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Abstract

In the pursuit of increasing aircraft performance, one approach which can yield better results than
a conventional design process is a multidisciplinary optimization process. In this paradigm, a design
architecture is established so that the analyses for the several disciplines pertinent to the problem
are handled simultaneously, rather than sequentially. In this work, a numerical tool was developed in
order to perform low-fidelity multidisciplinary optimization upon a commercial airliner - the B777-300
- considering models for aerodynamics, propulsion, structures and trajectory. For the aerodynamic
analysis, a vortex-lattice method (VLM) is employed. The lifting surface structures were modeled
by finite elements with the shape of hollow tubular spars. For the propulsion system, a model based
on empirical data collected from the target engines was utilized. Finally, the system was optimized
for cruise conditions, and then control optimization was performed on the resulting configuration for
additional mission phases. The performance metric optimized in this work was be the amount of fuel
burnt by the aircraft in order to complete its mission. The described optimization processes were
successfully carried out, the former outputting the cruise-optimized wing and tail configurations, and
the latter providing the optimized control parameter values for descent flight conditions. These values
were validated by means of comparison with those of the original B777-300, including that of the
performance metric - which improved as more disciplines were considered.
Keywords: Multidisciplinary optimization, Trajectory control optimization, Aerostructural optimiza-
tion, Vortex lattice method, Finite element method

1. Introduction
With the consistently increasing demand for com-
mercial flights, the rate of fuel burn of the employed
aircraft has been a metric of great interest for sev-
eral decades. Some modern approaches have been,
for example, the possibility of hybrid and electric
aircraft or the research of more exotic configurations
such as the blended wing-body design [1]. A field of
great interest in assessing the possibilities of these
new configurations as well as improving the cur-
rently available aircraft has been Multidisciplinary
Design Analysis and Optimization (MDAO). In an
MDAO-based framework, the main goal is to take
into account several disciplines of the aircraft devel-
opment and usage during the design process simul-
taneously.

Historically, the design process of an aircraft
would be approached in a multiple team system,
where each one would focus on a specific area of
expertise - control, aerodynamics, noise, etc. These
areas and their respective analyses, however, are
tightly coupled; rendering a sequential approach to
the aircraft design non-optimal. An MDAO ap-

proach seeks to rectify this situation. An example of
this non-optimality can be observed in fig. 1, where
it can be seen that all the design points computed
by the multidisciplinary approach are strictly supe-
rior to those obtained via sequential optimization.
Another example of how the sequential approach is
inferior to integrated aerostructural optimization is
Chittick and Martins [2].

Figure 1: Comparison between Pareto fronts for se-
quential and multidisciplinary optimization [3].

Because every aspect of the aircraft’s perfor-
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mance is analytically defined as either a necessity
(constraint) or that which is to be optimized (be it
range, fuel burnt, lift-to-drag ratio, etc.), it is possi-
ble to ascertain whether the current design point is
the optimal solution in the surrounding design space
given the stipulations that are defined for what ”op-
timal” is. A commonly used metric is the Breguet
equation [4], while another possibility is to consider
a composite objective [5], meaning more than one
function is weighted when computing the optimality
of the design.

As for the trajectory portion of the problem,
it is usually worked into the optimization process
through a method transverse to the discussion of
disciplines and design method. Rather than adding
another discipline per se to the process, be it se-
quential or optimized, a more common approach is
to consider several flight conditions for the same
current design - a multipoint approach [6].

On the implementation end, frameworks such as
OpenMDAO [7] have been developed, which allows
for the creation of MDAO schemes based on sev-
eral data passing options within the code structure.
These schemes are usually referred to as architec-
tures, and an extensive survey on these was pub-
lished by Martins and Lambe [8].

Freeware code has been developed to solve the
aerostructural problem in specific in low-fidelity
fashion [3]. This makes that same problem a good
starting point. The motivation for this disserta-
tion is to explore the potentiality of an MDAO ap-
proach to the aircraft design problem. To this end,
the discipline of propulsion and the mission pro-
file planning will be coupled to a preexisting MDO
aerostructural code, OpenAeroStruct [3].

2. Background
2.1. Multidisciplinary Design Analysis and Opti-

mization - MDAO
In this section some of the most essential concepts
in MDAO are defined. The objective function sur-
mises the fundamental goal of the whole optimiza-
tion. It is the parameter that is to be minimized.
A design variable is the way in which the solver is
capable of changing the value of the objective func-
tion; these are the parameters of the problem which
are allowed to change. Therefore, the optimization
problem can be thought of as finding the set of val-
ues for the defined set of design variables which
yields a minimum of the objective function. A disci-
pline analysis defines the system of equations which
describes the functioning of that same discipline in
an MDO problem. State variables are the outputs
of the several analyses which constitute the current
state of the system (i.e., at that iteration); coupling
variables constitute the state variables which are
necessary for other analyses. Finally, constraints
are defined so that the system yields applicable re-

sults.

The architecture of a MDAO system lays out
how the data is processed, and can be graphically
visualized in a eXtended Design Structure Matrix
(XDSM) [9]. Fig. 2 illustrates a multidisciplinary
feasible process similar to the one employed at the
core of this work.
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Figure 2: XDSM for a MDF architecture with a
Gauss-Seidel MDA solver.

Following the sequential numeral flow in fig. 2,
the MDA solver iterates through all of the disci-
pline analyses until it converges, meaning that at
every optimization iteration a consistent set of fea-
sible coupling variables is obtained. Then, func-
tional evaluations are carried out with these vari-
ables (computing the objective function and con-
straint values at that design point) and the next
step is determined.

This next step is determined based on an opti-
mization algorithm. These can be divided into ze-
roth order methods, also referred to as gradient-
free methods; and gradient-based methods [4]. For
the sake of brevity, only gradient-based methods are
covered here.

These are algorithms which define a search direc-
tion in which to progress from point i to the next.
The direction is based on both evaluations of the
objective function and its derivatives with respect
to the design parameters, meaning these solvers uti-
lize more information in order to navigate the de-
sign space. These algorithms require smooth objec-
tive functions within the design space to operate,
but then are generally faster as they require fewer
function evaluations [4].

The optimization algorithm employed in this
work is a sequential quadratic programming (SQP)
algorithm. The idea behind SQP methods is to
break down the original optimization problem (a
non-linear programming problem) into a quadratic
programming subproblem at design point xi. By
solving this significantly simpler subproblem, one
where the objective function is quadratic and the
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constraints are linear functions, the algorithm then
proceeds to design point xi+1 [10], [11].

Beside determining the next step, the computa-
tion of derivatives of quantities such as the objec-
tive function or the constraints w.r.t. the variables
of the problem is an important aspect of how the
problem is approached. This is what is called the
sensitivity analysis, i.e., how the performance met-
rics of the solution are sensible to the parameters
that drive the design process.

Several methods of sensitivity analysis exist,
amongst which some of the most popular include
complex-step derivatives or finite differences. How
the sensitivity analysis is performed within a spe-
cific problem relies deeply on how data is being pro-
cessed from an implementation point-of-view. In
this situation, the main goal is to provide a way
to compute derivatives across the several compo-
nents which make up the optimization structure.
Essentially, rather than just considering the impact
that a given variable has on a specific function, the
influence that same variable has on other state or
coupled variables is also to be contemplated.

To this end, the MDAO framework utilized in
this work employs a Modular Analysis and Unified
Derivatives (MAUD) sensitivity analysis architec-
ture [12]. From a practical point, the great advan-
tage of this architecture is that for each of the logic
blocks in which computations are performed, only
the partial derivatives of the outputs w.r.t. the
inputs for that block in specific must be defined.
The assembling and computation of the full model
derivatives is carried out automatically [12].

2.2. Dynamics & Equilibrium

The three equilibrium equations to be defined for
longitudinal in-plane motion are the equilibrium of
vertical forces, horizontal forces, and moment. The
dimensional version of these equations is derived
from the simplified diagram represented in fig. 3,
which assumes steady flight conditions.

Figure 3: Free body diagram for trim.

L−Wcos(γ) + Tsin(α+ φT ) = 0 (1a)

Tcos(α+ φT )−D −Wsin(γ) = 0 (1b)

M = 0, (1c)

In eqs. 1a,1b and 1c, L,W, T,D and M repre-
sent the lift, total weight, thrust, drag and total
moment, respectively; α, φT and γ represent the
angle-of-attack, thrust incidence and flight path an-
gle, also respectively. These equations can be bro-
ken down further, but they represent the core of the
trimming conditions that will be implemented.

2.3. Aerodynamics - VLM
The vortex-lattice method (VLM) is a common low-
fidelity approach to model incompressible potential
flow. It is an extension of the lifting-line method
[13]. A Prandtl-Glauert correction is also employed
in this work given the relatively high Mach number
at which the aircraft operates (M = 0.84). In order
to enable a two-dimensional description of the lift-
ing surfaces, several lifting-lines are superimposed
along the chordwise direction. By constructing a
mesh of horseshoe vortexes as such, a grid (or lat-
tice) of control points is defined. For each of these
points, a velocity V will be induced by each of the
vortexes discretized. These velocities can be ob-
tained via the Biot-Savart law,

dV =
Γ

4π

dl× r

‖r‖3
, (2)

where Γ is the circulation of the vortex, dl moves
along the vortex filament at hand and r is the dis-
tance from said filament to the control point. It is
then possible to assemble a system relating all the
vortex circulations (Γn) to the induced velocities on
all control points (vn), which can be described as

vn =

N∑

m=1

{Cn,m}Γm , (3)

where N represents the total number of vortexes
defined and Cn,m represents a row of the aerody-
namic influence coefficient (AIC) matrix. These co-
efficients represent the influence of each vortex on
each control point. In eq. 3 the induced velocity at
control point n is determined by adding the contri-
butions of all N vortexes.

2.4. Structures
Now to define a scheme which allows the evaluation
of the stiffness, [K], of the structures. This will be
accomplished via Hooke’s Law, formulated as

[K]× u = F , (4)

where u is the displacement vector and F the
force/moment vector. To this end, a finite element
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method (FEM) approach is employed. At its core,
what this method aims to do is break the domain (in
this work, the lifting surfaces) into smaller, easier to
model pieces (elements). When applying finite ele-
ment methods, one of the most important decisions
is which element to use. The lifting surfaces of the
aircraft usually present a wingbox-type structure,
with a thin-walled spar and hollow interior. There-
fore, in this work a spatial beam element with 12
degrees of freedom (6 on each node) is utilized.

Figure 4: 12-DOF beam element.

In essence, the approach will consist of determin-
ing the element’s properties at a local level (i.e. on a
local reference frame) and then converting these to
a global frame, obtaining the global stiffness matrix
[K] for the entire structure.

The aerodynamic analysis provides a set of loads,
f , applied to the lifting surfaces. Now that the
structure’s stiffness has also been defined, the afore-
mentioned linear system (eq. 4) may be solved,
yielding u[1 × 12]. This vector is the displace-
ment and rotation vector enacting on the structure.
The process may then iterate upon the architecture,
computing the new set of loads applied to the up-
dated mesh.

2.5. Propulsion Model
Several parameters are crucial in the formal defi-
nition of a jet engine, such as the number of com-
pression stages (and respective compression ratios),
duct dimensions and expansion stages or the bypass
factor. The aim is to employ a generic model, ca-
pable of estimating thrust from generic parameters
rather than committing to an engine type.

At its simplest form, the thrust T can be com-
puted solely by means of a throttle coefficient, δT ,
as

T = δT × Tmax. (5)

A solution such as this one, however, leaves the
propulsion system totally independent from the re-
maining disciplines, providing results which rely
solely on the engine parameters defined at the start.

In order to develop the system considering more
parameters, a general model such as the one de-
scribed in Stengel [14] is adopted. As such, the

thrust force is broken into its dimensionless and ref-
erence factors,

T = CT (V, δT )
Sρ2

2
, (6)

and the dimensionless factor CT is defined as a func-
tion of speed, V , and the throttle coefficient, δT , as
well as three empirical coefficients,

CT = (k0 + k1V
η)δT , (7)

where S is the total reference area, ρ the atmo-
spheric density, k0 is the maximum-throttle thrust
coefficient at V = 0, k1 is a measure of the speed
weighting, and η is a parameter used to describe
the engine type. These three coefficients will also
be important in order to define the relevant deriva-
tives for the CT factor.

2.6. Trajectory Approach

The adopted approach to perform trajectory con-
trol optimization will consist of breaking down the
mission profile into a prescribed number of flight
phases (multipoint approach). Only fully-developed
situations will be considered in each of the points of
the analysis, and these are parameterized into three
factors, as illustrated in fig.5.

Figure 5: Generic trajectory point.

These factors are the flight path angle, γi, alti-
tude, hi, and ground distance covered, Ri, of the
i-th point. Different constraints may be applied to
the different points in order to define the trajectory
phases in which to perform control optimization. In
essence, for each of the trajectories, the model is op-
timized for a cruise situation, and then the control
variables are optimized to other conditions repre-
sentative of different flight phases.

3. Implementation

3.1. Propulsion

The main characteristics of the propulsive force
must be defined; namely its point of application,
orientation and magnitude. The two former param-
eters will be discussed first.
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((a)) Side view. ((b)) Top view.

Figure 6: Application of the propulsive force.

Following the diagrams x, y, z defined in fig. 6,
several details regarding the application of the
thrust force can be defined:

• The force is parallel to the incoming flow,
meaning only the aforementioned φT needs to
be defined (i.e. there will be no component
in the y-direction). For the sake of simplicity,
this angle will be considered null in this work:
(φT = 0);

• As a simplification, it may be considered that
the force will be applied on one of the nodes
of the mesh (denoted in green). Doing so sim-
plifies transferring the force to the structure
proper;

• When applying the engine force, a vertical
component must be added to represent the
weight of the engine. Both this weight and
thrust are applied at the same location;

• The vertical distance at which the force will be
applied w.r.t. the wing (zt) will be defined as
half of the engine’s diameter.

Regarding the magnitude of the propulsive force,
the three previously mentioned empirical factors,
(k0, k1 and η) define the type of engine the model
will emulate. Referring once again to Stengel [14],
the following assumptions are made

{
k0 = 0

η = −3
. (8)

For all mentioned idealized models k0 is consid-
ered to be 0. Furthermore, setting this value for
η describes a constant power setting, representa-
tive of high propulsive efficiency systems such as
high-bypass turbofans and turboprop coupled to a
propeller.

The k1 parameter will be used to fit the model
to specific engines. As a default setting, the values
from a specific aircraft will be used: the B777-300.
As such, for purposes of defining k1, the values from
the GE90 turbofan will be considered - an engine
commonly paired with this aircraft.

Fig. 7 sums up the data flow in this discipline.

Inputs:

Throttle setting, Air density, k1, num y,

Freestream velocity, Lifting surfaces areas

Performance outputs:

Thrust coefficient, Thrust
Propulsion Analysis

MDA outputs:

Thrust

Figure 7: Inputs and outputs of the propulsion anal-
ysis.

3.2. Trajectory Control Optimization
The baseline mission profile is that of a cruise con-
dition situation. Within the established framework
, this case will consist of a single trajectory point
optimization process, with the following conditions





γ1 = 0o

h1 = 10700m

R1 = 11× 106m

, (9)

where h1 and R1 are the cruise altitude and maxi-
mum range of the B777-300, respectively [15].

Once the optimized aircraft has been computed,
its control variables are optimized for a different
flight condition, as proof of concept of the approach.
Namely, the descent phase will be optimized upon,
as illustrated in fig. 8.

Figure 8: Two point mission profile with cruise and
descent.

For the descent different conditions are enforced,





γ2 = −3o

h2 = 5350m

R2 = 204× 105m

, (10)

where γ2 is a common-place rule for determining
rate of descent [16], h2 is half of the cruise altitude
and R2 is a direct consequence of descending at a
steady −3o from h1 to sea level.

3.3. MDO Elements
The fundamental pieces of the optimization prob-
lems we will be solving are now established. The
design variables can be synthesized as:

• Aerodynamics: angle-of-attack (α), twist
distribution(θ(y)) for both wing (w) and tail
(t);
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• Propulsion: throttle setting (δT );

• Structures: spar thickness distribution (t(y))
on the wing (w);

• Trajectory: flight path angle (γ);

• Aerostructural: wing span (bw).

These variables will be constrained to the following
ranges,





−15o ≤ α ≤ +15o

−15o ≤ θw, θt ≤ +15o

0 ≤ δT ≤ 1

50 ≤ bw ≤ 70m

0.01 ≤ tw ≤ 0.05m

. (11)

The boundaries for the angular variables arise from
the small angle approximations assumed in the de-
velopment of the aerodynamic model. The throt-
tling variable is a percentile. The wingspan bound-
aries are based on the span of the original aircraft
[15]. Lastly, the boundaries for the thickness of the
spars have been defined so the final weight of the
aircraft resembles that of the original aircraft. To
this end, the operating empty weight (OEW) is used
as a reference. From [15], the OEW should be close
to 1.7 × 105kg. One important note regarding the
implementation of the spar thicknesses and twist
(for the wing) is that these distributions are de-
fined by a spline. Essentially, rather than defining
the twist and spar thickness at every control point
of the structure as a design variable, a desired num-
ber of control points for these two distributions is
defined and a B-spline curve is derived from these.

As for the constraints, auxiliary variables have
been defined to describe two of the trimming con-
ditions laid out in 2.2, namely

{
L eq W = cos(γ)− L

W −
Tsin(α)
W = 0

T eq D = sin(γ) + D
W −

Tcos(α)
W = 0

. (12)

Since the model assumes symmetry across the xz-
plane, both the yaw and roll are null by construc-
tion. the tool computes the pitch moment, meaning
we need only to enforce

CMy
= 0 . (13)

Additionally, the non-failure of the structural ele-
ments is enforced by means of a Von-Mises criterion,

Failure = 2
σVM
σy
− 1 ≤ 0 , (14)

where σVM is the Von-Mises stress and σy is the
material yield strength. The multiplicative fac-
tor in eq. 14 arises from the safety factor of 2.0

considered in this work. A constraint aggrega-
tion method based on the Kreisselmeier-Steinhauser
equation [17] is employed. This way, only a single
failure constraint needs to be applied, rather than
one for each on the elements.

Lastly, a strictly computational constraint is set
to ensure that the optimizer maintains the tubular
structure geometrically feasible, in the form of

Intersection = Thickness− Radius ≤ 0 . (15)

As discussed previously, the metric to be min-
imized is the amount of fuel consumed in a pre-
scribed mission. Because the propulsive force is
explicitly computed for each flight phase, we may
define the objective function as

mfuel =

N∑

i=1

TSFC
Ri
Vi
Ti , (16)

where the mission profile has been sectioned into N
phases, and TSFCi, Ri, Vi and Ti are respectively
the thrust-specific fuel consumption (in kg/N/s
units), covered distance, speed and thrust of each
phase.

4. Results
4.1. Initial Setup
A simple mesh convergence study was performed
first, wherein a single iteration of the MDA
process was carried out with a progressively finer
mesh. The relative change in the performance
metric was used to evaluate the convergence.

Table 1: x-direction.

num x δ(mfuel) (%)
2 -
3 −0.00852
5 −0.00413
7 −0.00172
9 −0.00095

Table 2: y-direction.

num y δ(mfuel) (%)
5 -
7 −2.57
... ...
21 −0.0387
23 −0.00851

A criterion of δ(mfuel) ≤ 0.01% was applied,
meaning a [3× 23] grid was employed.

Additionally, the mechanical properties of
Aluminum-7075 are considered for the spars of both
the wing and tail; and the following group of param-
eters.

Table 3: Cruise flight conditions.

Parameter Value
M 0.84
h(m) 10.7× 103

ρ(kg/m3) 0.38
Range (m) 11× 106

W0(kg) 1.125× 105

TSFC (kg/N/s) 1.54× 10−5

6



Table 4: Tail parameters.

Parameter Value
bt(m) 24.22
λt 0.118
lt(m) 0.05

Table 5: Numerical Parameters.

Parameter Value
Iterative tolerance 10−7

Optimizer tolerance 10−3

W0 is a parameter which factors for rest of the op-
erating empty weight apart from the weight of the
wing and tail structures which will are computed.
The tail parameters were obtained by performing
an optimization problem similar to the one which
will be discussed in section4.3, starting from a sym-
metrical rectangular surface. These values are not
considered as design variables as it was observed
that doing so greatly increased the problem’s com-
plexity for minimal objective function gains. The
iterative tolerance applies to the MDA analysis at
each design point, whilst the optimizer tolerance ap-
plies to the overarching constraints of the problem
(for example, the trimming conditions).

4.2. Aerodynamic & Propulsion Optimization
The first situation consists of single-point optimiza-
tion considering the aerodynamic and propulsive
systems in a cruise setting - an aeropropulsive (AP)
problem. This optimization problem is defined as

minimize Fuelburn

with respect to α, γ, θt, θw, δT , bw

subject to L equals W = 0

T equals D = 0

CMy = 0

γ = 0

, (17)

where all constraints and design variables are con-
sidered except for those pertaining exclusively to
the wing structure: the spar thicknesses and their
failure.

A study similar to the one described in the previ-
ous section was carried out to determine the optimal
number of points with which to define the B-spline
for the wing twist.

Table 6: Convergence in mfuel.

B-spline points δ(mfuel) (%)
2 −0.225
3 −0.00260
4 −0.00104

Applying the same criterion, a 3-point curve was
chosen.

Table 7 lists the initial values and allowed ranges
for the design variables (DV).

Table 7: Initial DV values and ranges (AP).

DV Initial value Range
α(o) 5 [−15,+15]
γ(o) 2 [−15,+15]
θt(

o) −5 [−15,+15]
θw(o) (−3.75, 1.5, 7) [−15,+15]
δT 0 [0, 1]
bw(m) 60 [50, 70]

All conditions have been defined, and the opti-
mization process may now be carried out. Table 8
lists the final values for the design variables, con-
straints and objective function. Fig. 9 is a full plot
of the obtained configuration.

Table 8: Final values for AP optimization.

DV Final value
α(o) 5.09
γ(o) 0
θt(

o) −12.8
θw(o) (−3.81, 2.08, 11.2)
δT 0.220
bw(m) 61.6
L equals W −1.68× 10−5

T equals D 4.82× 10−6

CMy
−1.01× 10−5

Fuelburn (kg) 130193.0

Figure 9: Configuration for the AP optimization.

This optimization process elapsed 18 iterations,
and was concluded in 127.16s. The process was
successful, as all constraints are met (within their
designated threshold) and all design variables con-
cluded within their established ranges.

The obtained wingspan (61.6m) is close to that
of the B777-300 (60.9m, with a relative error of
1.15%). Also, assuming a jet fuel density of around
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800kg/m3, the mass of fuel computed translates to

VFuelburn =
130193

800
= 162.7413m3 = 162741.3l,

which is 4.93% lower the original aircraft maximum
fuel capacity. This is adequate, since maximum
range was considered and no fuel reserves were in-
cluded.

In fig. 9 it can be observed that the wing struc-
ture experienced failure (bottom-right plot). This
was to be expected, since this constraint was not en-
forced. Also in this figure, the twist plot displays a
nearly linear progression across the wingspan (top-
right plot), even though a 3-point B-spline curve
was utilized. This is congruent with the small vari-
ations described in table 6, suggesting the optimized
twist distribution is accurately described with just
1 or 2 curve points. Still in the same figure, the
middle-right plot exhibits one of the hallmarks of
MDO versus sequential optimization in aircraft de-
sign. Sequential optimization yields elliptic lift dis-
tributions [18], and the lift distribution for the com-
puted wing strays away from the green dashed line.

4.3. Aerostructural & Propulsion Optimization

Now, the structural design variables and constraints
are added - an aerostructural propulsive (ASP)
problem. The optimization problem becomes

minimize Fuelburn

with respect to α, γ, θt, θw, δT , bw, tw

subject to L equals W = 0

T equals D = 0

CMy = 0

γ = 0

Failure ≤ 0

Intersection ≤ 0

. (18)

The wing spar thickness distribution is another
parameter defined by a B-spline curve. As such, a
similar study was performed to determine the num-
ber of points to be considered.

Table 9: Convergence in mfuel.

B-spline points δ(mfuel) (%)
2 +0.0250
3 −0.0386
4 +0.00581
5 −0.00407

The same criterion was applied, meaning a 4-
point curve. Table 10 lists the initial values and
ranges for the design variables.

Table 10: Initial DV values and ranges (ASP).

DV Initial value Range
α(o) 5 [−15,+15]
γ(o) 2 [−15,+15]
θw(o) (−3.75, 1.5, 7) [−15,+15]
θt(

o) −5 [−15,+15]
δT 0 [0, 1]
bw(m) 60 [50, 70]
tw(m) (0.02, 0.0233, 0.04, 0.03) [0.01, 0.05]

Once again, table 11 lists the final values for the
problem parameters, and fig. 10 displays a full plot
of the fully-optimized cruise configuration.

Table 11: Final values for ASP optimization.

DV Final value
α(o) 5.13
γ(o) 0
θw(o) (−3.82, 2.06, 11.03)
θt(

o) −12.8
δT 0.220
bw(m) 61.5
tw(m) (0.0295, 0.0295, 0.0440, 0.0325)
L equals W −4.88× 10−5

T equals D 6.15× 10−6

CMy
−1.15× 10−4

Failure −1.86× 10−5

Intersection (−0.209 ∼ −0.933)
Fuelburn (kg) 129872.9

Figure 10: Configuration for the ASP optimization.

This optimization was carried out in 17 itera-
tions, over a time period of 138.59s. Once again,
all of the constraints have been met, and all de-
sign variables remained within the established val-
ues. This final solution is very similar to the previ-
ous one, as can be seen from the values in table 11.
A relative decrease of 0.246% has been attained in
the amount of fuel spent, at the cost of a 8.99% in-
crease in computation time. It should be noted that
in the AP optimization process carried out in the
previous section the structural computations were
still performed, the difference between both cases is
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solely that all design variables and constraints per-
taining exclusively to the discipline were omitted in
the previous process. The computational cost gap
between both processes would certainly be greater if
this were not the case. Both new design variables as
well as new constraints were added, meaning there
was no reason to necessarily expect either a bet-
ter or worse solution. Some of the trends pointed
out in the previous analysis are still present, such
as the non-elliptical lift distribution and the nearly
linear twist distribution. The failure constraint is
also met.

Lastly, now that the wing structure has been
involved in the optimization process, a compari-
son may be made between the computed operating
empty weight and that of the original B777 − 300.
The structural masses computed in this optimiza-
tion process were 43632.3kg and 10558.3kg for the
wing and tail, respectively. Adding these to the W0

parameter described in table 3 yields

W0 +Ww +Wt = 166690.5kg. (19)

This is another good fit to the original value of
160500kg [15], with a relative error of 3.86%.

4.4. Descent Control Optimization

Now that the cruise-optimized aircraft configura-
tion has been computed, the last step is to optimize
its control variables to the second flight phase, the
descent. The descent control optimization problem
takes the following form

minimize Fuelburn

with respect to α, γ, θt, δT

subject to L equals W = 0

T equals D = 0

CMy
= 0

γ = −3o

, (20)

where all non-control variables and constraints, i.e.
any variables which would change the shape and/or
structure of the established wing, have been omit-
ted. The initial (and constant) values for these ab-
sent parameters will be those obtained from the
ASP optimization, listed in table 11. The atmo-
spheric properties have also been changed as func-
tion of the new altitude, namely





ρ2 = 0.709kg/m3

c2 = 319.1m/s

M2 = 0.63

, (21)

where c2 is the new speed of sound.

Table 12 lists the final values for the control vari-
ables.

Table 12: Final values for the descent.

CV Final value
α(o) −0.186
γ(o) −3
θt(

o) −2.13
δT 0.0510
L equals W −4.51× 10−4

T equals D −6.58× 10−5

CMy
−2.78× 10−5

Fuelburn (kg) 668.9

This optimization process elapsed 7 iterations
over the course of 72.96s, which indicates a signifi-
cantly lower computational load than the previous
cases. This was to be expected since the control
optimization problem was, initial conditions apart,
strictly simpler than any of the previously discussed
problems.

This approach, and therefore these results, can-
not be completely separated from the optimization
process which we performed previously, since we are
attributing an additional amount of fuel necessary
for the descent step which was not technically con-
sidered previously.

However, the ratio between the two fuel masses
showcases why this is a reasonable approximation:

FuelburnDescent

FuelburnCruise
=

668.9

129872.9
= 0.0052. (22)

The decision to optimize upon the control of the
descent phase in specific was deliberate, as this
phase incurs a relatively low fuel consumption when
compared to other commonly defined flight phases.

This process shows that the obtained design can
handle descent stipulations, providing the control
variable values that should employed. As with the
previous optimizations, all constraints have been
met, including the control variable boundaries.

5. Conclusions
In this work, existing aerostructural multidisci-
plinary optimization code was expanded upon by
implementing a propulsive system. MDO was suc-
cessfully performed considering the three disciplines
and all their respective parameters for a cruise sit-
uation. Several of the values obtained in the fi-
nal aircraft design closely resembled those of the
original aircraft which was to be emulated, the
B777 − 300. These included the empty operating
weight, wingspan and amount of fuel consumed in
a maximum range situation. Optimization of the
control variables of the system was also success-
fully carried out for performance on a different flight
phase, the descent.

Overall, the final code managed to accomplish
nearly everything it was expected to, though there
are still several aspects in which it can be improved.
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Regarding the propulsive force placement, the en-
gine position in the span could have been parame-
terized, and acted as a design variable. This could
be accomplished either as a discrete variable, as-
suming that the force would always be applied at
a structural node (similar to what was done in this
work); or as a continuous parameter, paired with a
load/moment transfer scheme.

It could also be interesting to optimize the con-
trol variables upon more flight conditions. Be-
cause, however, the initial cruise-only optimization
becomes less and less accurate the more of these
are tacked on, an important improvement to this
code would be to implement a complete multipoint
optimization scheme. This way, all of the design
variables and all of the stipulated flight conditions
would be simultaneously considered, and the pro-
cess would yield the control values for all stages in
tandem with an aircraft optimized upon all of the
mission phases.
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