
08 – Javascript



What is JavaScript?
● A script language for web browsers

– Runs directly in the browser
– can respond to user interactions quickly, without wide-area 

latencies
– Can interact with web pages through the DOM

● Syntax very similar to Java
– Similar operators, constructs, naming conventions...
– This is intentional

● But very different from Java 'under the hood'
– Dynamic typing, no inheritance, runtime evaluation...
– Details can be a bit messy

2



A brief history of JavaScript

● Developed at Netscape (1995)
– Author: Brendan Eich
– Originally called 'Mocha', then 'LiveScript'
– Became 'JavaScript' when Netscape and Sun got together
– NO direct connection to Java!

● Microsoft's dialect: JScript (1996)
– To avoid licensing issues

● Standardized as ECMAscript (1997)
● History of incompatibilities across browsers

– Example: Different ways of getting XMLHttpRequest object 
in different browsers (see later)

3



A simple client-side example

● Example: Form validation
– Warns the user if no search term is specified
<html>
  <head><title>Test</title></head>
  <script type="text/javascript">
  <!-- 
    function check(myform) {
      if (myform.term.value=="") {
        alert("Please enter a search term!");
        return false;
      } else {
        return true;
      }
   } // -->
  </script>
  <body>
    <h1>Input a search term</h1>
    <form method="post" action="process.php" onsubmit="return check(this)">
      <input type="text" name="term" size="20">
      <input type="submit" value="Search">
    </form>
  </body>
</html>

Script is embedded
in the web page

Calls function when form is
submitted; aborts submission
when function returns false

Prevents problems
if browser does not
support scripting



Including JavaScript in HTML

● Option #1: Embed entirely in HTML document
– As in previous example: Use <script>...</script>
– To be safe, enclose script in HTML comments (to avoid 

confusing browsers that don't recognize JavaScript)
● Option #2: Attach as a separate file

– <script type="text/javascript" src="myscript.js"> </script>
– Some browsers need the space between 

<script>...</script> and don't load the script if this is omitted
● Remember that script is visible to the client!

– Do NOT hardcode any passwords or include any secrets



Event handlers

● Client-side JS can react to various events
– Examples: User clicks on an element or presses a key, user 

submits a form, user changes a selection in a form, page 
finishes loading, mouse moves over a certain element...

– Web page can request that the browser call a certain 
JavaScript function when the event occurs

● Events can be requested from the web page:
– <a href="foo.html" onClick="alert('You\'ve clicked!')">

● ... or directly from JavaScript:
– theElement.onclick = functionName (DOM 0)
– theElement.addEventListener(type, function, opt)



Document Object Model

● Document Object Model
– An interface for manipulating HTML and XML 

documents
– Document is represented as a tree of objects
– Program can traverse the tree, add/delete/read/write 

nodes
● We're not even scratching the surface in this course: DOM 

exists at several levels (0,1,2,3); Level 3 core spec has 216 
pages!



<div> and <span>
● Primary use is to hold an identifier

– We can use this identifier to find the element in the 
DOM

– Otherwise, the elements do very little; <div> is 
rendered similar to <p>, and <span> does not affect 
text flow at all

– Other elements can hold 'id' too, but have other 
functions



Accessing the DOM from 
JavaScript

● JavaScript programs can interact with the DOM
– Document root provided as the 'document' object
– Read from, and write to, elements in the DOM tree
– How do we find the right element in the tree?

<html>
  <head><title>Test</title></head>
  <script type="text/javascript">
  <!-- 
    function replace() {
      var t = document.getElementById('abc').value;
      document.getElementById('xyz').innerHTML = t;
   } // -->
  </script>
  <body>
    <h1>Test</h1>
    <form action="xyz" method="get" onSubmit="replace(); return false">
      <input type="text" name="thetext" size="20" id="abc">
      <input type="submit" value="Replace">
    </form>
    <div id="xyz">(this is where the text will go)</div>
  </body>
</html>

Reads current contents 
of input field

Replaces the text in the 
'div' element below



<div> and <span>

<html> 
  <head><title>Test</title></head>
  <body>
    <h1>Test</h1>
    This is some normal text with
    a <span id="foo">span</span> in it.
    <div id="bar">And this is a div.</div>
    Here is some more normal text.
</html>

...
document.getElementById('foo').innerHTML = "<p>Some text</p>";
...



Functions for accessing the DOM

● The HTML page itself is called 'document'
● To get information from the document:

– var price = document.getElementById('price').value;
– var allimages = document.getElementsByName('img');
– var firstimg = document.getElementsByName('img')[0];

● To put information into the document:
– Create new elements; replace, or append to, existing 

nodes



● Finding HTML Elements
– document.getElementById()
– document.getElementsByTagName()
– document.getElementsByClassName()

● Changing HTML Elements
– element.innerHTML= 
– element.attribute= 
– element.setAttribute(attribute,value) 
– element.style.property= 



● Adding and Deleting Elements
– document.createElement() 
– document.removeChild() 
– document.appendChild() 
– document.replaceChild() 

● Adding Events Handlers
– document.getElementById(id).onclick=function(){code} 
–



Functions for accessing the DOM
● Find thing to be replaced

– var mainDiv = document.getElementById("main-
page");

– var orderForm = document.getElementById("target");
● Create replacement

– var paragraph = document.createElement("p");
– var text = document.createTextNode("Here is the 
new text.");

– paragraph.appendChild(text);
● Do the replacement

– mainDiv.replaceChild(paragraph, target);



innerHTML

● Building new DOM subtree is a lot of work
– Isn't there an easier way?

● Solution: innerHTML
– A non-W3C DOM property that gets or sets the text 

between the start and end tags
– Argument completely replaces elements' existing content
– If the new value contains HTML tags, it is parsed and 

formatted before being placed into the document
● Example:

– document.getElementById('foo').innerHTML="<p>XYZ</p>"



JavaScript

● A scripting language for browsers
– Can make pages interactive w/o sending requests to server
– Syntax is very similar to Java, but internals are very different
– Lots of small differences between browser implementations

● JavaScript can interact with the DOM
– Examples: Read data from forms, replace parts of the page
– Can register event handlers with DOM elements to respond 

to clicks, keypresses, mouse movements, selections...



Resources

● http://www.w3schools.com/js/
– Covers the basics (use the navbar on the left!)\

● http://net.tutsplus.com/tutorials/javascript-ajax/
introduction-to-express/

● https://developer.mozilla.org/en-US/docs/Learn/
Getting_started_with_the_web/JavaScript_basics 

● JQuery tutorial
– http://www.w3schools.com/jquery/jquery_intro.asp
– http://jqfundamentals.com/



Implementing search suggestions
● How would you do this with pure JavaScript?  



XMLHttpRequest

● A JavaScript object that enables web pages to 
dynamically load more content
– Example: Ask the server for search suggestions while the 

user is typing the search term
● Request can be asynchronous

– Browser performs the HTTP request in the background 
while the user continues to interact with the web page

– Script defines a callback function that should be invoked 
when the requested content has arrived

● Content does not have to be XML
– But often is or JSON



XMLHttpRequest workflow

● Instantiate a new XMLHttpRequest object
● Prepare the object

– Call open() to set the URL and the method (GET, POST, ...)
– Can add headers, HTTP authentication, ...
– Need to send a callback function that will be called by the browser 

when the results are available
● Send the request

– Invoke send(), optionally with data to submit (for POST)
● Handle invocations of the callback function

– Do something with the response if request was successful
– Optionally, handle errors



XMLHttpRequest properties

Property Description

readyState Current state of the object:
     0 = UNSENT (before open() is called)
     1 = OPENED (before send() is called)
     2 = HEADERS_RECEIVED (header+status 
available)
     3 = LOADING (partial data available)
     4 = DONE (operation complete)

onreadystatechange Can be assigned a function that is called whenever 
readyState changes (e.g., to process the response)

responseText Response as text

responseXML Response as a DOM document object (parsed as 
text/xml)

status Status of the response (a HTTP result code, e.g. 200)

statusText Response string returned by the server (e.g., '200 OK')



XMLHttpRequest methods

Method Description

open("method","url" 
[,asyncFlag[,user[,pwd]]])

Initializes a new request. Default is asynchronous 
(asyncFlag=true). Optional HTTP user+password.

setRequestHeader("L","V") Used to add headers to the request

send([content]) Sends the request. Content is optional (omitted, 
e.g., for GET)

abort() Aborts a request that has already been sent

getResponseHeader("L") Returns a specific header from the response

getAllResponseHeaders() Returns all the headers from the response



Security restrictions

● Requests are subject to same-origin policy
– Can only connect to the domain that also sent the 

currently loaded page
● Example: Page from foo.com can't request content from 

bar.com

– Similar to the restriction that applies to cookies
● Some workarounds exist

– JSONP: Encode data in a JavaScript
– CORS: Additional HTTP header allows access from 

different domains; part of XMLHttpRequest Level 2
– Plugins (Flash, Silverlight, ...)

23



Instantiating XMLHttpRequest

● Implementation in browsers varies:
– var request = new XMLHttpRequest(); (most 

browsers)
– var request = new 

ActiveXObject("Microsoft.XMLHTTP");
– var request = new 

ActiveXObject("Msxml2.XMLHTTP");
– Using incorrect method causes an exception!



● When doing a POST, set the content type
– request.setRequestHeader('Content-Type', 

–      'application/x-www-form-urlencoded');

– request.send('param1='+param1+'&param2='+param2);

● When doing a GET, encode parameters
– Not all characters are legal in a URL (example: space)
– Need to escape these characters (' '  '%20' etc.)
– Can use the escape() method to do this:

● request.send('param1='+escape(param1));



XMLHttpRequest

● XMLHttpRequest is a JavaScript object
– Enables web pages to dynamically request more data
– For security reasons, same-origin policy applies
– Despite the name, data does not have to be in XML; 

other formats (text, HTML) work as well
● Requests can be asynchronous

– Programmer supplies a callback function that is 
invoked by the browser when a response arrives

– Can load data in the background (example: Google 
Maps)





What is AJAX?
● Asynchronous JavaScript and XML

– Firsty mentioned by Jesse James Garrett in 2005

● Not a single technology - a mix of technologies 
for building faster web apps
– HTML and CSS for presentation
– DOM for dynamic display
– XML for data interchange
– XMLHttpRequest for asynchronous requests
– JavaScript for binding everything together

28
University of Pennsylvania



Where is AJAX used?
● Widely used by major web pages today

– Examples: Google Maps, Gmail, Search 
Suggestions, ...

29
University of Pennsylvania



Building web applications with 
AJAX

● Several puzzle pieces are needed
– Host page: A web page that we'd like to make 

interactive
– Client-side script: A JavaScript program that

● registers handlers for relevant events, such as inputs or 
mouse clicks

● requests additional data from the server using 
XMLHttpRequest objects

● integrates the responses with the web page using the 
DOM

– Server side: Another JavaScript program that 
supplies the data

● Example: Given a partial search term, return XML with 
suggestions

– Client-side script runs in browser, server-side in 
Node!

30
University of Pennsylvania



AJAX with XML
● Despite its name, XMLHttpRequest can handle 

content other than XML
– Server must set Content-Type header appropriately: 

text/xml for XML; text/plain or text/html otherwise
– XML content can be accessed through 

responseXML field
– DOM has the same methods as the HTML DOM

● Upload data to the server as XML?
– Possible, but a lot of work (server may not have a 

DOM)
– Due to length restrictions, POST pretty much only 

option
– Need to setRequestHeader("Content-Type", 

"text/xml")

31
University of Pennsylvania



var express = require('express');
var app = express();
 
app.use(express.bodyParser());
app.use('/', express.static(__dirname + "/public",{maxAge:1}));

var terms = ["Aardvark", "Adelie penguin", "Alligator", "Alpaca", "Anaconda",
  "Ant", "Anteater", "Antelope", "Ape", "Arctic seal", "Armadillo",
  "Ass", "Axolotl" ];
 
app.get('/suggest/:term', function(req, res) {
  console.log('Requested term: ' + req.params.term);
  res.type('text/xml');
  var response = "<?xml version=\"1.0\"?>\n<root>\n";
  terms.forEach(function(t) {
    if (t.substring(0, req.params.term.length) == req.params.term) 
      response = response + "  <element>"+t+"</element>\n";
  });
  response = response + "</root>";
  res.send(response);
});
  
app.listen(8080);
console.log('Server running on port 8080');

Example: Server side

University of Pennsylvania

<?xml version="1.0" ?>
<root>
  <element>Anaconda</element> 
  <element>Ant</element> 
  <element>Anteater</element> 
  <element>Antelope</element> 
</root> 

Example output:

32



<html>
  <head><title>Test</title></head>
  <script type="text/javascript">
  <!-- 
    function updateSuggestions() {
      var term = document.getElementById('abc').value;
      request = new XMLHttpRequest();
      request.open("GET", "http://localhost:8080/suggest/"+escape(term));
      request.onreadystatechange = function() {
        if ((request.readyState == 4) && (request.status == 200)) {
          var xmldoc = request.responseXML;
          var root = xmldoc.getElementsByTagName('root').item(0);
          var elements = root.getElementsByTagName('element');
          var htmlOut = (elements.length)+ " suggestion(s):<br><br>";
          for (var i=0; i<elements.length; i++)
            htmlOut += "#"+(1+i)+": "+elements.item(i).textContent+"<br>";            
          document.getElementById('xyz').innerHTML = htmlOut;
        }
      }
      request.send();
    } // -->
  </script>
  <body>
    <h1>Input a search term</h1>
    <form action="" method="" onSubmit="return false">
      <input type="text" name="thetext" size="20" id="abc" onKeyUp="updateSuggestions()">
      <input type="submit" value="Replace">
    </form>
    <div id="xyz">(this is where the text will go)</div>
  </body>
</html>

Example: Client side

University of Pennsylvania

Registers
event handler

Callback
function

URL of server-side
component (servlet)

Get data
from XML

Put data
into page
via DOM

33



Some common problems
● Problem: Request is never sent

– Are you following the same-origin policy?
– To debug, use try-catch block (as in java) and call 

alert() to display the exception in a dialog box, or 
open the browser's 'error console' window

● Problem: Response is never received
– Did you use the XMLHttpRequest object to issue 

another request in the meantime? (causes response 
to be lost)

– Solution: Create multiple request objects

● Problem: Request is only sent once
– If using GET, maybe the browser has cached the 

response?
– Solution #1: Append a nonce to the URL, e.g., 

current time
– Solution #2: Use POST instead of GET

34
University of Pennsylvania



Pros and cons of AJAX
● Much more responsive than plain HTML

– Can avoid wide-area latency in many cases (why not 
all?)

– Faster - can transfer just the required information 
after each interaction, rather than the entire page 
(+less bandwidth)

● Difficult to integrate navigation elements
– 'Back' button, bookmarks, external links from other 

pages etc. require special care 
(window.location.hash)

● Difficult to accommodate search engines
– Need to use site maps or carefully construct initial 

page

● JavaScript compatibility issues
● Messy to develop and debug

– Mix of different technologies; lack of tool support



Recap: AJAX
● A mix of several technologies

– "Asynchronous JavaScript and XML"

● Can be used to build interactive web pages
– HTML and CSS for rendering the host page
– JavaScript event handlers for responding to inputs
– XMLHttpRequest object for getting more data from 

server
– XML for encoding the responses
– DOM for integrating data with the host page
– Other techniques are sometimes mentioned, e.g., 

XSLT

36
University of Pennsylvania



Goals for today
● Brief introduction to JavaScript

– Event handlers
– Accessing the DOM
– The XMLHttpRequest object

● AJAX
– Putting everything together
– Example: Search suggestions

● Simplifying things
– jQuery support for AJAX
– JSON

● Using external elements
– Example: Google Maps

37
University of Pennsylvania

NEXT



AJAX troubles
● "I don't want to write all that code for packing 

and unpacking XML"
● "I don't want to deal with XMLHttpRequest 

objects directly"
● "There are still browser incompatibilities?!?"

38
University of Pennsylvania



jQuery support for AJAX
● jQuery makes AJAX much more convenient

– Transparently handles browser incompatibilities
– Comes with convenience methods like 

● $("#someid").load(...)

– No need to deal with XMLHttpRequest directly

39
University of Pennsylvania

<html><head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js">
</script><script>
$(document).ready(function(){
  $("button").click(function(){
    $("#div1").load("demo_test.txt",function(responseTxt,statusTxt,xhr){
      if (statusTxt=="success")
        alert("External content loaded successfully!");
      if (statusTxt=="error")
        alert("Error: "+xhr.status+": "+xhr.statusText);
    });
  });
});
</script></head><body>
<div id="div1"><h2>Let jQuery AJAX Change This Text</h2></div>
<button>Get External Content</button>
</body></html>

ht
tp

:/
/w

w
w

.w
3s

ch
oo

ls
.c

om
/j

qu
er

y/
jq

ue
ry

_a
ja

x_
lo

ad
.a

sp



Problem: Sending structured data
● What if we want the server to return an object, or 

an array, or ...?
● Use JSON! 

40
University of Pennsylvania

{ 
  "firstName": "John", 
  "lastName": "Smith", 
  "age": 25, 
  "address": { 
    "streetAddress": "21 2nd Street", 
    "city": "New York", 
    "state": "NY", 
    "postalCode": 10021 
  }, 
  "phoneNumber": [ 
    { "type": "home", "number": "212 555-1234" }, 
    { "type": "fax", "number": "646 555-4567" } 
  ] 
}



Working with JSON
● On the client side:

– Invoke $.getJSON('/url', function(data)) instead of 
$.get

– When the server returns JSON-encoded data, it is 
parsed (via eval()) and returned as an object

– Warning: Security implications!

● On the server side:
– Step 1: In the route callback, build the object to 

return
– Step 2: Send with 

res.send(JSON.stringify(yourObject))
– Object will be JSON-encoded and sent back to the 

client

41
University of Pennsylvania



AJAX with jQuery/JSON: Server 
side

University of Pennsylvania

var express = require('express');
var app = express();
 
app.use(express.bodyParser());
app.use('/', express.static(__dirname + "/public",{maxAge:1}));

var terms = ["Aardvark", "Adelie penguin", "Alligator", "Alpaca", "Anaconda",
  "Ant", "Anteater", "Antelope", "Ape", "Arctic seal", "Armadillo",
  "Ass", "Axolotl" ];
 
app.get('/suggest/:term', function(req, res) {
  console.log('requested term: ' + req.params.term);
  var response = [];
  terms.forEach(function(t) {
    if (t.substring(0, req.params.term.length) == req.params.term) 
      response.push(t);
  });
  res.send(JSON.stringify(response));
});
  
app.listen(8080);
console.log('Server running on port 8080');



AJAX with jQuery/JSON: Client 
side

University of Pennsylvania

<html>
  <head><title>Test</title></head>
  <script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
  <script type="text/javascript">
  <!-- 
    function updateSugg() {
      var term = document.getElementById('abc').value;
      $.getJSON('http://localhost:8080/suggest/'+escape(term), function(elements) {
        var htmlOut = (elements.length)+ " suggestion(s):<p><table border=\"1\">\n";
        for (var i=0; i<elements.length; i++)
          htmlOut += "<tr><td>#"+(1+i)+"</td><td>"+elements[i]+"</td></tr>\n";
        htmlOut += "</table>\n";
        $("#xyz").html(htmlOut);
      });
    } // -->
  </script>
  <body>
    <h1>Input a search term</h1>
    <form action="" method="" onSubmit="return false">
      <input type="text" name="thetext" size="20" id="abc" onKeyUp="updateSugg()">
      <input type="submit" value="Replace">
    </form>
    <div id="xyz">(this is where the text will go)</div>
  </body>
</html>



Refreshing data
● What if something on your page should refresh 

periodically?
– Example: Chat server; local window should display 

new chat messages soon after remote users have 
posted them

● Solution: Timeouts
– Could fire off an AJAX request to ask server for 

updates

44
University of Pennsylvania

<html>
  <head><title>Timeout</title>
  <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js">
  </script><script type="text/javascript">
  var refreshTime = function() {
    $("#clock").html((new Date()).toString());
    setTimeout(refreshTime, 1000); /* 1000 ms */
  };
  $(document).ready(function() {
    setTimeout(refreshTime, 1000); /* 1000 ms */
  });
  </script>
</head><body><div id="clock">(Time goes here)</div></body></html>


	Slide 1
	Slide 2
	A brief history of JavaScript
	A simple client-side example
	Including JavaScript in HTML
	Event handlers
	Recap: Document Object Model
	<div> and <span>
	Accessing the DOM from JavaScript
	Slide 10
	Functions for accessing the DOM
	Slide 12
	Slide 13
	Slide 14
	innerHTML
	Recap: JavaScript
	Resources
	Implementing search suggestions
	XMLHttpRequest
	XMLHttpRequest workflow
	XMLHttpRequest properties
	XMLHttpRequest methods
	Security restrictions
	Instantiating XMLHttpRequest
	A few caveats
	Recap: XMLHttpRequest
	Slide 27
	What is AJAX?
	Where is AJAX used?
	Building web applications with AJAX
	AJAX with XML
	Example: Server side
	Example: Client side
	Some common problems
	Pros and cons of AJAX
	Recap: AJAX
	Slide 37
	AJAX troubles
	jQuery support for AJAX
	Problem: Sending structured data
	Working with JSON
	AJAX with jQuery/JSON: Server side
	AJAX with jQuery/JSON: Client side
	Refreshing data

