service, and third-party developers are then free to
offer implementations of JavaSpaces (significant implementations include GigaSpaces
[www.gigaspaces.com] and Blitz [www.dancres.org]). The tool is strongly dependent
on Jini (Sun’s discovery service, discussed further in Section 19.2.1), as will become
apparent below. The Jini Technology Starter Kit also includes an implementation of
JavaSpaces, referred to as Outrigger.

The goals of the JavaSpaces technology are:

• to offer a platform that simplifies the design of distributed applications and
services;

• to be simple and minimal in terms of the number and size of associated classes and
to have a small footprint to allow the code to run on resource-limited devices (such
as smart phones);

• to enable replicated implementations of the specification (although in practice
most implementations are centralized).

www.gigaspaces.com
www.dancres.org

272 CHAPTER 6 INDIRECT COMMUNICATION

Programming with JavaSpaces: JavaSpaces allows the programmer to create any number
of instances of a space, where a space is a shared, persistent repository of objects (thus
offering an object space in the terminology introduced above). More specifically, an
item in a JavaSpace is referred to as an entry: a group of objects contained in a class that
implements net.jini.core.entry.Entry. Note that with entries containing objects (rather
than tuples), it is possible to associate arbitrary behaviour with entries, thus significantly
increasing the expressive power of the approach.

The operations defined on JavaSpaces are summarized in Figure 6.23 (showing
the full signatures of each of the operations) and can be described as follows:

• A process can place an entry into a JavaSpace instance with the write method. As
with Jini, an entry can have an associated lease (see Section 5.4.3), which is the
time for which access is granted to the associated objects. This can be forever
(Lease.FOREVER) or can be a numerical value specified in milliseconds. After
this period, the entry is destroyed. The write operation can also be used in the
context of a transaction, as discussed below (a value of null indicates that this is
not a transactional operation). The write operation returns a Lease value
representing the lease granted by the JavaSpace (which may be less than the time
requested).

•

Figure 6.24 Java class AlarmTupleJS

import net.jini.core.entry.*;

public class AlarmTupleJS implements Entry {
public String alarmType;

public AlarmTupleJS() {
}

public AlarmTupleJS(String alarmType) {
this.alarmType = alarmType;

}
}

A process can access an entry in a JavaSpace with either the read or take
operation; read returns a copy of a matching entry and take removes a matching
entry from the JavaSpace (as in the general programming model presented above).
The matching requirements are specified by a template, which is of type entry.
Particular fields in the template may be set to specific values and others can be left
unspecified. A match is then defined as an entry that is of the same class as the
template (or a valid subclass) and where there is an exact match for the set of
specified values. As with write, read and take can be carried out in the context of
a specified transaction (discussed below). The two operations are also blocking;
the final parameter specifies a timeout representing the maximum length of time
that a particular process or thread will block, for example to deal with the failure
of a process supplying a given entry. The readIfExists and takeIfExists operations

SECTION 6.5 SHARED MEMORY APPROACHES 273

are equivalent to read and take, respectively, but these operations will return a
matching entry if one exists; otherwise, they will return null.

• The notify operation uses Jini distributed event notification, mentioned in Section
6.3 to register an interest in a given event – in this case, the arrival of entries
matching a given template. This registration is governed by a lease, that is, the
length of time the registration should persist in the JavaSpace. Notification is via
a specified RemoteEventListener interface. Once again, this operation can be
carried out in the context of a specified transaction.

As mentioned throughout the discussion above, operations in JavaSpaces can take place
in the context of a transaction, ensuring that either all or none of the operations will be
executed. Transactions are distributed entities and can span multiple JavaSpaces and
multiple participating processes. Discussion of the general concept of transactions is
deferred until Chapter 16.

A simple example: We conclude this examination of JavaSpaces by presenting an
example, the intelligent fire alarm example first introduced in Section 6.2.3 and revisited
in Section 6.4.3. In this example, there is a need to disseminate an emergency message
to all recipients when a fire event is detected.

We start by defining an entry object of type AlarmTupleJS, as shown in Figure
6.24. This is relatively straightforward and shows the creation of a new entry with one
field, the alarmType. The associated fire alarm code is shown in Figure 6.25

Figure 6.25 Java class FireAlarmJS

import net.jini.space.JavaSpace;

public class FireAlarmJS {

public void raise() {
try {

JavaSpace space = SpaceAccessor.findSpace("AlarmSpace");
AlarmTupleJS tuple = new AlarmTupleJS("Fire!");
space.write(tuple, null, 60*60*1000);

catch (Exception e) {
}

}
}

. The first
step in raising an alarm is to gain access to an appropriate instance of a JavaSpace (called
"AlarmSpace"), which we assume is already created. Most implementations of
JavaSpaces provide utility functions for this and, for simplicity, this is what we show in
this code, using a utility class SpaceAccessor and method findSpace as provided in
GigaSpaces (for convenience, a copy of this class is provided on the companion web site
for the book [www.cdk5.net]). An entry is then created as an instance of the previously
defined AlarmTupleJS. This entry has only one field, a string called alarmType, and this

www.cdk5.net

274 CHAPTER 6 INDIRECT COMMUNICATION

is set to "Fire!"”. Finally, this entry is placed into the JavaSpace using the write method,
where it will remain for one hour. This code can then be called using the following:

FireAlarmJS alarm = new FireAlarmJS();
alarm.raise();

The corresponding code for the consumer end is shown in Figure 6.26

Figure 6.26 Java class FireAlarmReceiverJS

import net.jini.space.JavaSpace;

public class FireAlarmConsumerJS {

public String await() {
try {

JavaSpace space = SpaceAccessor.findSpace();
AlarmTupleJS template = new AlarmTupleJS("Fire!");
AlarmTupleJS recvd = (AlarmTupleJS) space.read(template, null,

Long.MAX_VALUE);
return recvd.alarmType;

}
catch (Exception e) {

return null;
}

}
}

. Access to the
appropriate JavaSpace is obtained in the same manner. Following this, a template is
created, the single field is set to "Fire!", and an associated read method is invoked. Note
that by setting the field to "Fire!", we ensure that only entries with this type and this
value will be returned (leaving the field blank would make any entry of type
AlarmTupleJS a valid match). This is called as follows in a consumer:

FireAlarmConsumerJS alarmCall = new FireAlarmConsumerJS();
String msg = alarmCall.await();
System.out.println("Alarm received: " + msg);

This simple example illustrates how easy it is to write multiparty applications using
JavaSpaces that are both time- and space-uncoupled.

6.6 Summary

This chapter has examined indirect communication in detail, complementing the study
of remote invocation paradigms in the previous chapter. We defined indirect
communication in terms of communication through an intermediary, with a resultant
uncoupling between producers and consumers of messages. This leads to interesting
properties, particularly in terms of dealing with change and establishing fault-tolerant
strategies.

SECTION 6.6 SUMMARY 275

We have considered five styles of indirect communication in this chapter:

• group communication;

• publish-subscribe systems;

• message queues;

• distributed shared memory;

• tuple spaces.

The discussion has emphasized their commonalities in terms of all supporting indirect
communication through forms of intermediary including groups, channels or topics,
queues, shared memory or tuple spaces. Content-based publish-subscribe systems
communicate through the publish-subscribe system as a whole, with subscriptions
effectively defining logical channels managed by content-based routing.

As well as focusing on the commonalities, it is instructive to consider the key
differences between the various approaches. We start by reconsidering the level of space
and time uncoupling, picking up on the discussion in Section 6.1. All the techniques
considered in this chapter exhibit space uncoupling in that messages are directed to an
intermediary and not to any specific recipient or recipients. The position with respect to
time uncoupling is more subtle and dependent on the level of persistency in the
paradigm. Message queues, distributed shared memory and tuple spaces all exhibit time
uncoupling. The other paradigms may, depending on the implementation. For example,
in group communication, it is possible in some implementations for a receiver to join a
group at an arbitrary point in time and to be brought up-to-date with respect to previous
message exchanges (this is an optional feature in JGroups, for example, selected by
constructing an appropriate protocol stack). Many publish-subscribe systems do not
support persistency of events and hence are not time-uncoupled, but there are
exceptions. JMS, for example, does support persistent events, in keeping with its
integration of publish-subscribe and message queues.

The next observation is that the initial three techniques (groups, publish-subscribe
and message queues) offer a programming model that emphasizes communication
(through messages or events), whereas distributed shared memory and tuple spaces offer
a more state-based abstraction. This is a fundamental difference and one that has
significant repercussions in terms of scalability; in general terms, the communication-
based abstractions have the potential to scale to very large scale systems with
appropriate routing infrastructure (although this is not the case for group communication
because of the need to maintain group membership, as discussed in Section 6.2.2). In
contrast, the two state-based approaches have limitations with respect to scaling. This
stems from the need to maintain consistent views of the shared state, for example
between multiple readers and writers of shared memory. The situation with tuple spaces
is a bit more subtle given the immutable nature of tuples. The key problem rests with
implementing the destructive read operation, take, in a large-scale system; it is an
interesting observation that without this operation, tuple spaces look very much like
publish-subscribe systems (and hence are potentially highly scalable).

Most of the above systems also offer one-to-many styles of communication, that
is, multicast in terms of the communication-based services and global access to shared
values in the state-based abstractions. The exceptions are message queuing, which is
fundamentally point-to-point (and hence often offered in combination with publish-

Figure 6.27 Summary of indirect communication styles

Groups Publish-
subscribe systems

Message queues DSM Tuple spaces

Space-
uncoupled

Yes Yes Yes Yes Yes

Time- uncoupled Possible Possible Yes Yes Yes

Style of service Communication-
based

Communication-
based

Communication-
based

State-based State-based

Communication
pattern

1-to-many 1-to-many 1-to-1 1-to-many 1-1 or 1-to-many

Main intent Reliable
distributed
computing

Information
dissemination or
EAI; mobile and
ubiquitous
systems

Information
dissemination or
EAI;
commercial
transaction
processing

Parallel and
distributed
computation

Parallel and
distributed
computation;
mobile and
ubiquitous
systems

Scalability Limited Possible Possible Limited Limited

Associative No Content-based
publish-subscribe
only

No No Yes

276 CHAPTER 6 INDIRECT COMMUNICATION

subscribe systems in commercial middleware), tuple spaces, which can be either one-to-
many or point-to-point depending on whether receiving processes use the read or take
operations, respectively.

There are also differences in intent in the various systems. Group communication
is mainly designed to support reliable distributed systems, and hence the emphasis is on
providing algorithmic support for reliability and ordering of message delivery.
Interestingly, the algorithms to ensure reliability and ordering (especially the latter) can
have a significant negative effect on scalability for similar reasons to maintaining
consistent views of shared state. Publish-subscribe systems have largely been targeted
at information dissemination (for example, in financial systems) and for Enterprise
Application Integration. Finally, the shared memory approaches have generally been
applied in parallel and distributed processing, including in the Grid community
(although tuple spaces have been used effectively across a variety of application
domains). Both publish-subscribe systems and tuple space communication have found
favour in mobile and ubiquitous computing due to their support for volatile
environments (as discussed in Chapter 19).

One other key issue associated with the five schemes is that both content-based
publish-subscribe and tuple spaces offer a form of associative addressing based on
content, allowing pattern matching between subscriptions and events or templates
against tuples, respectively. The other approaches do not.

This discussion is summarized in Figure 6.27.

EXERCISES 277

We have not considered issues related to quality of service in this analysis. Many
message queue systems do offer intrinsic support for reliability in the form of
transactions. More generally, however, quality of service remains a key challenge for
indirect communication paradigms. Indeed, space and time uncoupling by their very
nature make it difficult to reason about end-to-end properties of the system, such as real-
time behaviour or security, and hence this is an important area for further research.

EXERCISES

6.1 Construct an argument as to why indirect communication may be appropriate in volatile
environments. To what extent can this be traced to time uncoupling, space uncoupling
or indeed a combination of both? page 230

6.2 Section 6.1 states that message passing is both time- and space-coupled – that is,
messages are both directed towards a particular entity and require the receiver to be
present at the time of the message send. Consider the case, though, where messages are
directed towards a name rather than an address and this name is resolved using DNS.
Does such a system exhibit the same level of indirection? page 231, Section 13.2.3

6.3 Section 6.1 refers to systems that are space-coupled but time- uncoupled – that is,
messages are directed towards a given receiver (or receivers), but that receiver can have
a lifetime independent from the sender’s. Can you construct a communication paradigm
with these properties? For example, does email fall into this category? page 231

6.4 As a second example, consider the communication paradigm referred to as queued RPC,
as introduced in Rover [Joseph et al. 1997]. Rover is a toolkit to support distributed
systems programming in mobile environments where participants in communication
may become disconnected for periods of time. The system offers the RPC paradigm and
hence calls are directed towards a given server (clearly space-coupled). The calls,
though, are routed through an intermediary, a queue at the sending side, and are
maintained in the queue until the receiver is available. To what extent is this time-
uncoupled? Hint: consider the almost philosophical question of whether a recipient that
is temporarily unavailable exists at that point in time. page 231, Chapter 19

6.5 If a communication paradigm is asynchronous, is it also time-uncoupled? Explain your
answer with examples as appropriate. page 232

6.6 In the context of a group communication service, provide example message exchanges
that illustrate the difference between causal and total ordering. page 236

6.7 Consider the FireAlarm example as written using JGroups (Section 6.2.3). Suppose this
was generalized to support a variety of alarm types, such as fire, flood, intrusion and so
on. What are the requirements of this application in terms of reliability and ordering?

page 230, page 240

278 CHAPTER 6 INDIRECT COMMUNICATION

6.8 Suggest a design for a notification mailbox service that is intended to store notifications
on behalf of multiple subscribers, allowing subscribers to specify when they require
notifications to be delivered. Explain how subscribers that are not always active can
make use of the service you describe. How will the service deal with subscribers that
crash while they have delivery turned on? page 245

6.9 In publish-subscribe systems, explain how channel-based approaches can trivially be
implemented using a group communication service? Why is this a less optimal strategy
for implementing a content-based approach? page 245

6.10 Using the filtering-based routing algorithm in Figure 6.11 as a starting point, develop an
alternative algorithm that illustrates how the use of advertisements can result in
significant optimization in terms of message traffic generated. page 251

6.11 Construct a step-by-step guide explaining the operation of the alternative rendezvous-
based routing algorithm shown in Figure 6.12. page 252

6.12 Building on your answer to Exercise 6.11, discuss two possible implementations of
EN(e) and SN(s). Why must the intersection of EN(e) and SN(s) be non-null for a given
e that matches s (the intersection rule)? Does this apply in your possible
implementations? page 252

6.13 Explain how the loose coupling inherent in message queues can aid with Enterprise
Application Integration. As in Exercise 6.1, consider to what extent this can be traced to
time uncoupling, space uncoupling or a combination of both. page 254

6.14 Consider the version of the FireAlarm program written in JMS (Section 6.4.3). How
would you extend the consumer to receive alarms only from a given location?

page 261

6.15 Explain in which respects DSM is suitable or unsuitable for client-server systems.
page 262

6.16 Discuss whether message passing or DSM is preferable for fault-tolerant applications.
page 262

6.17 Assuming a DSM system is implemented in middleware without any hardware support
and in a platform-neutral manner, how would you deal with the problem of differing data
representations on heterogeneous computers? Does your solution extend to pointers?

page 262

6.18 How would you implement the equivalent of a remote procedure call using a tuple
space? What are the advantages and disadvantages of implementing a remote procedure
call–style interaction in this way? page 265

6.19 How would you implement a semaphore using a tuple space? page 265

6.20 Implement a replicated tuple space using the algorithm of Xu and Liskov [1989].
Explain how this algorithm uses the semantics of tuple space operations to optimize the
replication strategy. page 269

	Cover
	Title Page
	Copyright Page
	CONTENTS
	PREFACE
	Acknowledgements
	1 CHARACTERIZATION OF DISTRIBUTED SYSTEMS
	1.1 Introduction
	1.2 Examples of distributed systems
	1.3 Trends in distributed systems
	1.4 Focus on resource sharing
	1.5 Challenges
	1.6 Case study: The World Wide Web
	1.7 Summary

	2 SYSTEM MODELS
	2.1 Introduction
	2.2 Physical models
	2.3 Architectural models
	2.4 Fundamental models
	2.5 Summary

	3 NETWORKING AND INTERNETWORKING
	3.1 Introduction
	3.2 Types of network
	3.3 Network principles
	3.4 Internet protocols
	3.5 Case studies: Ethernet, WiFi and Bluetooth
	3.6 Summary

	4 INTERPROCESS COMMUNICATION
	4.1 Introduction
	4.2 The API for the Internet protocols
	4.3 External data representation and marshalling
	4.4 Multicast communication
	4.5 Network virtualization: Overlay networks
	4.6 Case study: MPI
	4.7 Summary

	5 REMOTE INVOCATION
	5.1 Introduction
	5.2 Request-reply protocols
	5.3 Remote procedure call
	5.4 Remote method invocation
	5.5 Case study: Java RMI
	5.6 Summary

	6 INDIRECT COMMUNICATION
	6.1 Introduction
	6.2 Group communication
	6.3 Publish-subscribe systems
	6.4 Message queues
	6.5 Shared memory approaches
	6.6 Summary

	7 OPERATING SYSTEM SUPPORT
	7.1 Introduction
	7.2 The operating system layer
	7.3 Protection
	7.4 Processes and threads
	7.5 Communication and invocation
	7.6 Operating system architecture
	7.7 Virtualization at the operating system level
	7.8 Summary

	8 DISTRIBUTED OBJECTS AND COMPONENTS
	8.1 Introduction
	8.2 Distributed objects
	8.3 Case study: CORBA
	8.4 From objects to components
	8.5 Case studies: Enterprise JavaBeans and Fractal
	8.6 Summary

	9 WEB SERVICES
	9.1 Introduction
	9.2 Web services
	9.3 Service descriptions and IDL for web services
	9.4 A directory service for use with web services
	9.5 XML security
	9.6 Coordination of web services
	9.7 Applications of web services
	9.8 Summary

	10 PEER-TO-PEER SYSTEMS
	10.1 Introduction
	10.2 Napster and its legacy
	10.3 Peer-to-peer middleware
	10.4 Routing overlays
	10.5 Overlay case studies: Pastry, Tapestry
	10.6 Application case studies: Squirrel, OceanStore, Ivy
	10.7 Summary

	11 SECURITY
	11.1 Introduction
	11.2 Overview of security techniques
	11.3 Cryptographic algorithms
	11.4 Digital signatures
	11.5 Cryptography pragmatics
	11.6 Case studies: Needham–Schroeder, Kerberos, TLS, 802.11 WiFi
	11.7 Summary

	12 DISTRIBUTED FILE SYSTEMS
	12.1 Introduction
	12.2 File service architecture
	12.3 Case study: Sun Network File System
	12.4 Case study: The Andrew File System
	12.5 Enhancements and further developments
	12.6 Summary

	13 NAME SERVICES
	13.1 Introduction
	13.2 Name services and the Domain Name System
	13.3 Directory services
	13.4 Case study: The Global Name Service
	13.5 Case study: The X.500 Directory Service
	13.6 Summary

	14 TIME AND GLOBAL STATES
	14.1 Introduction
	14.2 Clocks, events and process states
	14.3 Synchronizing physical clocks
	14.4 Logical time and logical clocks
	14.5 Global states
	14.6 Distributed debugging
	14.7 Summary

	15 COORDINATION AND AGREEMENT
	15.1 Introduction
	15.2 Distributed mutual exclusion
	15.3 Elections
	15.4 Coordination and agreement in group communication
	15.5 Consensus and related problems
	15.6 Summary

	16 TRANSACTIONS AND CONCURRENCY CONTROL
	16.1 Introduction
	16.2 Transactions
	16.3 Nested transactions
	16.4 Locks
	16.5 Optimistic concurrency control
	16.6 Timestamp ordering
	16.7 Comparison of methods for concurrency control
	16.8 Summary

	17 DISTRIBUTED TRANSACTIONS
	17.1 Introduction
	17.2 Flat and nested distributed transactions
	17.3 Atomic commit protocols
	17.4 Concurrency control in distributed transactions
	17.5 Distributed deadlocks
	17.6 Transaction recovery
	17.7 Summary

	18 REPLICATION
	18.1 Introduction
	18.2 System model and the role of group communication
	18.3 Fault-tolerant services
	18.4 Case studies of highly available services: The gossip architecture, Bayou and Coda
	18.5 Transactions with replicated data
	18.6 Summary

	19 MOBILE AND UBIQUITOUS COMPUTING
	19.1 Introduction
	19.2 Association
	19.3 Interoperation
	19.4 Sensing and context awareness
	19.5 Security and privacy
	19.6 Adaptation
	19.7 Case study: Cooltown
	19.8 Summary

	20 DISTRIBUTED MULTIMEDIA SYSTEMS
	20.1 Introduction
	20.2 Characteristics of multimedia data
	20.3 Quality of service management
	20.4 Resource management
	20.5 Stream adaptation
	20.6 Case studies: Tiger, BitTorrent and End System Multicast
	20.7 Summary

	21 DESIGNING DISTRIBUTED SYSTEMS: GOOGLE CASE STUDY
	21.1 Introduction
	21.2 Introducing the case study: Google
	21.3 Overall architecture and design philosophy
	21.4 Underlying communication paradigms
	21.5 Data storage and coordination services
	21.6 Distributed computation services
	21.7 Summary

	REFERENCES
	INDEX

