
10 – Indirect Communication

● Group Communication
● Publish-Subscribe
● Message Queus

● Coulouris 6
●

● Point-to-point
communication
– Participants need to exist

at the same time
– Establish communication
– Participants need to

know address of each
other and identities

– Not a good way to
communicate with
several participants

● Indirect communication
– Communication through an

intermediary
● No direct coupling between the

sender and the receiver(s

– Space uncoupling
● No need to know identity of

receiverand viceversa
● Participants can be replaced,

updated, replicated, or migrated

– Time uncoupling
● independent lifetimes
● requires persistence in the

communication channel

3/
33

Indirect Communcation

● scenarios where users connect and disconnect very
often
– Mobile environments, messaging services, forums

● Event dissemination where receivers may be
unknown and change often
– RSS, events feeds in financial services

● Scenarios with very large number of participants
– Google Ads system, Spotify

● Commonly used in cases when change is anticipated
– need to provide dependable services

4/
33

Indirect Communcation

● performance overhead introduced by adding a
level of indirection
– reliable message delivery, ordering affect scalability

● more difficult to manage because lack of direct
coupling

● difficult to achieve end-to-end properties
– real time behavior
– security

5/
33

Indirect communcation

● “All problems in computer science can be solved by
another level of indirection.”

● Indirect communication
– communication between entities in a DS through an intermediary

with no direct coupling between sender and receiver(s).
● Lots of variations in

– Intermediary
– Coupling
– Implementation details and tradeoffs therein

● “There is no performance problem that cannot be solved
by eliminating a level of indirection.”

6/
33

Indirect communication

7/
33

Group communication

● Group communication offers a service whereby a
message is sent to a group and then this message is
delivered to all members of the group.

● Characteristics
– Sender is not aware of the identities of the receivers
– Represents an abstraction over multicast communication

● Possible implementation over IP multicast (or an
equivalent overlay network), adding value in terms of
– Managing group membership
– Detecting failures and providing reliability and ordering

guarantees

8/
33

Group communication

● Reliable dissemination of information to potentially large numbers of
clients,
– financial industry, where institutions require accurate and up-to-date

access to a wide variety of information sources
● Support for collaborative applications

– where events must be disseminated to multiple users to preserve a
common user view –

– for example, in multiuser games
● Support for a range of fault-tolerance strategies

– including the consistent update of replicated data
– or the implementation of highly available (replicated) servers

● Support for system monitoring and management
– including for example load balancing strategies

9/
33

Group Communciation

● Central abstraction:
– group & associated membership

● Processes join (explicitly) or leave (explicitly or by
failure)

● Send single message to the group of N, not N
unicast messages

P1

P2

P3 P4

IN?

Out?

P1

P2

P3 P4
Send

10
/3

3

Groups

● Process groups and object groups
– Most research on process groups
– Abstraction: resilient process
– Messages delivered to a process endpoint, no higher
– Messages typically unstructured byte arrays, no marshalling etc
– Level of service ≈ socket

● Object group
– higher level approach
– Collection of objects (same class!) process same invocations
– Replication can be transparent to clients
– Invoke on single object (proxy)
– Requests sent by group communication
– Voting in proxy usually

● Process groups still more widely researched & deployed

11
/3

3

Groups

● Closed
– Cooperating servers
– Internal messages

● Open
– Notification of services

Closed group Open group

12
/3

3

Implementation Issues

● Reliable delivery
● Unicast delivery reliability properties

– Delivery integrity
● message received same as sent, never delivered twice

– Delivery validity
● outgoing message eventually delivered

● Group communication reliability properties build on this
– Delivery integrity

● Deliver message correctly at most once to group members
● Note: stronger than RPC delivery guarantees!

– Delivery validity
● message sent will be eventually delivered (if not all group members fail)

– Agreement/consensus
● Delivered to all or none of the group members
● Note: also called atomic delivery

13
/3

3

Ordering

● FIFO ordering
– first-in-first-out from a single sender to the group

● Causal ordering
– preserves potential causality, happens before

● Total ordering
– messages delivered in same order to all processes

● Perspective
– Strong reliability and ordering is expensive: scale limited
– More probabilistic approaches & weaker delivery possible

14
/3

3

Groups membership

● Providing an interface for group membership changes
– The membership service provides operations to create and destroy

process groups and to add or withdraw a process to or from a group
● Failure detection

– The service monitors the group members not only in case they should
crash, but also in case they should become unreachable because of a
communication failure.

● Notifying members of group membership changes
– The service notifies the group’s members when a process is added, or

when a process is excluded
● Performing group address expansion

– When a process multicasts a message, it supplies the group identifier
rather than a list of processes in the group.

15
/3

3

Groups membership

Join

Group
address

expansion

Multicast
communication

 Group

send

Fail
Group membership

management

Leave

Process group

16
/3

3

Publish-subscribe

● Pub-sub or distributed event systems
– Most widely used from this chapter

● Publishers publish structured events to event service (ES)
● Subscribers express interest in particular events
● ES matches published events to subscriptions
● Applications

– Financial info systems
– Other live feeds of real-time data (including RSS)
– Cooperative working (events of shared interest)
– Ubiquitous computing (location events, from infrastructure)
– Lots of monitoring applications, including internet net.

17
/3

3

Example

● Stock trading system
● Let users see latest market prices of stock they care about
● Info for a given stock arrives from multiple sources
● Dealers only care about stocks they own (or might)
● May only care to know above some threshold, in addition
● Two kinds of tasks

– Info provider receives updates
(events) from a single external
source

– Dealer process creates
subscription for each stock its
user(s) express interest in

Dealer’s computer

Information
provider

Dealer

External
source

External
source

Information
provider

Dealer

Dealer
Dealer

Notification

Notification

Notification

Notification

Notification
Notification

Notification

Notification

Dealer’s computer

Dealer’s computerDealer’s computer
Notification Notification

18
/3

3

Characteristics

● Heterogeneity
– Able to glue together systems not designed to work together,
– Have to come up with an external description of what can be

subscribed to: simple flat, rich taxonomy, etc
● Asynchrony

– Decoupling means you never have to block!
● Possible delivery guarantees

– All subscribers receive the same events (atomicity)
– Events correctly delivered to subscribers at most once to

subscribers (integrity)
– message sent will be eventually delivered (validity)
– Real-time

19
/3

3

Programming Model

● Publishers
– Disseminate event e through publish(e)
– Register/advertise via a filter (pattern over all events):

● f: advertise (f)
● Expressiveness of pattern is the subscription model

– Can also remove the offer to publish: unadvertise (f)
● Subscribers

– Subscribe via a filter (pattern)
● f:subscribe(f)

– Receive event e matching
● f: notify(f)

– Cancel their subscription:
● unsubscribe(f)

20
/3

3

Subscription model

● Channel-based
– Publishers publish to named channels
– Subscribers get ALL events from channel
– Very simplistic, no filtering (all other models below do)
– CORBA Event Services uses this

● Topic-based (AKA subject-based)
– Each notification expressed in multiple fields, one being topic
– Subscriptions choose topics
– Hierarchical topics can help (e.g., old USENET

rec.sports.cricket)

21
/3

3

Subscription model

● Content-based
– Generalization of topic based
– Subscription is expression over range of fields (constraints on values)
– Far more expressive than channel-based or topic-based

● Type-based
– Use object-based approaches with object types
– Subscriptions defined in terms of types of events
– Matching in terms of types or subtypes of filter
– Ranges from coarse grained (type names) to fine grained (attributes

and methods of object)
– Advantage: clean integration with object-based programming

languages

22
/3

3

Main concern

● Deliver events efficiently to all subscribers that
have filters that match the events

● Tradeoffs:
– Latency/reliability
– Ease in implementation /

expressive power to specify
events of interest

● Security
● Scalability
● Failure handling
● Quality of Service

(QoS)

23
/3

3

Centralized vs. distributed

● Centralized schemes simple
– Implementing channel-based or topic-based simple
– Map channels/topics onto groups
– Use the group’s multicast (possibly reliable, ordered, ..)
– Implementation of content/type/ more complicated

● Most implementations are network of brokers
● Some implementations are peer-to-peer (P2P)

– All publisher and subscriber nodes act as the pub-sub
broker

24
/3

3

Distributed

25
/3

3

Distributed

26
/3

3

Distributed - content-based routing

● Flooding (with duplicate suppression)
– Simplest version

● Send event to all nodes on a network
● Can use underlying multicast/broadcast

– More complicated
● Brokers arranged in acyclic forwarding graph
● Each node forwards to all its neighbors (except one that sent it to node)

● Filtering (filter-based routing)
– Only forward where path to valid subscriber I.e., subscription info

propagated through network towards publ’s
– Detail:

● Each node maintain neighbors list
● For each neighbor, maintain subscription list/criteria
● Routing table with list of neighbors and subscribers downstream

27
/3

3

Flooding

28
/3

3

Filtering

29
/3

3

Distributed - content-based routing

● Rendezvous
– It is based on two functions,

● SN and EN, used to associate respectively subscriptions and events to
brokers in the system.

– Given a subscription s,
● SN(s) returns a set of nodes which are responsible for storing s and forwarding

received events matching s to all those subscribers that subscribed it.

– Given an event e,
● EN(e) returns a set of nodes which must receive e to match it against the

subscriptions they store.

– Event routing is a two-phases process:
● first an event e is sent to all brokers returned by EN(e), then those brokers match

it against the subscriptions they store and notify the corresponding subscribers.

– This approach works only if for each subscription s and event e, such
that e matches s, the intersection between EN(e) and SN(s) is not empty
(mapping intersection rule).

30
/3

3

Rendezvous

31
/3

3

Message Queues

● intermediary between producers and consumers
of data
– Point-to-Point, not one-to-many
– Supports time and space uncoupling

● Programming model
– producer sends message to specific queue
– consumers can

● Block
● Non-block (polling)
● Notify

32
/3

3

Message Queues

33
/3

3

Message Queues

● Many processes can send to a queue,
● many can remove from it
● Queuing policy:

– usually FIFO, but also priority-based
● Consumers can select based on metadata
● Messages are persistent

– Stored until removed (on disk)
● Transaction support:

– all-or-none operations
● Automatic message transformation:

– on arrival, message transforms data from one format to another (data
heterogeneity)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

