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Resumo

De modo a melhorar o desempenho esperado duma aeronave, podemos adoptar uma abordagem

de optimização multidisciplinar ao invés de optimização sequencial. Desta forma, ao considerar os

resultados das análises das várias disciplinas simultaneamente, é possı́vel obter melhores resultados.

Este trabalho consiste no desenvolvimento de uma ferramenta numérica de baixa fidelidade para

efectuar optimização multidisciplinar numa aeronave comercial - o B777-300 - que considere análises

de aerodinâmica, estruturas, propulsão e trajectória. A análise aerodinâmica das superfı́cies é feita

com recurso ao método de vórtices discretos. As estruturas, mais especificamente as longarinas, serão

modeladas por elementos finitos, com a forma de tubos cilı́ndricos ocos. A força propulsiva será calcu-

lada recorrendo a um modelo empı́rico baseado nos motores que pretendemos simular. Por fim, após

efectuar optimização para condições de cruzeiro, será efectuada optimização de controlo dessa mesma

configuração para outras fases da missão. A métrica de desempenho que pretendemos optimizar neste

trabalho será a quantidade de combustı́vel consumido pela aeronave.

Os processos de optimização descritos foram concluı́dos com sucesso, tendo o primeiro gerado a

configuração da asa e estabilizador horizontal optimizados para a situação de cruzeiro, e o segundo

fornecido os valores das variáveis de controlo para a fase de descida. Os valores obtidos foram val-

idados por comparação com os valores do B777-300 original, incluindo o combustı́vel consumido -

tendo-se verificado que esta quantidade diminui à medida que mais disciplinas são consideradas.

Palavras-chave: Optimização multidisciplinar, Optimização de controlo de trajectória, Optimização

aero-estrutural, Método de vórtices discretos, Método de elementos finitos
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Abstract

In the pursuit of increasing aircraft performance, one approach which can yield better results than a

conventional design process is a multidisciplinary optimization process. In this paradigm, a design

architecture is established so that the analyses for the several disciplines pertinent to the problem are

handled simultaneously, rather than sequentially.

In this work, a numerical tool was developed in order to perform low-fidelity multidisciplinary opti-

mization upon a commercial airliner - the B777-300 - considering models for aerodynamics, propulsion,

structures and trajectory. For the aerodynamic analysis, a vortex-lattice method (VLM) is employed. The

lifting surface structures were modeled by finite elements with the shape of hollow tubular spars. For

the propulsion system, a model based on empirical data collected from the target engines was utilized.

Finally, the system was optimized for cruise conditions, and then control optimization was performed on

the resulting configuration for additional mission phases. The performance metric optimized in this work

was be the amount of fuel burnt by the aircraft in order to complete its mission.

The described optimization processes were successfully carried out, the former outputting the cruise-

optimized wing and tail configurations, and the latter providing the optimized control parameter values

for descent flight conditions. These values were validated by means of comparison with those of the

original B777-300, including that of the performance metric - which improved as more disciplines were

considered.

Keywords: Multidisciplinary optimization, Trajectory control optimization, Aerostructural opti-

mization, Vortex lattice method, Finite element method
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Chapter 1

Introduction

1.1 Motivation

With the consistently increasing demand for commercial flights in the last decades, the rate of fuel burn

(i.e., the efficiency) of the employed aircraft has been a metric of great interest for several decades. Over

the past few years, however, engineering advancements and consequent reductions of consumed fuel

have stagnated when compared to previous decades, as illustrated in fig. 1.1 [1].

Figure 1.1: Evolution of fuel consumption in commercial aviation from 1960 to 2014 [1]).

Since so many factors go into minimizing fuel consumption, several efforts have been made in the

many areas that the problem at hand comprises. Within the aircraft design process alone, fields such

as aerodynamics, propulsion or structures play extremely important roles in determining the amount of

fuel that the aircraft will require in order to complete its mission(s). Another complex problem which

has consistently been improved upon is the allocation problem. Using the national airline TAP as an

example, the company carries out about 2500 flights per week between 76 different destinations, with
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their fleet of nearly 80 aircraft [2]. Allocating each of the aircraft to specific routes in order to maximize

profit (i.e., minimize losses) is a topic extensive enough by itself to warrant papers being written on it

alone [3], [4].

Focusing on any of these areas in specific is not the scope of this work, however. As aforementioned,

since the progress within the separate disciplines is not as rampant as before, attention has turned to al-

ternative routes through which to improve the fuel consumption based on currently available technology.

Some of the ways in which this situation has been approached have been, for example, the possibil-

ity of hybrid and electric aircraft [5] or the research of more exotic configurations such as the blended

wing-body design (an example of which is shown in fig. 1.2) [6].

Figure 1.2: Hybrid, blended-wing body NASA N3-X concept design [7].

A field of great interest in assessing the possibilities of these new configurations as well as improving

the currently available aircraft has been Multidisciplinary Design Analysis and Optimization (MDAO).

In an MDAO-based framework, the main goal is to take into account several disciplines of the aircraft

development and usage during the design process simultaneously.

1.2 Aircraft Design and Trajectory Optimization

In this section, a brief overview of recent developments in the optimization processes for both aircraft

design and trajectory analysis is presented. Some examples of how MDAO can be (and has been)

integrated into the conceptual design process are also discussed.

Aircraft Design

Historically, the design process of an aircraft would be approached in a multiple team system, where

each one would focus on a specific area of expertise - control, aerodynamics, noise, etc. These areas

and their respective analyses, however, are tightly coupled - a change in the aircraft’s design would

affect more than one of these teams, even though they all perform computations in parallel.

As an example, let us look at a simplified design process for a wing. Saying we started by solving

the aerodynamic problem, we would seek to minimize drag while producing enough lift to support the
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aircraft, and would obtain the corresponding load profile. These loads in turn causes displacements

on the wing, determined by the structural analysis. Then, the wing would be tweaked so as to meet

the structural constraints (non-failure or displacement restrictions). Changing the wing shape, however,

would change the results of the aerodynamic analysis, given the two disciplines’ tight relationship.

This sequential approach provides non-optimal results, which an MDAO approach seeks to rectify.

An example of this non-optimality can be observed in fig. 1.3, where it can be seen that all the design

points computed by the multidisciplinary approach are strictly superior to those obtained via sequential

optimization. Other examples of how the sequential approach is inferior to integrated aerostructural

optimization include Chittick and Martins [8] or Grossman et al. [9], the latter of which dates as far back

as 1988.

Figure 1.3: Comparison between Pareto fronts for sequential and multidisciplinary optimization [10].

An optimization approach is also fundamentally different in how it is formulated:

Figure 1.4: Decision flowchart for conventional (left) and optimized (right) design processes [11].

3



Because every aspect of the aircraft’s performance is analytically defined as either a necessity (con-

straint) or that which we are looking to optimize (be it range, fuel burnt, lift-to-drag ratio, etc.), it is possi-

ble to ascertain whether the current design point is the optimal solution in the surrounding design space

given the stipulations we have defined for what ”optimal” is. A commonly used metric is the Breguet

equation [12], [13], which will also be discussed in this work (see section 2.5). Another possibility is to

consider a composite objective [14], meaning more than one function is weighted when computing the

optimality of the design.

It is also important to note that the example provided only covers two disciplines within the aircraft

design - the aerostructural problem. It should be easy to see, however, how this can be expanded to as

many disciplines as one would want. A few examples include Moore and Ning [15] or Hwang and Ning

[16], who carried out MDO to assess the design of electric propulsion systems; or Gray and Falck [17],

who performed optimal control and trajectory optimization.

Trajectory Optimization

The process through which the trajectory is usually worked into the optimization process is transverse

to the discussion of disciplines and design method. Rather than adding another discipline per se to the

process, be it sequential or optimized, a more common approach is to consider several flight conditions

for the same current design - a multipoint approach [17], [18], [19].

The mission profile is an interesting consideration when tackling aircraft design, since not only does it

define the conditions under which the plane will have to operate, we can also consider how different flight

phases carry different requirements for the aircraft. Figure 1.5 illustrates the typical trajectory breakdown

for a commercial airliner.

Figure 1.5: Standard mission profiles for an airliner [18].

This way, the aircraft design is subjected to a larger scope of conditions rather than just cruise, which

is usually the choice when the trajectory is not considered in the optimization process [12].
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MDAO Integration

On the implementation end, frameworks such as OpenMDAO [20] have been developed, which allows

for the creation of MDAO schemes based on several data passing options within the code structure.

Defining the flow and processing of data as the analyses of the several disciplines are carried out is

the core of defining an MDAO scheme, and an extensive survey of these schemes, usually referred

to as architectures, was published by Martins and Lambe [21]. These will be discussed in depth in

section 2.1.2.

For a more visual reference, fig. 1.6 depicts an example architecture for a multidisciplinary analysis

where three coupled disciplines are being considered.

Figure 1.6: Visual representation of MDA architecture for a three-discipline problem [21].

These advancements, however, are not entirely incompatible with the more traditional design ap-

proach described at the beginning of this section. In order to facilitate the implementation of MDAO

within a more conventional industrial setting, architectures have been developed where design teams

work in parallel. These distributed architectures present less of a clash in between design processes

than fully centralized ones [21], [22]. Section 2.1.2 covers a collaborative solution such as these in more

detail.

Within our context (aircraft design and trajectory optimization) in specific, we can find optimization

solutions that have been developed in varying degrees of fidelity, depending on what the main goal is.

Roy and Crossley [23], for example, utilized a low-fidelity aircraft design model whilst studying the simul-

taneous allocation and design problem. The MDAO aerostructural problem has also been extensively

documented with high-fidelity approaches [13], [12] and freeware code can even be found to solve it in

low-fidelity fashion [10]. This makes that same problem a good starting point.

5



1.3 Objectives

As such, the motivation for this dissertation is to explore the potentiality of an MDAO approach to the

aircraft design problem. To this end, the discipline of propulsion and the mission profile planning will

be coupled to the aircraft disciplines of aerodynamics and structures. To do so, pre-existing MDAO

aerostructural code will be improved upon to contemplate the two former areas in the optimization pro-

cess.

This means that new constraints, as well as more design variables, will be added to the problem.

These might worsen or improve the originally obtained solutions, respectively, but a more realistic and

mission-compliant design should always be achieved.

In sequential and direct terms, this work aims to:

• Develop and implement a propulsion model, providing different engine configurations and subse-

quent control variables;

• Define adequate conditions to describe the several stages of the mission profiles;

• Perform coupled aircraft design and optimal control and compare its results to its previous iteration,

as well as the chosen aircraft’s original fuel consumption.

The main and overall contribution of this work will be the developed code, which will allow for first-

stage, quick assessment of the scenario at hand, potentially providing insight into the treatment of the

contemplated variables, constraints and other important performance metrics during the conceptual

design phase.

1.4 Thesis Outline

Firstly, some background will be glossed over pertaining to the main disciplines within the scope of the

work - aerodynamics, structures, propulsion, considerations regarding the discretization of the mission

profile, and multidisciplinary optimization itself.

After discussing the fundamental equations at play, the computational implementation of said disci-

plines will be described in chapter 3, as well as other definitions necessary to properly formulate the

optimization problem.

In chapter 4, the chosen optimization architecture will be looked into in greater detail, so as to provide

the reader a better understanding of how data is being processed throughout the optimization. This

chapter also includes a brief discussion of how the aircraft’s performance is being assessed, both in

terms of constraints being applied and metrics which may act as minimization objectives.

Once the full problem and respective optimization framework have been fully covered, its outputs will

be discussed in chapter 5:

• In section 5.4 optimization will be carried out on the overarching case: a cruise-only situation. This

will serve the purpose of validation and will provide us our base aircraft;

6



• In section 5.5 we will be performing control optimization upon other flight phases, utilizing the

aircraft specifications obtained in the cruise-only optimization.

As previously described, optimization will be performed upon several disciplines. However, to better

assess the impact each area has on the aircraft’s design, the optimization process will first be carried

out contemplating just a few of the disciplines. The problem’s complexity will then be progressively

incremented as more analyses and conditions are added.

Finally, in chapter 6, the work’s achievements will be summed up, evaluating whether the original

goals were met; and suggestions for further developments will be made.
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Chapter 2

Theoretical Overview

The models used to carry out the analyses in the several disciplines are well-documented approaches

based on relatively simple equations, which in turn facilitates their analytic implementation. This is of

utmost importance, since it allows the usage of analytic derivatives, granting the optimization process

much of its strength (as will be discussed further later in this chapter).

2.1 Multidisciplinary Design Analysis and Optimization

Let us start by defining some of the most essential concepts in multidisciplinary design analysis and

optimization (MDAO).

2.1.1 Basic Concepts

• Objective function: this function surmises the fundamental goal of the whole optimization. We are

looking to minimize some quantity (or maximize, the problem is exactly the same as we need only

minimize the negative function), and in order to do so, a function of said quantity is required. In our

situation, examples of suitable objective functions could be the amount of fuel burnt or the CL/CD

ratio.

• Design variable: the way in which the solver is capable of changing the value of the objective

function is through the defined design variables; these are the parameters of the problem which

are allowed to change. Therefore, the optimization problem can be thought of as finding the set

of values for the defined set of design variables which yields a minimum of the objective function.

Examples for our case include the angle of attack (α), wing span or the throttling variable (δT ).

• Discipline analysis: for each of the disciplines considered in an MDO problem, we must define

the system of equations which describes its functioning. In the remaining sections of the chapter

some background will be provided regarding the analysis (numerical) methods employed in this

work, and these will be covered more in-depth in chapter 3.
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• State variable: the outputs of the several analyses which constitute the current state of the system

(i.e., at that iteration). Examples include the flow pressure or the structural displacement distribu-

tions. These variables may or not be used in the optimization process, and some are required for

other analyses, which are described next.

• Coupling variable: these constitute the state variables which are necessary for other analyses; for

example the aerodynamic forces applied upon the wing structure.

• Constraint: so that our problem yields applicable results, constraints must be applied. These can

be simple as impositions on the bounds of some design variable (limiting −10o ≤ α ≤ +10o or

0.0 ≤ δT ≤ 1.0) or more complex relations between metrics (enforcing L = D or the non-failure of

any of the finite elements).

In the following sections, many of these notions will be referred to. This work will borrow the termi-

nology from A. B. Lambe and J. R. R. A. Martins [21], as described in table 2.1:

Table 2.1: Notation in MDO problem formulation

Symbol Definition

x Vector of design variables

y Vector of coupling variables

y Vector of state variables

f Objective function

c Vector of design constraints

cc Vector of consistency constraints

R Governing equations of a discipline analysis in residual form (discipline analysis constraints)

N Number of disciplines

n() Length of a given variable vector

m() Length of a given constraint vector

()0 Functions or variables that are shared by more than one discipline

()i Functions or variables that apply only to discipline i

()∗ Functions or variables at their optimal value

(̃) Approximations of a given function or vector of functions

(̂) Independent copies of variables distributed to other disciplines

2.1.2 Architectures

Multidisciplinary optimization methods can be classified in many different categories by several factors.

One of the most important classifications in which they can be broken down is regarding their over-

arching architecture. As explained in [21], there is a certain degree of interchangeability between the

term ”architecture” and other similar terms, such as ”procedure” or ”strategy”. The following subsec-

tions will borrow several notions and definitions from [21], namely the definition for this term: a proper
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representation of a given architecture should leave no doubt as to how the optimization should be set

up.

An MDO architecture describes how said method handles the coupling of the several disciplines (i.e.,

their models). Within this designation, two main architectures can be defined: monolithic architectures,

and distributed architectures.

Monolithic Architectures

In a monolithic architecture framework, the MDO problem is approached as a conventional nonlinear

programming problem: that is, it is solved as a single optimization problem, where we seek out the

design variable values (within the constraints) which minimize our objective function. To provide an

example of such an architecture, let us analyze the formulation of a Simultaneous Analysis and Design

(SAND) architecture based problem,

minimize f0(x,y)

with respect to x,y,y

subject to c0(x,y) ≥ 0

ci(x0,xi,yi) ≥ 0, for i = 1, 2, . . . , N

Ri(x0,xi,y,yi) = 0, for i = 1, 2, . . . , N

(2.1)

x (0), y (0), y (0)

x∗, y∗ 0,2→1:

Optimization
1 : x , y 1 : x0, xi , y , y i

2 : f , c
1:

Functions

2 : Ri

1:

Residual i

Figure 2.1: Extended design matrix for a SAND architecture.

Figure 2.1 depicts the eXtended Design Structure Matrix (XDSM) for such an architecture. This

terminology will be used throughout this work, and is borrowed from A. B. Lambe and J. R. R. A. Martins

[24]. Inputs are represented above the process itself (such as the initial conditions x(0), y(0) and y(0)

in this example), whilst the outputs are placed to the left (usually the optimal conditions, as is the case

here: x∗ and y∗). Also, in these diagrams the processes are broken down into stages, as sequenced

by the numerals within each box: the process is initialized on (0) with the initial conditions; constraints,
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objective function and discipline analyses are performed on (1); and its results fed back on (2). Loops

are symbolized by →, meaning that for this example the process will return to stage (1) if it has not yet

converged on (2). This numbering system allows us to understand what processes are carried out in

parallel in the architecture.

Let us now have a look at a Multidisciplinary Feasible (MDF) architecture, namely the one we will be

using during this work:

minimize f0 (x,y(x,y))

with respect to x

subject to c0 (x,y(x,y)) ≥ 0

ci(x0,xi,yi(x0,xi,yj 6=i)) ≥ 0, for i = 1, 2, . . . , N

(2.2)

x (0) ŷ (0)

x∗
0, 7→1:

Optimization
2 : x0, x1 3 : x0, x2 4 : x0, x3 6 : x

1, 5→2:

MDA
2 : ŷ2, ŷ3 3 : ŷ3

y∗
1 5 : y1

2:

Aerodynamics
3 : y1 4 : y1 6 : y1

y∗
2 5 : y2

3:

Propulsion
4 : y2 6 : y2

y∗
3 5 : y3

4:

Structures
6 : y3

7 : f , c
6:

Functional Evaluations

Figure 2.2: XDSM for a MDF architecture with a Gauss-Seidel MDA solver.

Following the sequential numeral flow in fig. 2.2, we can see that the MDA iterates through all of the

discipline analyses until it converges, meaning that at every optimization iteration we have a consistent

set of feasible coupling variables. The feasibility is a result of the design choice behind a feasible

architecture, be it for an individual discipline or several: the removal of the discipline analysis constraints

(Ri) which is achieved by applying the implicit function theorem to these constraints. We can also see

these differences in the problem formulation [21][25].

This can be advantageous from an engineering point-of-view, if the process must be terminated

before the optimization is fully complete. Notably, however, we can see that the design constraints are

only evaluated (and iterated upon) after the MDA has converged, meaning the same cannot be said

regarding these constraints.
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While this can be a very desirable attribute for an architecture, it does mean the entire MDA must

be converged at each optimization iteration, which essentially requires the development of two iterative

procedures. Namely one for MDA alone [21].

Distributed Architectures

For the sake of completion, let us now have a quick look at distributed architectures. As described at the

beginning of this subsection, monolithic architectures tackle the optimization problem as a single one.

Distributed architectures instead split it into smaller subproblems, which yield the same problem when

put back together. The main reason why this might be a more desirable approach lies with two main

factors, a mathematical one and a practical one:

From a mathematical standpoint, such an approach might be adequate when dealing with systems

which are strongly decoupled on some level. This might mean, for example, a problem such as:

minimize
N∑

i=1

fi (xi))

with respect to x1, . . . ,xN

subject to c0 (x1, . . . ,xN )) ≥ 0

c1 (x1) ≥ 0

. . .

cN (xN ) ≥ 0

(2.3)

In a problem as this, the separate functions which add up to our objective function depend on entirely

independent variables. The coupling only arises from the global constraints, c0, and as such this problem

is what is described as one with complicating constraints. In a similar fashion, we could define a problem

with complicating variables instead, wherein it is exclusively from the shared design variables, x0, that

coupling arises. Decomposition techniques have been developed in order to bridge the gap from solving

N independent problems [26].

Besides these technical circumstances, it is also important to take into account how the overall

problem is tackled on an industrial level. Teams are usually assigned to different tasks, which essentially

can be looked at as our definition of discipline. With this in mind, it can usually be more practical to adopt

an architecture which allows for asynchronous processing, especially considering different disciplines

will have different computational costs [21].

Let us have a quick overview of what the XDSM for a distributed architecture looks like:
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x
(0)
0 , x̂

(0)
1...N , ŷ

(0) x̂
(0)
0i , x

(0)
i

x∗0

0, 2→1:

System

Optimization

1 : x0, x̂1...N , ŷ 1.1 : ŷj 6=i 1.2 : x0, x̂i , ŷ

2 : f0, c0

1:

System

Functions

x∗1
1.0, 1.3→1.1:

Optimization i
1.1 : x̂0i , xi 1.2 : x̂0i , xi

y∗1
1.1:

Analysis i
1.2 : yi

2 : J∗i 1.3 : fi , ci , Ji

1.2:

Discipline i

Functions

Figure 2.3: XDSM for a CO distributed architecture.

This is an example of a Collaborative Optimization (CO) architecture, where we can see some of

the main attributes discussed previously: namely, the usage of two optimization loops. The outer loop,

which controls the full system optimization, still looks to minimize the global objective function, f0,

minimize f0(x0, x̂1, . . . , x̂n, ŷ)

with respect to x0, x̂1, . . . , x̂n, ŷ

subject to c0 (x0, x̂1, . . . , x̂n, ŷ) ≥ 0

J∗i = 0, for i = 1, . . . , N

(2.4)

Within the inner loop, we can see that the optimization process is carried out in parallel between the sev-

eral disciplines (as represented by the stacked display). These analyses receive x̂0i as an input, which

contains copies of the shared design variables values from the latest iteration of the outer optimization

routine. Also, a new set of functions has been introduced in the inner loop, Ji. These are defined as,

Ji = ‖x̂0i − x0‖22 + ‖x̂i − xi‖22 +
∥∥(ŷi − yi

(
x̂0i,xi, ŷj 6=i

)∥∥2

2
(2.5)

meaning they describe the difference between the aforementioned copied values of the shared design

variables and those computed by the disciplines within the inner optimization loop. Minimizing these will

be the objective of the discipline optimization, as seen in the formulation of the problem for the inner loop

analyses,
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minimize Ji
(
x̂0i,xi,yi(x̂0i, xi, ŷj 6=i)

)

with respect to x̂0i,xi

subject to ci
(
x̂0i,xi,yi(x̂0i,xi, ŷj 6=i)

)
≥ 0

(2.6)

As such, the objective of the discipline-level optimization is keep the system consistent; and only

when that is achieved may the system optimizer iterate, updating the global design variables x0 [21].

2.1.3 Algorithms

Within the context of our problem, optimization algorithms can be divided into zeroth order methods,

also referred to as gradient-free methods; and gradient-based methods [12]. Another important no-

tion is that of sensitivity analysis, which describes how the optimization method performs its derivative

computations.

Gradient-free

Gradient-free optimization algorithms comprise approaches such as grid-searching and genetic algo-

rithms, in which the progress made from one iteration to the next is not based on any derivatives, but

exclusively on evaluations of the objective function. At their core, the logic behind these algorithms is

to move from a design point i to the following point i+ 1 solely because the objective function presents

a lower value at the latter. These methods are more adequate when dealing with noisy functions, dis-

crete search spaces or non-differentiable functions [27]. They can also be suitable when dealing with

problems with a small amount of design variables, as the low amount of function evaluations required in

these circumstances may justify its usage [12] (the number of function evaluations translates into com-

putational cost and this is a determining factor in selecting an algorithm). However, this is not our case,

and therefore such methods will not be further covered in this work.

Gradient-based

These are algorithms which define a search direction in which to progress from point i to the next.

The direction is based on both evaluations of the objective function and its derivatives with respect to

the design parameters, meaning these solvers utilize more information in order to navigate the design

space. These algorithms require smooth objective functions within the design space to operate, but then

are generally faster as they require fewer function evaluations [12]. They also differ amongst themselves

in terms of the degree of derivation utilized. The steepest descent method, which simply follows the

gradient vector, utilizes solely first order derivatives; Newton-based methods, for example, utilize the

Hessian matrix in their computations (second-order information) [27].

To bypass the computation the second-order derivatives, however, several methods have been de-

veloped which fall under the quasi-Newton designation. These algorithms, such as Broyden–Fletcher–

–Goldfarb–Shanno (BFGS) or Davidon–Fletcher–Powell (DFP), only utilize first-order information, and
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approximate any necessary Hessian information based on function values and derivatives from previous

iterations [27].

The optimization algorithm employed in this work is SNOPT [28], which is a sequential quadratic

programming (SQP) algorithm. The idea behind SQP methods is to break down the original optimization

problem (a non-linear programming problem) into a quadratic programming subproblem at design point

xi. By solving this significantly simpler subproblem, one where the objective function is quadratic and

the constraints are linear functions, the algorithm then proceeds to design point xi+1 [27], [29].

In order to provide a brief overview of how this subproblem is built, let us define a few important

entities. First, assuming a simple and generic constrained optimization problem as,

minimize f(x)

with respect to x

subject to cn (x) = 0, for n = 1, . . . , N ,

(2.7)

we can now define the Lagrange function of this problem based on the objective function f and the

constraints cn as,

L(x, λ) = f(x) + λT c(x) (2.8)

where λ is the vector of Lagrange multipliers, a set of scalars. The reason why these multipliers and

function are important is because they allow us to express important conditions as,





∂L
∂x = ∂f(x)

∂x +
∑N
i=1 λi

∂ci(x)
∂x = 0

∂L
∂λi

= ci(x) = 0, for i = 1, . . . , N

(2.9)

where we can see the first equation expresses two optimality conditions: ∇f = ∇cn = 0 (the first-

order Karush–Kuhn–Tucker (KKT) conditions) and the second equation expresses the constraints of the

original problem. In this way, the Lagrange formulations allow us to reduce the original constrained

optimization problem into an unconstrained one, where the amount of design variables has increased

by N , the number of constraints [27].

Going back to the SQP formulation, let us once again assume an optimization problem such as the

one just mentioned. At design point xi, let us assume the quadratic subproblem

minimize
1

2
pT∇2 (f(x))i p+∇ (f(x))i p

subject to ∇ (cn(x))i p+ (cn(x))i = 0, for n = 1, . . . , N ,
(2.10)

where p is the factor which will help us determine the next point. Because we are evaluating all functions

at point xi, there are no unknowns besides p.

Let us now define the following Lagrange function for this problem,

L(x, λ) = f(x)− λT c(x), (2.11)
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and perform the first-order derivatives of this function as previously discussed,




∇2 (f(x))i p+∇ (f(x))i −∇ (cn(x))

T
i λ = 0

∇ (cn(x))i p+ (cn(x))i = 0, for n = 1, . . . , N

(2.12)

we can now express this system in matrix form,


 ∇

2 (f(x))i −∇ (cn(x))
T
i

−∇ (cn(x))i 0




p
λ


 =


−∇ (f(x))i

− (cn(x))i


 , (2.13)

where we can see the system takes the same form as a traditional Newton approach, where the step to

the next design point is obtained from solving a system of the form H × step = −∇ ((f(x)). In this way,

the (p, λ) array in eq. (2.13) can be interpreted as:


 pi

λi+1


 , (2.14)

with which we can update the design point,

xi+1 = xi + pi . (2.15)

The computed λ in eq. (2.14) presents the subscript i + 1 since it already is the updated value [27]. It

should also be mentioned that most applications of SQP methods, including the utilized SNOPT algo-

rithm, utilize Hessian approximations for the second-order terms, making these Quasi-Newton optimiza-

tion methods.

Sensitivity Analysis

As was introduced in the previous section, the computation of derivatives of quantities such as the

objective function or the constraints w.r.t. the variables of the problem is an important aspect of how

the problem is approached. This is what is called the sensitivity analysis, i.e., how are the performance

metrics of our solution sensible to the parameters that drive the design process.

Several methods of sensitivity analysis exist, amongst which some of the most popular include

complex-step derivatives or finite differences, which use formulae as simple as

∂f

∂x
=
f(x+ h)− f(x)

h
+O(h) , (2.16)

where h is the step size and O(h) denotes that the truncation error for this particular expression is

proportional to h.

These are methods used to expressly to compute partial derivatives: the influence of one variable on

a given function of interest. In order to analyze a more complex MDO problem such as the ones tackled

in this work, methods have been developed to efficiently compute all the derivatives involved [30], [31].
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How the sensitivity analysis is performed within a specific problem relies deeply on how data is

being processed from an implementation point-of-view. In our situation, the main goal of methods such

as algorithmic or monolithic differentiation [30] is to provide a way to compute derivatives across the

several components which make up the optimization structure. Essentially, rather than just considering

the impact that a given variable has on a specific function, we also want to factor in the influence that

same variable has on state or coupled variables.

To this end, the MDAO framework utilized in this work employs a Modular Analysis and Unified

Derivatives (MAUD) sensitivity analysis architecture [31]. From a theoretical perspective, what a MAUD

system does is concatenate all design variables, state/coupled1 variables and output functions (such as

the objective function and constraints) into a single vector u as

u = [x1, . . . ,xm,y1, . . . ,yn,f1, . . . ,fp] , (2.17)

and assemble residual functions of the form

Ri(u) = xi − x∗i , for i = 1, . . . ,m (2.18)

for all design variables,




Rm+i(u) = yi − y∗i (x1, . . . ,xm,y2, . . . ,yn) if yi is explicitly defined

Rm+i(u) = −Ri((x1, . . . ,xm,y1, . . . ,yn) if yi is implicitly defined
, for i = 1, . . . , n (2.19)

for state/coupled variables, and

Rm+n+i(u) = f i − f∗i (x1, . . . ,xm,y1, . . . ,yn) , for i = 1, . . . , p (2.20)

for all output functions. For eqs. (2.18–20), the design variable values marked with an asterisk, x∗,

represent the point at which we are evaluating the expressions. As for y∗ and f∗, these represent the

function which yields their values, evaluated at x∗.

We may now, similarly to what was done in eq. (2.17), concatenate all of these residual equations

into a single system, obtaining





R1(u1, . . . ,un) = 0

...

Rn(u1, . . . ,un) = 0

⇒ R(u) = 0 . (2.21)

We can now define the vector r, which will designate the system residual vector. This means that we

want to solve the system laid out in eq. (2.21) at r = 0.

Under these circumstances we may combine u from eq. (2.17) and the system from eq. (2.21) in

1In the brief description presented here the distinction between state and coupled variables is not pertinent, and both are
represented by the yn vectors.
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order to define
du

dr
=
∂(R−1)

∂r
, (2.22)

evaluated at r = 0. We have also assumed that ∂R/∂u is invertible at the solution. Equation (2.22)

allows us to, by the inverse function theorem, define

∂(R−1)

∂r
=

[
∂R

∂u

]−1

, (2.23)

which we can now combine with eq. (2.22) to obtain

du

dr
=

[
∂R

∂u

]−1

⇔ ∂R

∂u

du

dr
= I =

∂R

∂u

T du

dr

T

. (2.24)

Equation (2.24) is designated as the unifying derivative equation. The main takeaway from this

introduction to this particular analysis is that we have reduced the computation of all relevant derivatives

to solving the system laid out in eq. (2.24). A full discussion and derivation of the MAUD architecture is

presented in Martins and Hwang [31].

From a practical point, the great advantage of this architecture is that for each of the logic blocks in

which we will be performing computations we only need to define the partial derivatives of the outputs

w.r.t. the inputs for that block in specific. The assembling and computation of the full model derivatives

is carried out automatically [31].

2.2 Dynamics & Equilibrium

As a starting point to this section, let us have a look at the three equilibrium equations to be defined for

longitudinal in-plane motion: vertical forces, horizontal forces, and moment. In doing so, we will establish

a foundation for what other quantities we will need to define and obtain from the following sections.

Let us derive a dimensional version of these equations from the simplified diagram represented in

fig. 2.4, assuming steady flight conditions:

Figure 2.4: Free body diagram for trim.

L−Wcos(γ) + Tsin(α+ φT ) = 0 (2.25a)

Tcos(α+ φT )−D −Wsin(γ) = 0 (2.25b)

M = 0 (2.25c)

Equations (2.25a–c) describe the system in broad terms and allow for a simplified overview of the
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equilibrium conditions. In order to obtain a more specific formulation of these conditions, let us consider

the more comprehensive diagram in fig. 2.5, where the relative positions of both surfaces and the engine

are discretized.

Figure 2.5: Exhaustive free body diagram.

The forces and moments have also been replaced by their respective dimensionless coefficients.

With this diagram, we may now define the same equations contemplating all separate contributions.

The two force-equilibrium equations become:

1

2
ρV 2SW

(
CLW

+
SS
SW

CLS

)
+

1

2
ρ2(SW + SS)CT sin(α+ φT )−Wcos(γ) = 0 (2.26a)

1

2
ρ2(SW + SS)CT cos(α+ φT )− 1

2
ρV 2SW

(
CDW

+
SS
SW

CDS

)
−Wsin(γ) = 0 (2.26b)

In both eq. (2.26a) and eq. (2.26b), the corrective term applied to the coefficients of the stabilizer arises

from the fact that these coefficients are defined w.r.t. the area of the stabilizer. It can also be seen that

the effective angles of attack are no longer the same from the wing to the stabilizer. This difference arises

from the downwash effect, and the tail incidence angle, a design variable which will be covered later on.

The different normalization applied to the thrust coefficient, CT , will be discussed in section 2.5.

We can also define expressions relating the full-aircraft lift and drag forces used in eq. (2.25a) and

eq. (2.25b) with these coefficients:

L =
1

2
ρV 2SW

(
CLW

+
SS
SW

CLS

)
(2.27a)

and

D =
1

2
ρV 2SW

(
CDW

+
SS
SW

CDS

)
(2.27b)

For the moment equilibrium equation, let us take moments about the aircraft’s center of mass (CM ),

and let rw, rs, and rt be the positions of the aerodynamic center of the wing, the aerodynamic center of

the stabilizer, and the point of application of the thrust force, respectively, in relation to the CM . Also, let

c̄ be the mean aerodynamic chord of the wing,
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rt
c̄
×CT +

[
CMW

+
rw
c̄
×CLW

+
rw
c̄
×CDW

]
+
[
CMS

+
rs
c̄
×CLS

+
rs
c̄
×CDS

]
= 0 . (2.27c)

Equations (2.26a), (2.26b) and (2.27c) represent the final scheme which we look to implement.

2.3 Aerodynamics

For the sake of completion, a brief derivation of some of the most essential proprieties and equations

of fluid dynamics pertaining to the task at hand will be presented in this section. There is extensive

bibliography covering these topics; in this document, we will be following methodologies described in

Anderson [32] and Bertin, Cummings & Reddy [33].

2.3.1 Fundamental Equations

To begin to define the models we will be working with, the most fundamental equations must be estab-

lished. In this scenario, the first one will arise from the conservation of mass: the continuity equation.

Let us regard fig. 2.6, depicting a control volume to be used in the subsequent developments.

Figure 2.6: Control volume for a generic flow.

By the fundamental principle that mass can neither be created nor destroyed we can derive that,

for the control volume dV , the amount of mass flowing in and out of its boundaries must be the rate of

variation of the total mass within the volume, yielding

∂

∂t

˚
V
ρdV +

¨
S

ρV · dS = 0 . (2.28)

It should be noted that equation eq. (2.28) is expressed as a sum rather than a difference since, by

convention, the product V · dS represents an outflow when positive. This means we are adding the rate

of mass increase within the control volume to the outflow rate, which must cancel out.

Considering that the control volume is independent from time, invoking the Gauss theorem and some

algebraic manipulation, we obtain the differential version of the continuity equation,
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˚
V

∂ρ

∂t
dV +

˚
V
∇ · (ρV )dV = 0 ⇐⇒ ∂ρ

∂t
+∇ · (ρV ) = 0 (2.29)

which can be used to evaluate any point of the flow, rather than restraining its scope to an arbitrarily

defined control volume. In order to simplify this equation further and arrive at the starting point of the

employed model, we need now to embed assumptions regarding the flow and reference frame. Firstly, it

should be noted that the problem to be solved in the aerodynamic analysis (fully developed flow around

an airfoil) is a steady flow situation, meaning any derivatives w.r.t. time can be removed. Also, as only

subsonic flow situations will be covered in this work, we will be considering the air density constant

(i.e., ρ = constant). Unlike the largely inconsequential steady flow assumption, considering the flow

incompressible is very much a trade-off situation: it allows the usage of easier to implement methods,

but is a rather crude approximation,
dρ

ρ
= −M2

∞
dV

V
(2.30)

This equation arises from algebraic manipulation of the conservation of momentum and isentropic flow

equations. A full derivation can be consulted on [34]. Equation (2.30) shows us that dρ ∝M2
∞, providing

insight into the bearing that the Mach number will have in terms of compressibility.

Applying both of these conditions to eq. (2.29), we obtain:

ρ∇ · (V ) = 0 ⇐⇒ ∇ · (V ) = 0 (2.31)

Furthermore, as mentioned in Anderson ([32], Sec. 2.12), the subsonic flow across an airfoil is funda-

mentally irrotational, which means

ξ = ∇× (V ) = 0 . (2.32)

As such, the velocity field of the problem at hand can be defined as that gradient of a scalar φ, the

velocity potential. Combining this relation with eq. (2.29) yields




V = ∇φ

∇ · (V ) = 0

⇒ ∇ · (∇φ) = 0⇒ ∇2φ = 0 . (2.33)

The end result of eq. (2.33) is an instance of Laplace’s equation, whose pertinent solutions to our

problem are discussed in the following section.

Because we will be dealing with Mach numbers above the commonly defined threshold for incom-

pressible flow (M∞ ≤ 0.3), a corrective method will be employed: the Prandtl-Glauert transformation.

Let us assume an xyz frame where the freestream is aligned with the x-axis, such as the one illustrated

in fig. 2.7, and define the velocity field as the sum of the freestream velocity, V∞, and a perturbation

velocity field,

V = V∞ + V̂ , (2.34)

denoted by V̂ .
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Figure 2.7: Reference frame for the Prandtl-Glauert transformation.

The basis for this approach then starts from the linearized compressible potential equation,

β2∇2
xxφ̂+∇2

yyφ̂+∇2
zzφ̂ = 0 , (2.35)

where β is the Prandtl-Glauert factor defined as

β2 = 1−M2
∞ , (2.36)

and φ̂ is the perturbation velocity potential.

A full derivation for eq. (2.35) can be consulted in [32]. Most importantly, it is applicable when two

additional conditions are met:

• The perturbation velocities are small, meaning the lifting surfaces are slender and at a small angle-

of-attack;

• The flow is subsonic, namely M∞ ≤ 0.8.

Both of these assumptions are adequate in our situation, and express the increased Mach number range

we wish to achieve with the correction.

The correction itself consists of defining a new coordinate system, x̃ỹz̃, as





x̃ = x

ỹ = βy

z̃ = βz

, (2.37)

and scaling the angle of attack, α, and perturbed velocity potential, φ̂, to αs and φ̂s respectively:




αs = βα

φ̂s = β2φ̂

. (2.38)
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Converting eq. (2.35) to the new frame and replacing (α, φ̂) with (αs, φ̂s) yields

∇2
x̃x̃φ̂s +∇2

ỹỹφ̂s +∇2
z̃z̃φ̂s = 0⇔ ∇φ̂s = 0 , (2.39)

which is, once again, a formulation of the aforementioned Laplace’s equation (eq. (2.33)). This means

we can solve the compressible flow problem utilizing incompressible approaches, by first converting the

problem as described. The results obtained in the new frame, x̃ỹz̃, can then be converted back to the

original coordinate system.

2.3.2 Laplace’s Equation - Vortex-based Flow

Since Laplace’s equation is linear, solutions for more complex flow situations can be devised by combin-

ing simpler elements, i.e. if φi are all solutions to Laplace’s equation on their own, then

φ =

n∑

n=i

φi (2.40)

is also a solution.

As such, let us now introduce the vortex flow element, which will be the most essential tool in mod-

elling the lifting surfaces. It is defined as a point about which we have concentric streamlines of constant

velocity.

Figure 2.8: A vortex flow element.

The induced radial velocity induced by the element is inversely proportional to its origin; additionally,

no radial velocity is imposed,




Vθ = C

r

Vr = 0

. (2.41)

With this, we can now compute the flow’s circulation, one of its most important metrics. Circulation is

defined as

Γ =

˛
V · ds⇒ Γ = −Vθ(2πr)⇔ Vθ = − Γ

2πr
. (2.42)
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In eq. (2.42) not only is the value of the circulation inferred, but it can also be seen that it is, effectively,

a measure of the vortex’s strength. In fact, by merely knowing a vortex’s circulation, we can compute the

velocity it induces at any point. Introducing this flow element is crucial as it is the sole building block for

several wing-modelling schemes. In order to move from a simple vortex to something more applicable,

let us now discuss the concept of vortex filament.

Figure 2.9: An arbitrarily-shaped vortex filament of strength Γ.

As suggested in fig. 2.9, a vortex filament consists of a continuous line about which a vortex flow

is induced. Given the nature of this flow element, we can resort to the Biot-Savart Law in order to

determine the velocity induced at point P by the filament,

dV =
Γ

4π

dl× r
‖r‖3

. (2.43)

By integrating eq. (2.43) over the length of the filament, the induced velocity is obtained.

Let us now introduce two theorems pertaining to the study of inviscid, incompressible flow via vor-

tex filament-modelling. There were established by Helmholtz, and as such are widely known as the

Helmholtz’s vortex theorems. These state that:

1. The strength of a vortex filament (i.e., its circulation) is constant along its length;

2. A vortex filament cannot end in a fluid; it must extend to the boundaries (be they finite or infinite)

of the fluid or form a closed path.

2.3.3 The Lifting-Line Method

With these conditions in mind, we can now establish a wing model based on a single vortex filament, for

the sake of demonstration (as illustrated in fig. 2.10).
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Figure 2.10: Diagram for a simple vortex wing-modelling scheme.

The segment denoted as bound is fixed in its location, and represents the wing itself. The trailing

vortexes presented above and below the bound one arise from Helmholtz’s theorems; namely from the

fact that a vortex filament cannot end in fluid. As such, the bound vortex trails off to infinity in the form of

free vortexes, maintaining its circulation. This is called a horseshoe vortex.

Expanding upon this approach, we can now model the wing by superimposing a larger number of

horseshoe vortexes.

Figure 2.11: A lifting line-based scheme with two horseshoe vortexes.

Figure 2.11 displays a two bound vortex system, and allows us to see what the main features of this

approach are as we add more vortexes:

1. Only a single bound vortex acts on the entirety of the wing’s span (i.e., the lifting line). In fig. 2.11

we can see that Γ1 is the only effecting vortex on segments ac and db. It is also the circulation that

then trails off at the ends of the wing;

2. On cd, Γ2 is superimposed, and we can see that as a result, the strength of the bound vortex on

this segment is Γ1 + Γ2. Also, because the vortex is bound to cd, it will trail off to infinity from these

two points.

Describing the surface as a single lifting line comprising several bound vortexes constitutes what is

known as a lifting-line theory (LLT ) model. Such a model, however, only allows discretization in the
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spanwise direction; by means of increasing the number of bound vortexes as demonstrated going from

figs. 2.10 and 2.11.

2.3.4 The Vortex-Lattice Method

In order to enable a two-dimensional description of the surface, let us superimpose several lifting-lines

(similar to the ones presented thus far) along the chordwise direction. By constructing a mesh of horse-

shoe vortexes as such, we have defined a grid (or lattice) of control points. For each of these points,

a velocity will be induced by each of the vortexes we have discretized (whose value we can obtain via

eq. (2.43)), and it is therefore possible to assemble a system relating all the vortex circulations (Γn) to

the induced velocities on all control points (vn), which can be described as

vn =

N∑

m=1

{Cn,m}Γm , (2.44)

where N represents the total number of vortexes defined and Cn,m represents a row of the aerodynamic

influence coefficient (AIC) matrix. These coefficients represent the influence of each vortex on each

control point. In eq. (2.44), we are essentially determining what the induced velocity at control point n

is, by adding the contributions of all N vortexes.

This extension of the LLM is called the Vortex Lattice Method (VLM).

Let us have a closer look at a simple example, so we may better visualize what this process entails.

Figure 2.12: Influence of vortex Γn on control point B.

Infig. 2.12, a vortex of intensity Γn is applied along the line segment AC. Point B represents one

of the control points upon which the influence of the several vortexes will be evaluated. Resorting to

eq. (2.43), we can compute the impact of Γn on B. Let us start by developing the cross-product between

dl and r,
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dV =
Γn
4π

dl× r
‖r‖3

⇔ dV =
Γn
4π

dl · r · sin θ
‖r‖3

⇔ dV =
Γn
4π

sin θ · dl
‖r‖2

. (2.45)

Now, let us change from dl to dθ, so we may integrate from θ1 to θ2 (note that dl = rdθ),

dV =
Γn
4π

sin θ · dl
‖r‖2

⇔ dV =
Γn
4π

sin θ · dθ
‖r‖ , (2.46)

We can now integrate, keeping in mind that the normal distance from B to the vortex line AC is rn,

yielding

V =
Γn

4π ‖rn‖

ˆ θ2

θ1

sin θ · dθ ⇔ V =
Γn

4π ‖rn‖
(cos θ1 − cos θ2) , (2.47)

and thus we have an expression for the magnitude of the induced velocity at B. We can also fully define

the vector V as a function of rAB , rBC , rAC and rn by applying the computed V in its direction (normal

to both rAB and rBC); and expressing both cos θ1 and cos θ2 as sub-results of vector cross products,





‖rn‖ = ‖rAB×rBC‖
‖rAC‖

cos θ1 = rAC ·rAB

‖rAC‖‖rAB‖

cos θ2 = rAC ·rBC

‖rAC‖‖rBC‖

i = rAB ·rBC

‖rAB‖‖rBC‖

⇒ V =
Γn
4π

rAB × rBC
‖rAB × rBC‖2

(
rAC ·

(
rAB
‖rAB‖

− rBC
‖rBC‖

))
(2.48)

where i represents the unit vector of the direction in which V is applied. This formulation allows us to

quickly compute the influence of a vortex on a given control point resorting to no other points/vectors

besides the ones already defined in our grid (lattice).

Lastly, we impose the boundary condition of tangency on the lifting surface we have defined. That

is, the normal component of any induced velocity in regards to the surface must be cancelled by the

corresponding freestream velocity in the same direction (un represents the normal component of the

induced velocity vector),

un + V∞sin(α) = 0 . (2.49)

Solving the aforementioned system in eq. (2.44), we obtain the circulation distribution for the entire

surface. From here, we can obtain the force distribution across the wing by the Kutta-Joukowski theorem,

F i = ρ(V ∞ + vi)Γn × li , (2.50)

where vi and li are, respectively, the velocity induced by the vortexes and the vector describing the

bound vortex for each station.

The obtained force distribution can then be decomposed into both the lift and drag distributions

across the lifting surface, which can be integrated in order to compute the total aerodynamic forces.

Because the VLM allows for chordwise discretization, it is more accurate and adequate than a LLT-
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based model for the description of low aspect ratio wings (as mentioned in [32], Section 5.5.5). Neither

of these two methods is, computationally speaking, very intensive. As such, so as to not limit the design

space on which we may operate, a VLM scheme is employed in the developed MDAO framework.

2.4 Structures

In the previous section we established a system to compute the aerodynamic effect of the lifting surfaces,

i.e., we described these in a way which allowed us to determine the generated aerodynamic force-more

specifically, it allowed us to obtain the enacted forces as a load distribution, F .

Now, we must define a scheme which allows us to obtain the stiffness of our structure. This way

we can achieve our end-goal for the structural analysis, which is to compute the deformation the lifting

surfaces undergo. This will be accomplished via Hooke’s Law, formulated as

[K]× u = F . (2.51)

Now let us define a scheme so we may analyze the structural behaviour of the lifting surfaces.

To this end, a finite element method (FEM) approach is employed. At its core, what this method

aims to do is break the domain (in our case, the lifting surfaces) into smaller, easier to model pieces

(elements). These elements are, in general, objects for which carrying out analytical computations is

significantly easier. As such, the goal of these methods is to solve the relevant equations on a local

reference frame for each element and then convert these results to a global reference frame (which

pertains to the entire structure). Combining the contributions from each element in this way allows us to

determine the behaviour of the complete surface.

2.4.1 Base Elements

When applying finite element methods, one of the most important decisions is which element to use. In

our situation we are looking to model the lifting surfaces of the aircraft, which usually present a wingbox-

type structure, with a thin-walled spar and hollow interior. In the interest of simplicity, easy-to-describe

geometric proprieties and of capturing this structural layout, one close element we can use to model the

surfaces would be that of a beam; specifically, a circular cross-section, thin-walled beam.

Depending on what application and stresses we expect to be applied to our structure, we can define

different elements; namely in terms of their degrees of freedom (DOFs) and number of nodes.

Let us now have a look at an element with two nodes, and one DOF at each node, as illustrated in

fig. 2.13. This DOF will be the displacement in the x axis, meaning such an element would be used to

study the axial extension/compression of its system.
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Figure 2.13: Finite element with DOFs for axial displacement analysis.

For this element, we can define the stiffness matrix

[k]axial =
EA

L


 1 −1

−1 1


 (2.52)

and respective displacement vector,

u =
[
u1 u2

]
. (2.53)

Where E is the material’s Young modulus, A is the element’s cross-sectional area, L is its length, G is its

shear modulus, J is the polar moment of inertia and finally, Iy and Iz are the second moments of inertia

about their respective axes.

Similarly, we can define a beam element for torsion (rotation in the x axis), shown in fig. 2.14.

Figure 2.14: Finite element with DOFs for torsional analysis.

The stiffness matrix for this element is given by

[k]torsion =
GJ

L


 1 −1

−1 1


 (2.54)

and its displacement vector is

u =
[
αx1 αx2

]
. (2.55)

Lastly, we can describe a pure-bending element that consists of a two node beam where we consider

displacement and rotational DOFs on both nodes on a non-x direction, as shown in fig. 2.15.
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Figure 2.15: Finite element with DOFs for bending (buckling) analysis.

Such an element will have a stiffness matrix

[k]bending =
EIz
L




12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2




(2.56)

and displacement vector

u =
[
v1 αy1 v2 αy2

]
. (2.57)

In this example, DOFs have been considered in the y axis. We can now assemble the full element we

will be using in the structural model.

2.4.2 Employed Element

Finally, based on the simpler elements described in the previous section, we can define a spatial beam

element which encompasses all possible DOFs covered thus far. This will be accomplished by ”super-

imposing” two bending beam elements (one for the y and another for the z direction DOFs), one axial

and one torsion element (which model the displacement and rotation in the x axis, respectively). The

resulting element is depicted in fig. 2.16.

Figure 2.16: 12-DOF beam element.

To obtain the stiffness matrix of the element in fig. 2.16 we only need to combine the stiffness matrices

of the simpler elements. Assuming a displacement/rotation vector given by
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u =
[
u1 v1 w1 αx1 αy1 αz1 u2 v2 w2 αx2 αy2 αz2

]
, (2.58)

The corresponding stiffness matrix can be assembled as

[k]e =




EA
L 0 0 0 0 0 −EAL 0 0 0 0 0

12EIz
L3 0 0 0 6EIz

L2 0 −12EIz
L2 0 0 0 6EIz

L2

12EIy
L3 0

−6EIy
L2 0 0 0

−12EIy
L3 0

−6EIy
L2 0

GJ
L 0 0 0 0 0 −GJL 0 0

4EIy
L 0 0 0

6EIy
L2 0

2EIy
L 0

4EIz
L 0 −6EIz

L2 0 0 0 2EIz
L

EA
L 0 0 0 0 0

Symmetric

12EIz
L3 0 0 0 −6EIz

L2

12EIy
L3 0

6EIy
L2 0

GJ
L 0 0

4EIy
L 0

4EIz
L




. (2.59)

This is a fairly standard element (and respective matrix) used in structural analysis. Because of the

DOF-order in which we defined our displacement vector, the first six rows pertain to the DOFs of the first

node, and the remaining to the DOFs of the second node (as can be seen in the anti-symmetry of both

these blocks). The components of each of the aforementioned elements can be seen in: axial (rows 1

and 7), bending (2, 3, 5, 6, 8, 9, 11 and 12) and torsional (4 and 10).

In essence, our approach will consist of determining the element’s properties at a local level (i.e. on a

local reference frame) and then converting these to a global frame, obtaining the global stiffness matrix

[K] for the entire structure. To this end, a matrix such as in eq. (2.59) is assembled for each element,

and these are then combined to form a three-dimensional matrix (with dimensions [ny × 12× 12], where

ny is the number of finite element nodes we impose) which encompasses the entire structure.

As discussed in the previous section, the aerodynamic analysis provided us with a set of loads, f

applied to the lifting surfaces. Now that we have also defined the structure’s stiffness, we may solve

the aforementioned linear system in equation eq. (2.51), which yields u[1 × 12]. This vector is the

displacement and rotation vector enacting on the structure. With this, we can now iterate upon the

architecture, computing the new set of loads applied to the updated mesh.

2.5 Propulsion

The need for a propulsion force to be introduced into the existing code structure arises from one of the

end goals of this work: performing trajectory control optimization.

In its original form, the MDAO framework estimates the fuel burnt in a given route by means of the
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Breguet range equation,

R =
V

g

(
L

D

)
1

TSFC
ln
Wi

Wf
, (2.60)

which approximates this quantity based on the cruise conditions and aircraft specifications, for a certain

range (R).

Because we are looking to implement trajectory control optimization functionalities, the thrust force

variable becomes a very pertinent component of the system, as it only matches the drag when the aircraft

is in cruise (see eq. (2.25b)), assuming we are also disregarding α. As such, handling the propulsive

force ”by omission” (as per eq. (2.60), which assumes T = D) becomes inadequate. Therefore, a

propulsion system which allows us to explicitly obtain the thrust from a throttling variable independent

from the other systems will be required.

Let us have a look at the most commonly employed propulsion solutions in commercial and general

aviation. Before we do, however, let us define an important metric: the propulsive efficiency. This can

be defined as [35],

ηp =
Thrust power applied to the aircraft

Net mechanical power applied to the engine’s air flow
. (2.61)

If we now define V0 and Ve as the air flow speed at the inlet and exhaust, respectively, and assume a

constant mass flow ṁ throughout the engine, eq. (2.61) becomes

ηp =
ṁ(Ve − V0)V0

ṁ
(
V 2
e

2 −
V 2
0

2

) ⇔ ηp =
2V0

Ve + V0
. (2.62)

Finally, since we can define the flow velocity at the exhaust as V0+∆V (where ∆V is the speed increment

enacted upon the flow by the engine) we arrive at

ηp =
V0

V0 + ∆V
2

, (2.63)

which demonstrates one crucial principle: when designing an engine, we should aim to achieve our

thrust by enacting the smallest ∆V possible, so as to have an higher propulsive efficiency. In more

practical terms, we should aim to accelerate large mass flows by a small amount, rather than the other

way around.

2.5.1 Aircraft Propulsion

Jet Engines

The basic premise behind all jet engines is the same: draw in air, compress it and perform combustion

(in order to increase its temperature), and finally expand the exhaust gases (through turbines and/or

nozzles) so as to extract work. In essence, a jet engine performs the same sequence as a gas turbine

(i.e. the Brayton cycle, as illustrated in fig. 2.17) and both topics are usually covered in tandem [35].
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Thrust is therefore generated due to two effects: the difference in momentum between the flow at the

exhaust and admission; and the difference in pressure between the far-field and the exhaust nozzle.

Figure 2.17: Simplified diagram for a generic jet engine (left) and P − V plot of the Brayton cycle (right).

In subsonic conditions2, there are three main jet engine designs which cover most applications: the

turbojet, the turbofan and the turboshaft (similar to the turboprop).

(a) Turbofan. (b) Turboprop.

Figure 2.18: Section view of two jet engines.

A turbojet engine is arguably the simplest iteration of the jet engine, as it is fundamentally similar to

the engine depicted in fig. 2.17 (left): the flow is compressed and combustion occurs in the chamber(s)

downstream. The gas then expands and powers the turbine, which in turn powers the compressor

upstream (via the represented shaft).

In a turbofan engine, illustrated in fig. 2.18a, we have an additional low-pressure stage (both in the

compressor and turbine ends), whose main purpose is to power the namesake fan at the very beginning

of the engine. This design introduces a very important parameter, the bypass ratio, which is the ratio

between the airflow around the generator proper and the airflow fed into the compressor. In this way,

the central jet (duct) operates at a lower speed, meaning a greater propulsive efficiency (due to what

was discussed regarding eq. (2.63)) and lower noise level when compared to a turbojet solution. Larger

bypass ratios also lead to larger (heavier) engines. [35].

The turboshaft designation describes an engine design in which the exhaust gases (downstream

from the combustion chamber(s)) are expanded to power and additional element (shaft) besides the

turbine used to work the compression stage. When the shaft is employed in order to power a propeller
2The most notable omission from this list would the ramjet engine. Since this configuration is mostly unfeasible for subsonic

flight conditions [35], it will not be covered.
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(via gearbox), the engine is considered a turboprop (see fig. 2.18b). These engines (in aeronautical ap-

plications) are most frequently utilized to power helicopter rotors or propellers in general aviation aircraft

and, in both cases, the system is limited to the occurrence of supersonic speeds at the blade tips. As

such, aircraft outfitted with turboshaft engines are limited to operating Mach numbers around 0.5 − 0.6,

but operate at high efficiency in that range [35].

Piston Engines

Besides the turboprop engines described in the previous section, another common solution in general

aviation aircraft would be to employ an engine not dissimilar from what is commonly found in cars:

a piston engine. These engines (also referred to as reciprocal engines) are coupled to a propeller

and present a trade-off between high efficiency and low maximum power output when compared to

turboprop engines. This alone makes these engines unsuitable for any situation besides small general

aviation aircraft, where higher thrust (and, therefore, power output) values are required [36].

Figure 2.19: Piston engine (Lycoming Thunderbolt). Figure 2.20: Electric motor prototype (Siemens [37]).

Electric/Hybrid Propulsion

Another approach to aircraft propulsion is via electric motors (once again, coupled to a propeller) pow-

ered by batteries or fuel-cells. The main design limitation pertaining these configurations lies in the low

energy density of the currently available batteries when compared to conventional fuel used in internal

combustion engines [5]. These solutions are found in two situations: small UAVs, and recent general

aviation designs. In UAVs, fully electrical solutions are common since an electric motor is significantly

simpler and lighter than an internal combustion engine [38]. As for small passenger aircraft, there are

several possible architectures as described in [5], which differ in how the powertrain is assembled.

The main advantages of electric motors when compared to normal combustion ones are the amount

of noise and overall efficiency of the powertrain (since turbine-based engines dissipate around 30%−50%

in heat during the Brayton cycle alone). The differences in size and number of parts is also visible

comparing fig. 2.19 and fig. 2.20.

It should also be noted that eq. (2.60) does not apply for an aircraft with an electric propulsion system.
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This is due to the fact the aircraft’s mass remains constant throughout its flight, since batteries do not

lose mass. As such, following a derivation similar to that involved in obtaining eq. (2.60) yields

Ebat = Pbatt⇔ Ebat =
Pthrust

ηpowertrain
t⇔ Ebat =

DV

ηpowertrain
t⇔ Ebat =

DR

ηpowertrain
, (2.64)

where Pthrust is the power required to generate the necessary thrust and ηpowertrain is the efficiency of

the entire propulsive system (from stored energy to kinetic energy). From here, assuming once again

L = W = mtotal × g (with mtotal being the aircraft’s total mass and g being the gravitational acceleration),

and expressing the total energy contained in the battery packs as Ebat = ebat×mbat, where ebat is defined

as the specific energy (energy/mass) of the packs and mbat is the batteries’ mass, we finally obtain the

range equation for electric battery aircraft,

R = ebat
ηpowertrain

g

L

D

mbat

mtotal
. (2.65)

2.5.2 Propulsive Model

As seen in the previous sections, there is no shortage of engine design solutions; the problem arises

in the parameterization of said engines. Besides the aforementioned bypass factor, several other pa-

rameters are crucial in the formal definition of a jet engine, such as the number of compression stages

(and respective compression ratios), duct dimensions and expansion stages, and that is assuming a jet

engine solution from the start.

Also, our aim is to employ a generic model, capable of estimating thrust from generic parameters

rather than committing to an engine type. As such, let us now look at an alternative propulsive model.

At its simplest form, the thrust can be computed solely by means of a throttle coefficient, δT , as

T = δT × Tmax. (2.66)

A solution such as this one, however, leaves the propulsion system totally independent from the

remaining disciplines, providing results which rely solely on the engine parameters defined at the start.

In order to develop the system considering more parameters, a general model such as the one

described in Stengel [39] is adopted. In doing this, we begin by breaking the thrust force into its dimen-

sionless and reference factors,

T = CT (V, δT )
Sρ2

2
, (2.67)

and describe the dimensionless factor CT as a function of speed, V , and the throttle coefficient, δT , as

well as three empirical coefficients. The factor is defined as

CT = (k0 + k1V
η)δT , (2.68)

where k0 is the maximum-throttle thrust coefficient at V = 0, k1 is a measure of the speed weighting,
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and η is a parameter used to describe the engine type. These three coefficients will also be important

in order to define the relevant derivatives for the CT factor.

As will be discussed in the following section and was mentioned in section 2.3, only fully-developed,

steady points in time will be analyzed. As such, we may define the relevant derivatives in relation to a

nominal point as [39]
∂CT
∂V

= ηk1V
η−1
0 δT0

(2.69a)

and
∂CT
∂δT

= (k0 + k1V
η) . (2.69b)

By reintroducing eq. (2.68) into eq. (2.69a), we can obtain the alternative formulation,

∂CT
∂V

=
ηCT
V0

(
1− k0δT0

CT

)
. (2.70)

For the three previous equations, (V0, δT0) correspond to the nominal conditions under which CT is

computed.

The values (or range) of the empiric parameters themselves will be discussed in the implementation

of the propulsive system, in section 3.5.

With this approach, since we now know the explicit thrust values exerted by the aircraft’s propulsive

system, computing the fuel burn rate for a given route can be done through the thrust-specific fuel

consumption (TSFC),

ṁfuel = TSFC × T (2.71)

which can be done for all considered flight stages, adding up to the total amount of fuel spent.

2.6 Trajectory

2.6.1 General Formulation

The trajectory optimization problem can be described (in its most generic form) as the minimization of

an objective function composed by a boundary term, J , and a integrand w. Such problem takes the form

[40]

min
t0,tf ,x(t),c(t)

J (t0, tf ,x(t0),x(tf )) +

ˆ tf

t0

w (τ,x(τ), c(τ)) dτ , (2.72)

where t0 and tf represent two given times, while the vectors x(t) and c(t) give us the state and

control, respectively.

In addition to eq. (2.72), boundary conditions need to defined in order to fully describe the optimiza-

tion problem. These are:
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System dynamics, which describe the system’s response, and how it changes in time; in the form

ẋ = f (t,x(t), c(t)) ; (2.73a)

Path constraints, which define restrictions along the trajectory (i.e., in any of the mid-way points of the

trajectory); in the form

h (t,x(t),u(t)) ≤ 0 ; (2.73b)

Boundary constraints, which specifically restrict the final and initial state conditions of the system; in the

form

g (t0, tf ,x(t0),x(tf )) ≤ 0 . (2.73c)

Which specifically restrict the final and initial state conditions of the system.

Besides these impositions on the generic functions h and g, constraints may be applied directly to

the state and control of the system, both at the initial/final times in specific, as well as on the remaining

knot points:

Path state constraints:

xmin < x(t) < xmax (2.73d)

Initial state constraints:

x0,min < x(t0) < x0,max (2.73e)

Path control constraints:

umin < u(t) < umax (2.73f)

Final state constraints:

xf,min < x(tf ) < xf,max (2.73g)

Lastly, we may also constraint the time elapsed by the system in performing its function, as

tlow ≤ t0 < tf ≤ tmax . (2.73h)

Another important step in setting up the trajectory discipline is considering the physical domain in

which the problem will be solved. Starting once again from the most generic formulation, our trajectory

would be a three-dimensional path from point A to B, as depicted in fig. 2.21.

Figure 2.21: 3D trajectory from start to finish.
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The first step towards a system more alike the one we will be using is to take into account what was

discussed in section 2.2; namely that our model will only consider longitudinal motion. Therefore, we

would be left with trajectories such as that exemplified in fig. 2.22.

Figure 2.22: 2D trajectory from start to finish

Let us now discuss the final step from a trajectory such as fig. 2.22 to one workable with the selected

approach.

2.6.2 Average/Sectioned Mission Profile

The adopted approach will not followed the mold defined by eq. (2.72), as no integration will be per-

formed. Instead, the mission profile will be broken down into a prescribed number of points (multipoint

approach). As such, only fully-developed situations will be considered in each of the points of our anal-

ysis. This way, a trajectory similar to that of fig. 2.22 could be broken down into five phases as shown in

fig. 2.24.

Figure 2.23: Steady multipoint trajectory evaluated at 5 points.

Much like in section 2.5, our goal is to reduce every aspect of the problem into simple, actionable

parameters. As seen in fig. 2.24, each phase of the mission profile is defined by three clear parameters:

its angle of ascent γi, its height hi, and the ground distance covered Ri. It is, in fact, this description that

defines our generic trajectory point from a design standpoint.
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Figure 2.24: Generic trajectory point.

Different constraints may and will be applied to the different points in order to define the trajectory

phases we want to optimize upon. In essence, for each of the trajectories, we optimize for a cruise

situation, and then optimize the control variables to other conditions representative of different flight

phases.
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Chapter 3

Numerical Discipline Models

In this chapter we will take a closer look at how the models/approaches described in chapter 2 will

be implemented in the MDAO software framework. For the analysis of each discipline, let us define

which (design and/or coupled) variables it is receiving and which relevant outputs it produces. It is

also important to recall how the evaluation of constraints, the objective function and other performance

metrics is handled from a data flow perspective. Because most of these functions depend on outputs

from more than one discipline, their computation only occurs after the MDA solver has converged (as

explained in section 2.1.2).

The simplified diagrams presented in this chapter cover the inputs and outputs for each analysis,

differentiating between outputs necessary for the convergence of the MDA system and those utilized in

performance and constraint computations.

3.1 Mesh and Lifting Surfaces

Before delving into the actual disciplines, let us discuss the starting point. In this work, the only structures

of interest will be the lifting surfaces, namely the wing and the horizontal stabilizer of the aircraft. Both

of these surfaces are considered to be symmetric on all performed computations.

To start the computations, we must first define initial structural configurations for both of these com-

ponents, and grids upon which to perform all the required analyses. This step in defining our approach

is instrumental since it will greatly affect the load and displacement transfer scheme, i.e., how the loads

are transferred from the VLM mesh upon which they are computed onto the finite element structural

model. This scheme will be discussed in greater detail in section 3.4.

Some variables (which we will also consider as design variables in the optimization process) will be

relevant in defining the geometry of the lifting surfaces: span, and twist distribution. In the tail, the twist

distribution of the horizontal stabilizer will represent something different. Because the incidence of the

incoming flow on the horizontal stabilizer is an important factor so that the aircraft can be trimmed, its

twist distribution will be used to model this parameter. As such, it will be allowed to change between

flight phases, acting as a control variable (see eq. (2.26b)).
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The generated mesh will also depend on how fine we wish it to be: a set of variables (’num x’,

’num y’) is specified for each the lifting surfaces. The y-axis represents the spanwise direction, while the

x-axis represents the chordwise direction. It is possible to specify alternative meshes but, in this work,

we will stick to a conventional uniform grid point distribution.

Figure 3.1 synthesizes the inputs and outputs of the mesh generation process.

Inputs:

Span, Taper, Chord distribution,

Twist distribution, num x, num y

Performance outputs:

Mesh, Spar thickness distribution,

Structural mass, Center of gravity

Mesh Generation
”MDA” outputs:

Mesh

Figure 3.1: Inputs and outputs of the mesh generation.

This process is, in computational terms, located outside the MDA loop previously illustrated in the

XDSM (see fig. 2.2). Still referring to the same figure, the mesh generation process essentially takes

place in sequential step (1), meaning the base mesh is updated by the optimizer before each MDA loop.

It is upon this base mesh that displacement and loads will be iterated in steps (2)→ (5).

Regarding the finite element structure, due to how the fluid/structure computations will be approached,

we will have a number of elements equal to the number of spanwise stations defined for the VLM grid

(i.e. ’num y’). Simple examples of these grids can be seen in fig. 3.2: in fig. 3.2a we see the output a

simple aerodynamic-only analysis (VLM grid alone); and in fig. 3.2b this grid is overlapped with the FE

structure.

(a) VLM grid for wing and horizontal stabilizer. (b) VLM grid and FE structure for wing-only configuration.

Figure 3.2: Examples of VLM grids and a finite element structure.

42



In fig. 3.2a we can see a good example of the base shapes we will be employing to model the lifting

surfaces in this work. For the tail, we will be using a simple rectangular shape. As for the wing, we will be

adopting a version of a NASA Common Research Model (CRM) [41]. This model has been developed

to perform at transonic speeds, specifically M∞ = 0.85, which is slightly out of the range we established

in section 2.3, meaning some error will be incurred as a result of our subsonic method.

We now present a simple rundown of how the information is processed as we proceed through the

various disciplines.

3.2 Aerodynamics

As shown in section 2.3.4, we will be assembling a vortex-lattice in order to perform all aerodynamic

computations. With this in mind, fig. 3.3 illustrates the necessary inputs to perform the analysis, and

respective outputs.

Inputs:

Angle-of-attack, Air Density,

Freestream velocity, Deformed mesh

Performance outputs:

Aerodynamic load distribution
Aerodynamic Analysis

MDA outputs:

Aerodynamic load distribution

Figure 3.3: Inputs and outputs of the aerodynamic analysis.

The aerodynamic analysis is the first one to be carried out within the MDA iterative process. Upon

initiating the optimization problem the main input of this discipline is the initial mesh, as described in

section 3.1. The same data is output for both performance evaluations and the MDA process (i.e., this

distribution will be sent to the following discipline analyses), however, it is handled very differently, as it

will be seen in sections 3.3 and 3.4.

3.3 Structures

As mentioned previously, several structural variables will play an important part in defining the lifting

surfaces.

As we have already defined the finite element mesh, let us synthesize the data flow through this

discipline.
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Inputs:

Aerodynamic load distribution, Thrust,

Mesh, Spar thickness distribution

Performance outputs:

Lifting surfaces areas, Chord distribution,

Displacement distribution, Element lengths and radii

Structural Analysis
MDA outputs:

Deformed mesh

Figure 3.4: Inputs and outputs of the structural analysis.

The structural analysis, as depicted in fig. 3.4, receives loads from both the aerodynamic and propul-

sion analyses. After combining both inputs into a single load array, F , the displacement computations

are carried out as described previously (see eq. (2.51)).

We can also see that the outputs are vastly different for MDA and performance evaluation purposes.

In terms of converging the MDA solver, the only necessary information is the deformed mesh, as this

is the direct, practical result of the analysis which affects the remaining disciplines. However, in order

to evaluate the constraints associated with the structure, we can see that a greater level of detail is

necessary.

3.4 Load and Displacement Transfer

One important aspect to consider when dealing with more than one mesh within an MDO framework

is how information is transferred between them. In our case, we need to apply the load distribution

computed upon the aerodynamic mesh to the finite element structure. The implemented transfer scheme

must satisfy two requirements: it must be consistent and conservative [10, 42].

In order for the load and displacement transfer method to be consistent, the sum of all the loads and

moments applied on the nodes of the structure must be the same as the force and moment resultant of

the integration of the computed aerodynamic loads. This means an infinite amount of transfer methods

provide consistency, since we are integrating a continuous distribution over a a smooth region. Then,

so that the scheme is conservative, we need to apply the principle of virtual work. Namely, the virtual

work done by the forces on both meshes over the virtual displacements the scheme predicts must be

the same.

Let us demonstrate the process for transferring the load from a single aerodynamic mesh panel to

the finite element structure.
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Figure 3.5: Scheme for transferring aerodynamic load ~T to structural nodes 1 and 2 [10].

Figure 3.5 illustrates an aerodynamical panel ABCD, the distributed load ~T , structural nodes 1 and

2, the position vectors from the panel’s center of pressure (cp) to those same nodes, and the force and

moment pairs that have been transferred onto them. The subscript s indicates which quantities are tied

with the structural mesh.

As mentioned in section 3.1, segments AB and CD line up with structural nodes 1 and 2 in the

chordwise direction (x). Because ~T is being applied at the middle of the panel in the spanwise direction

(y), defining the forces and moments at the nodes as





~Fs,i =
´

ABCD
1
2
~TdS = 1

2
~TS

~Ms,i =
´

ABCD ~ri × 1
2
~TdS = 1

2~rcp,i
~TS

(3.1)

means the scheme is conservative since we are equating the transferred forces and moments to the

resultant of the aerodynamic load distribution integrated over the panel surface. Because the center of

pressure is equidistant from both nodes, the loads are factored by 1
2 .

Now that we have established the loads to be applied on the structural mesh, we need to define how

the ensuing structural displacements are transferred to the aerodynamic mesh. Let us designate the

structural displacement on node i as ~us,i and the transferred deformation on the aerodynamic panel as

~up. The transfer scheme is defined as

~up =
1

2

2∑

i=1

(
~ds,i + ~θs,i × ~ri

)
, (3.2)

where ~ds,i and ~θs,i are the translational and rotational components of the structural displacement, re-

spectively, and ~ri points from node i to where ~up is being evaluated. Now that the displacement trans-

feral has been defined, we need to verify that the virtual work performed by ~T over ~up matches that

of
(
~Fs,i, ~Ms,i

)
over ~us,i, proving consistency. The virtual work effected on the structural mesh, δWs, is

given by

δWs =

2∑

i=1

(
~Fs,i · ~ds,i + ~Ms,i · ~θs,i

)
, (3.3)
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where we can now introduce the load transfer (eq. (3.1)), resulting

δWs =
1

2

2∑

i=1

(
~T · ~ds,i + ~rcp,i × ~T · ~θs,i

)
. (3.4)

Now, to make ends meet, let us compute the virtual work effected on the aerodynamic mesh, δWa,

starting with

δWa =

ˆ
~T · ~updS , (3.5)

where we can now insert the displacement transfer (eq. (3.2)), yielding

δWa =
1

2

2∑

i=1

ˆ (
~T · ~ds,i + ~T · ~θs,i × ~ri

)
. (3.6)

From where we may integrate as was done in eq. (3.1), making it so we are evaluating the displacement

at the center of pressure (this is valid since ~T , ~ds,i and ~θs,i are all constant over the panel). Doing so, we

obtain

δWa =
1

2

2∑

i=1

ˆ (
~T · ~ds,i + ~T · ~θs,i × ~rcp,i

)
, (3.7)

which is algebraically equivalent to

δWa =
1

2

2∑

i=1

(
~T · ~ds,i + ~rcp,i × ~T · ~θs,i

)
. (3.8)

Comparing eqs. (3.4) and (3.8), we can see that the virtual work applied on the structural mesh matches

that which is applied on the aerodynamic mesh, confirming this transfer scheme (eqs. (3.1) and (3.2)) is

consistent.

3.5 Propulsion

Stripping it down to the fundamental, we are simply looking to apply a force (the engines’ thrust) at its

designated location. To this end, we will require an estimation of where that point of application will be;

as well as the magnitude and orientation of the thrust vector.

Let us start by discussing where it will be applied and in which direction.
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(a) Side view. (b) Top view.

Figure 3.6: Application of the propulsive force.

Following the diagrams x, y, z defined in fig. 3.6, several details regarding the application of the thrust

force can be defined:

• The force is parallel to the incoming flow, meaning only the aforementioned φT needs to be defined

(i.e. there will be no component in the y-direction). For the sake of simplicity, this angle will be

considered null in this work: (φT = 0);

• As a simplification, it may be considered that the force will be applied on a point whose spanwise

coordinate matches that of one of the nodes of the mesh (denoted in green). Doing so simplifies the

determination of the equivalent force-moment system upon transferring the force to the structure

proper;

• When applying the engine force, a vertical component must be added to represent the weight of

the engine. It is, therefore, assumed that both weight and thrust are applied at the same location;

• The vertical distance at which the force will be applied w.r.t. the wing (zt) will be defined as half of

the engine’s diameter.

At this point, the conditions under which the thrust will be applied (i.e., the point of application and its

orientation) have been fully defined. Let us now discuss its magnitude.

As introduced in section 2.5, the thrust coefficient will be computed via a model such as eq. (2.68).

The three empirical factors, (k0, k1 and η) define the type of engine we wish to emulate. Referring once

again to Stengel [39], the following assumptions will be made




k0 = 0

η = −3

. (3.9)

For all mentioned idealized models k0 is considered to be 0. Furthermore, setting this value for η de-

scribes a constant power setting, representative of high propulsive efficiency systems such as high-

bypass turbofans and turboprop coupled to a propeller (see eq. (2.63)).
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We are left with the k1 parameter, which will be used to fit our model to specific engines. As a default

setting, we will be using values from a specific aircraft: the B777-300. As such, for purposes of defining

k1, the values from the GE90 turbofan will be used - an engine commonly paired with this aircraft.

Finally, we may once again sum up the data flow for this analysis, illustrated in fig. 3.7:

Inputs:

Throttle setting, Air density, k1, num y,

Freestream velocity, Lifting surfaces areas

Performance outputs:

Thrust coefficient, Thrust
Propulsion Analysis

MDA outputs:

Thrust

Figure 3.7: Inputs and outputs of the propulsion analysis.

3.6 Trajectory

The trajectory implementation is unlike that of the remaining disciplines. As covered in section 2.6, what

our pseudo-multipoint analysis aims to accomplish is to perform coupled aircraft design in a cruise setting

and optimal control across several separated sets of constraints. Each one of these sets represents a

point in our mission profile, as the flight conditions for that phase are essentially imposed by these

constraints. Because of this, it does not make sense to define constraints in the way we have defined

them in the previous sections of this chapter; instead, let us present the mission profiles we will cover in

this work, and the type of constraints associated to each flight phase.

3.6.1 First Mission Profile - Cruise

Let us start by defining the base line mission profile, that of a cruise condition situation, illustrated in

fig. 3.8, where we plot the altitude, h, against the distance covered, s.

Figure 3.8: Simple cruise mission profile.
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For cruise points, we impose that

γ = 0 . (3.10)

This is the baseline case, which serves as validation since the Breguet range equation (see eq. (2.60))

is valid and adequate for this situation. In fig. 3.8, Ri describes the distance covered in the i-th flight

phase, and hi the altitude at which computations for said phase are carried out. In this single-point

situation, the phase distance matches the entire mission range.

3.6.2 Second Mission Profile - Cruise and Descent

Next, we have a two point profile with two of the main flight phases of a commercial mission profile, as

depicted in fig. 3.9.

Figure 3.9: Two point mission profile with cruise and descent.

This profile comprises all the main features of our approach, and serves as the final case study of

this work. For the point of descent, two aspects need to be considered: the altitude, hi, and the value of

the flight path angle, γi. This phase covers a large span of altitudes but, as an approximation, it will be

considered that the altitude for this point is given by the average of their origin and target altitudes. As

such, h2 in this case is given by

h2 =
h1

2
, (3.11)

where h1 is the predefined cruise altitude, based on usual values observed for the case in point.

As for the flight path angle γi, the variable will be constrained to an adequate range of values for the

designated flight phase. Because we are looking to emulate commercial airline missions performed by

aircraft such as the aforementioned B777-300, we will be adopting the industry standard for the angle of

descent [43], therefore forcing this value to be −3o. As such, the employed constraints on these angles

will be 


γ1 = 0o

γ2 = −3o
. (3.12)
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Chapter 4

Optimization Framework

In this chapter we will cover how the disciplines interact with one another on a conceptual and com-

putational level. We will also discuss how the constraints and objective function described in previous

sections will be implemented.

4.1 Design Variables

Let us first formally define the design variables we will be exploring in this work, so that all the main parts

of the optimization problems are covered. Most of these can be sorted into a single discipline, meaning

we include them in an optimization process if that respective discipline analysis is being considered.

The exceptions are the variables which affect the surfaces shapes, in our case their taper λ and span b,

which are shared between the aerodynamic and structural analyses.

• Aerodynamics: angle-of-attack (α), twist distribution(θ(y)) for both wing (w) and tail (t);

• Propulsion: throttle setting (δT );

• Structures: spar thickness distribution (t(y)) on the wing (w);

• Trajectory: flight path angle (γ);

• Aerostructural: wing span (bw).

It is also possible to contemplate only a few of these variables for specific results, such as optimizing

upon the throttle setting, tail twist (incidence), α and γ alone for an optimal control situation.

Another important aspect regarding the design variables is the range of values within which these

are allowed. For some of them, this range is conditioned by construction, namely





−15o ≤ α ≤ +15o

−15o ≤ θw, θt ≤ +15o

0 ≤ δT ≤ 1

. (4.1)
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since our aerodynamic analysis is based on the small angle approximation, and δT is a percentile multi-

plier.

The boundaries of the remaining design variables will be based on our reference aircraft, the B777-

300 [44]. As such, we will be imposing





50 ≤ bw ≤ 70m

0.01 ≤ tw ≤ 0.05m

. (4.2)

The values for the span bw of the wing were based on the wingspan found in the original aircraft [44]. As

for the spar thicknesses, the boundaries have been defined so the final weight of the aircraft resembles

that of the original aircraft. To this end, we can base ourselves on the operating empty weight (OEW).

From [44] we know our OEW should be close to 1.7× 105kg.

One important note regarding the implementation of the spar thicknesses and twist (for the wing)

is that these distributions are defined by a spline. Essentially, rather than defining the twist and spar

thickness at every control point of the structure as a design variable, we may define any number of

control points for these two distributions and define a B-spline curve from these. The values can then

be computed from the curve. This does not apply to the tail since we will be not optimizing the tail spar

thickness (and will be considering all of its spars to have the same thickness). Also, since its twist will

be acting as the tail incidence, we will be using a single value for the tail twist, meaning no additional

computations are required.

The values for the flight path angle γ were previously discussed in eq. (3.12).

4.2 Constraints and Performance Metric

Beside the boundaries on our design variables, we must also define additional constraints pertaining to

the trim conditions and structural integrity of the aircraft.

Trim conditions

First, let us cover the equilibrium conditions discussed in section 2.2, starting with the vertical force

equilibrium. This equation is expressed through an auxiliary variable as

L equals W =
Wcos(γ)− L− Tsin(α)

W
= cos(γ)− L

W
− Tsin(α)

W
= 0 . (4.3)

The numerator on the right-hand side of eq. (4.3) represents eq. (2.25a) (with φT = 0), which means the

condition will be met if we force this variable to 0. It should be noted that the lift, L, in this variable has

been computed as per eq. (2.27a). Similarly, we may enforce the horizontal force equilibrium condition

through another variable,

T equals D =
Wsin(γ) +D − Tcos(α)

W
= sin(γ) +

D

W
− Tcos(α)

W
= 0 , (4.4)
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where the numerator on the right-hand side of eq. (4.4) represents eq. (2.25b) (with φT = 0), and the

condition is imposed by equating this variable to 0. The drag, D, has also been computed as described

in eq. (2.27b).

Both eq. (4.3) and eq. (4.4) have been constructed by dividing the respective equilibrium conditions

by the aircraft’s total weight, W . This is done in order to reduce the magnitude of the auxiliary constraint

variables, and therefore scale the optimization problem better.

Analyzing both eq. (4.3) and eq. (4.4) and comparing them to the input/output diagrams discussed

in chapter 3, we can see how the auxiliary variables we have defined will depend on outputs and design

variables from all disciplines. Namely, the aerodynamic computations will dictate the behaviour of α, L

and D; the structural analysis will output W ; the propulsion analysis will output T ; and the trajectory

conditions define γ. The coupling among the disciplines in the mulitdisciplinary analysis will be covered

in the following section, but it is important to keep in mind that the constraints of the full system also

depend on all analyses, acting as another level of interdependence.

In regards to the moment equilibrium condition, the total moment coefficient (CM ) is computed as per

eq. (2.27c). As described previously, we will be considering complete symmetry across the xz-plane,

meaning both roll and yaw moments are null by construction, and we only need to enforce the pitching

moment

CMy
= 0 . (4.5)

Structural Integrity

Other than ensuring trim conditions, we must guarantee the non-failure of all elements. A Von-Mises

yield criterion is utilized to evaluate the integrity of the finite element structure. To perform these compu-

tations the displacements themselves are required [45], as well as specific geometric properties of the

elements, namely the radii of the spars. Once the Von-Mises tensions, σVM , have been computed, the

constraint is implemented as

Failure = 2
σVM
σy
− 1 ≤ 0 , (4.6)

where σy is the material yield strength. The multiplicative factor in eq. (4.6) arises from the fact we will

be using a safety factor of 2.0 in this work. Given the way in which this constraint is constructed, we will

require only that this auxiliary variable be negative rather than necessarily null.

Rather than enforcing eq. (4.6) as a different constraint for each finite element, we will be utilizing a

constraint aggregation method, based on the Kreisselmeier-Steinhauser equation [46]. This way, only a

single failure constraint needs to be applied.

Lastly, a strictly computational constraint is set to ensure that the optimizer maintains the tubular

structure geometrically feasible, in the form of

Intersection = Thickness− Radius ≤ 0 . (4.7)
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Performance Metric

As discussed previously, the metric we will be looking to minimize is the amount of fuel consumed in a

prescribed mission. Because we explicitly compute the propulsive force for each flight phase, we may

define our objective function as

mfuel =

N∑

i=1

TSFC
Ri
Vi
Ti , (4.8)

where we are considering a mission profile sectioned into N phases, and TSFCi, Ri, Vi and Ti are

respectively the thrust-specific fuel consumption (in kg/N/s units), covered distance, speed and thrust

of each phase. We can expand eq. (4.8) further by replacing the propulsive force with its model (as seen

in eq. (2.67)) yielding

mfuel =

N∑

i=1

TSFCi Ri V
η−1
i k1

Sρ2
i

2
δTi , (4.9)

where we can more evidently see how the optimizer will attempt to minimize the amount of fuel spent: by

means of the total reference area, S, and the throttle setting. Furthermore, because we are disregarding

morphing wing solutions (where the lifting surface shape can change mid-flight) only the throttle variable

will allow the optimizer to meet the thrust requirements throughout the flight.

Now that we have covered the main components of the optimization problem, let us synthesize the

full data flow scheme.

4.3 Coupling Overview

On a conceptual level, we can illustrate the interaction between disciplines in the multidisciplinary anal-

ysis process as in fig. 4.1.

MDA Deformed mesh Lifting surfaces areas

Aerodynamic

load distribution
Aerodynamics

Aerodynamic

load distribution

Thrust Propulsion Thrust

Deformed Mesh,

Lifting surfaces areas
Structures

Figure 4.1: Coupling between the three disciplines in the MDA process.

For a more thorough layout of the actual computations, the N2 diagram for the MDA in our problem

is presented in fig. 4.2.
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Figure 4.2: N2 computational diagram for the MDA process.

Several groups are listed on the left side (represented in blue), where we find classes representing

some computational step of the process (represented in grey). Data is fed forward on the upper triangular

half of the matrix (outlined in green) and fed back on the lower triangular half (outlined in orange).

Comparing fig. 4.2 with fig. 4.1 we can see that the structural computations are performed within the

’coupled.wing’ and ’coupled.tail’ groups. Namely, the total loads applied on the elements are assembled

within ’struct states’ and the displacement distribution is computed in ’struct states.disp’. The deformed

mesh and lifting surface area are then obtained in ’def mesh.displacement transfer’ and ’aero geom’

respectively. This process is carried out for both the wing and the tail.

Next, we have the aerodynamic analysis within ’aero states’. Both of the deformed meshes are fed

into the top of the group, where the problem is converted according to the Prandtl-Glauert correction

(’pg transform’). The separation between wing and tail computations occurs within the classes; as

seen in the expanded ’panel forces surf’ class, where different arrays carry the data for each surface;

hence why this analysis presents a different architecture in the matrix. Once the final aerodynamic load

distribution has been converted back (’inverse pg transform’), both ’wing loads’ and ’tail loads’ are fed

back to their respective structural classes.

Finally, we have the added propulsion discipline within ’propulsion states’. The ’obtain thrust’ class

receives the lifting surfaces areas, as described previously, and feeds the computed thrust force back,

to be applied alongside the wing aerodynamic loads.
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Chapter 5

MDO - Setup and Results

In this chapter we will be discussing the final details of the implementation, as well as the results we

have obtained. Before we start performing full optimization processes however, let us research the

convergence of the mesh for a single iteration of the MDA process.

5.1 Mesh Convergence Study

As previously discussed, the mesh for each lifting surface is defined by two parameters each, ’num x’

and ’num y’. For the purpose of determining an adequate mesh for our problem, the MDA process was

converged once with a (2× 5) grid for the wing, and a (2× 3) grid for the tail, yielding




mfuelref = 116150.8kg

t = 16.14s

, (5.1)

where t represents the time elapsed in the process.

In tables 5.1 and 5.2 we present the relative changes obtained for a selection of progressively finer

grids in the x-direction for the consumed fuel and time elapsed, respectively. In each cell, the change is

computed in relation to the previous result.

Table 5.1: Convergence in mfuel (x-direction).

num x δ(mfuel) (%)

2 -

3 −0.00852

5 −0.00413

7 −0.00172

9 −0.00095

Table 5.2: Convergence in t (x-direction).

num x δ(t) (%)

2 -

3 +1.61

5 +5.18

7 +2.90

9 +1.41

We can see that refining the mesh in this direction yields negligible result changes on our metric

(always below 0.01%), even with few control points. The time elapsed in the process, however, suffered
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a more considerable change, up to 5%. In absolute terms, this is not very relevant considering it repre-

sents a change smaller than 1s. However, it is important to consider that the results obtained in these

computations only used 5 points in the y-direction. As we add more control points along the span (which

will require several more control points), this computational cost will be exaggerated. For the sake of

computational simplicity, only 3 control points will be considered in this direction.

Now, in tables 5.3 and 5.4 we present the results for similar computations in the y-direction.

Table 5.3: Convergence in mfuel (y-direction).

num y δ(mfuel) (%)

5 -

7 −2.57

9 +0.131

11 −0.664

13 −0.0523

15 −0.0117

17 −0.126

19 −0.0348

21 −0.0387

23 −0.00851

Table 5.4: Convergence in t (y-direction).

num y δ(t) (%)

5 -

7 +4.71

9 +0.362

11 +0.186

13 +0.653

15 −0.124

17 +6.21

19 −1.98

21 −0.856

23 −0.175

The result sensibility in the y-direction is understandably greater, as num y also controls the number

of finite elements which compose the structural model. A relative change inferior to the aforementioned

0.01% is achieved with 23 control points across the entire span.

We have now established the grid we will employing for our cruise situations. In the following sec-

tions in this chapter we present and discuss the optimization results we obtained for different problem

configurations.

5.2 Additional Optimization Parameters

Beside the design variables discussed in the previous chapter, there are other parameters which are

relevant to the problem. These are listed in table 5.5, 5.6 and 5.7, and are utilized in all optimization

problems unless stated otherwise.

Table 5.5: Spar material properties (Aluminum 7075).

Parameter Value

E(Pa) 70× 109

G(Pa) 30× 109

σy(Pa) 500× 109

ρ(kg/m3) 2.8× 103

Table 5.6: Tail parameters.

Parameter Value

bt(m) 24.22

λt 0.118

lt(m) 0.05
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Table 5.7: Cruise flight conditions and TSFC.

Parameter Value

M 0.84

h(m) 10.7× 103

ρ(kg/m3) 0.38

Range (m) 11× 106

W0(kg) 1.125× 105

TSFC (kg/N/s) 1.54× 10−5

Table 5.8: Numerical Parameters.

Parameter Value

Iterative tolerance 10−7

Optimizer tolerance 10−3

The tail parameters were obtained by performing an optimization problem similar to the one which

will be discussed in section 5.4, starting from a symmetrical rectangular surface. These values are

not considered as design variables as it was observed that doing so greatly increased the problem’s

complexity for minimal objective function gains. For the optimization problems within this chapter, we

will be considering the aircraft maximum range as well as its cruise altitude at all times [44]. The W0

parameter factors in for the rest of the empty weight of the aircraft. As mentioned previously, part of

our goal is to make sure the empty operating weight of our aircraft matches that of the original B777 −
300. Finally, regarding the parameters in table 5.8, the iterative tolerance applies to the system solving

algorithm, i.e. the MDA analysis - it acts as a convergence threshold for each design point. On the

other hand, the optimizer tolerance applies to the constraints we apply to the problem - acting as a

convergence threshold for the entire problem.

5.3 Aerodynamic & Propulsion Optimization

5.3.1 Problem Setup

Let us start by performing single-point optimization considering the aerodynamic and propulsive systems

in a cruise setting - an aeropropulsive (AP) problem. Referring back to the problem elements discussed

in chapter 4, this optimization problem is defined as

minimize Fuelburn

with respect to α, γ, θt, θw, δT , bw

subject to L equals W = 0

T equals D = 0

CMy = 0

γ = 0

, (5.2)

where we consider all constraints and design variables except for those pertaining exclusively to the

wing structure: the spar thicknesses and their failure.
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Twist Curve Point Study

We will be optimizing upon the wing twist distribution which is defined, as described in section 4.1, by a

B-spline constructed from a given number of points equally distributed across the wingspan. As such,

we must define the number of points we will be employing. Let us perform an analysis similar to that of

the previous section. Starting from a process considering a single point, we have




mfuelref = 115660.7kg

t = 20.06s

. (5.3)

Tables 5.9 and 5.10 list the relative changes from running the same MDA process with additional

twist control points.

Table 5.9: Convergence in mfuel.

B-spline points δ(mfuel) (%)

2 −0.225

3 −0.00260

4 −0.00104

Table 5.10: Convergence in t.

B-spline δ(t) (%)

2 +1.994

3 +5.767

4 +1.802

Following the same criterion we used in section 5.1, we will be employing a 3-point B-spline curve to

model the wing twist.

Table 5.11 lists the initial values and allowed ranges for the design variables (DV).

Table 5.11: Design variable parameters for the AP cruise optimization problem.

DV Initial value Range

α(o) 5 [−15,+15]

γ(o) 2 [−15,+15]

θt(
o) −5 [−15,+15]

θw(o) (−3.75, 1.5, 7) [−15,+15]

δT 0 [0, 1]

bw(m) 60 [50, 70]
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5.3.2 Results

Design Variables

Figures 5.1 to 5.6 illustrate the progression of the design variables through the optimization iterations.

Figure 5.1: AP cruise optimization: α Figure 5.2: AP cruise optimization: γ

Figure 5.3: AP cruise optimization: θt Figure 5.4: AP cruise optimization: θw

Figure 5.5: AP cruise optimization: δT Figure 5.6: AP cruise optimization: bw

And table 5.12 lists their final values.
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Table 5.12: Final design variable values for the AP cruise optimization.

DV Final value

α(o) 5.09

γ(o) 0

θt(
o) −12.8

θw(o) (−3.81, 2.08, 11.2)

δT 0.220

bw(m) 61.6

Constraints and Objective Function

Figures 5.7 to 5.10 depict the progression of the trimming conditions as well as the amount of fuel burnt

through the optimization iterations.

Figure 5.7: AP cruise optimization: L equals W Figure 5.8: AP cruise optimization: T equals D

Figure 5.9: AP cruise optimization: CMy Figure 5.10: AP cruise optimization: Fuelburn

And table 5.13 lists their final values.
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Table 5.13: Final constraint and objective function values for the AP cruise optimization.

Parameter Final value

L equals W −1.68× 10−5

T equals D 4.82× 10−6

CMy
−1.01× 10−5

Fuelburn (kg) 130193.0

Additionally, OpenAeroStruct allows us to plot the final structure as illustrated in fig. 5.11.

Figure 5.11: Optimized lifting surfaces for the AP cruise problem.

This optimization process elapsed 18 iterations, and was concluded in 127.16s. We can see the

process was successful, as all constraints are met (within their designated threshold) and all design

variables concluded within their established ranges.

We may compare some of the values we have obtained with those from the actual aircraft [44].

Namely, the wingspan we have obtained (61.6m) is close to that of the B777-300 (60.9m, with a relative

error of 1.15%). Also, assuming a jet fuel density of around 800kg/m3 [47], the mass of fuel computed

translates to

VFuelburn =
130193

800
= 162.7413m3 = 162741.3l,

which is 4.93% lower the original aircraft maximum fuel capacity. This is adequate, since we are consid-

ering a maximum range mission and not factoring in any fuel reserves.

In fig. 5.11 we can see that the wing structure experienced failure (bottom-right plot). This was to be

expected, since we did not enforce this constraint. Also in this figure, the twist plot displays a nearly linear

progression across the wingspan (top-right plot), even though we optimized upon 3 B-spline points. This

is congruent with the small variations described in table 5.9, suggesting the optimized twist distribution
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is accurately described with just 1 or 2 curve points. Still in the same figure, the middle-right plot exhibits

one of the hallmarks of MDO versus sequential optimization in aircraft design. Sequential optimization

yields elliptic lift distributions [11], and we can see that our the lift distribution for the computed wing

strays away from the green dashed line.

5.4 Aerostructural & Propulsion Optimization

5.4.1 Problem Setup

Now, let us add the structural elements to the optimization problem - a spar thickness curve for the

wing spars as a design variable; their failure across the span and their physical feasibility as constraints.

We now have a aerostructural-propulsive problem (ASP). Referring once again to the problem elements

discussed in chapter 4, the new optimization problem is

minimize Fuelburn

with respect to α, γ, θt, θw, δT , bw, tw

subject to L equals W = 0

T equals D = 0

CMy = 0

γ = 0

Failure ≤ 0

Intersection ≤ 0

, (5.4)

where we now consider all constraints and design variables.

Spar Thickness Curve Point Study

With the addition of the wing spar thickness distribution to the list of design variables, we are including

another spline defined variable. This means we must once again ascertain the number of points we will

be using in the optimization problem.

The MDA reference values for a single-point curve are




mfuelref = 115406.8kg

t = 18.87s

. (5.5)

Tables 5.14 and 5.15 list the relative changes from running the same MDA process with additional

thickness B-spline control points.
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Table 5.14: Convergence in mfuel.

B-spline points δ(mfuel) (%)

2 +0.0250

3 −0.0386

4 +0.00581

5 −0.00407

Table 5.15: Convergence in t.

B-spline points δ(t) (%)

2 +0.212

3 +1.16

4 +1.41

5 −0.567

The 0.01% threshold is crossed with a 4-point B-spline, which we will be utilizing for the following

optimization.

Table 5.16 lists the initial values and allowed ranges for the design variables in the updated problem.

Table 5.16: Design variable parameters for the ASP cruise optimization problem.

DV Initial value Range

α(o) 5 [−15,+15]

γ(o) 2 [−15,+15]

θt(
o) −5 [−15,+15]

θw(o) (−3.75, 1.5, 7) [−15,+15]

δT 0 [0, 1]

bw(m) 60 [50, 70]

tw(m) (0.02, 0.0233, 0.04, 0.03) [0.01, 0.05]

5.4.2 Results

Design Variables

Figures 5.12 to 5.18 display the progression of the design variables through the optimization iterations.

Figure 5.12: ASP cruise optimization: α Figure 5.13: ASP cruise optimization: γ
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Figure 5.14: ASP cruise optimization: θt Figure 5.15: ASP cruise optimization: θw

Figure 5.16: ASP cruise optimization: δT Figure 5.17: ASP cruise optimization: bw

Figure 5.18: ASP cruise optimization: tw

Table 5.17 lists their final values.
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Table 5.17: Final design variable values for the ASP cruise optimization.

DV Final value

α(o) 5.13

γ(o) 0

θt(
o) −12.8

θw(o) (−3.82, 2.06, 11.03)

δT 0.220

bw(m) 61.5

tw(m) (0.0295, 0.0295, 0.0440, 0.0325)

Constraints and Objective Function

Figures 5.19 to 5.24 depict the progression of the trimming conditions, structural constraints, as well as

the amount of fuel burnt through the optimization iterations.

Figure 5.19: ASP cruise optimization: L equals W Figure 5.20: ASP cruise optimization: T equals D

Figure 5.21: ASP cruise optimization: CMy Figure 5.22: ASP cruise optimization: Failure
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Figure 5.23: ASP cruise optimization: Intersection Figure 5.24: ASP cruise optimization: Fuelburn

And table 5.18 lists their final values.

Table 5.18: Final constraint and objective function values for the ASP cruise optimization.

Parameter Final value

L equals W −4.88× 10−5

T equals D 6.15× 10−6

CMy
−1.15× 10−4

Failure −1.86× 10−5

Intersection (−0.209 ∼ −0.933)

Fuelburn (kg) 129872.9

Finally, our final wing is fully plotted in fig. 5.25.

Figure 5.25: Optimized lifting surfaces for the ASP cruise problem.
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This optimization was carried out in 17 iterations, over a time period of 138.59s. Once again, all

of the constraints have been met, and all design variables remained within the established values. We

have arrived at a very similar solution, as can be seen from the values in table 5.17, as well as the

progression of most of the displayed plots.

When compared to the previous optimization solution, a marginal improvement has been attained in

the amount of fuel spent, namely a decrease of

δ(mfuel) =
129872.9− 130193.0

130139.0
= −0.246%. (5.6)

This change has also come at the cost of computational time, which increased by

δ(t) =
138.59− 127.16

127.16
= +8.99%. (5.7)

Similarly to what was mentioned in previous sections, 11s are, in absolute, a relatively irrelevant amount

of time. However, these optimization cases are also significantly low-fidelity, and part of the purpose of

these results is to gain a sensibility towards how the different elements of these optimization problems

work, and how they might scale for larger problems. In relative terms, 9% is a significant time increase.

Furthermore, it should be noted that in the AP optimization process carried out in the previous section

the structural computations were still performed, we merely omitted all design variables and constraints

pertaining exclusively to the discipline. The computational cost gap between both processes would

certainly be greater if the previous process had strictly only performed aerodynamic and propulsive

computations.

We have introduced both new design variables as well as new constraints, meaning there was no

reason to necessarily expect either a better or worse solution. Some of the trends pointed out in the

previous analysis are still present, such as the non-elliptical lift distribution and the nearly linear twist

distribution.

Unsurprisingly, the greatest change pertains to the thicknesses of the spars. Comparing the thick-

ness plots from both fig. 5.11 and fig. 5.25, we can see that the thickness of the spars near the center

of the span has changed to accommodate the failure constraint, which is now met. More interestingly,

the thicknesses of the spars near the wing tips have also increased, even though they do not seem to

approach the failure threshold. There are a few reasons why this might be:

• The low constraint tolerance we have imposed in this work. The value of 10−3 is a compromise

due to convergence robustness problems and as an effort to keep the optimization processes short

and quickly repeatable. The reason for these problems might also be tied to the following point;

• How the propulsive force has been applied to the structure, considering that much of the strength of

the original code is predicated on how the loads are distributed across the structure. Conversely,

the implemented propulsive force and respective moment are applied on a single node, which

might have also interacted poorly with the aggregated failure constraint approach mentioned in

section 4.2.
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Lastly, now that we have involved the wing structure in the optimization process, we can also compare

the operating empty weight we have obtained with that of the original B777−300. The structural masses

computed in this optimization process were 43632.3kg and 10558.3kg for the wing and tail, respectively.

Adding these to the W0 parameter described in section 5.2 yields

W0 +Ww +Wt = 112500 + 43632.2 + 10558.3 = 166690.5kg. (5.8)

This is another good fit to the original value of 160500kg [44], with a relative error of 3.86%.

5.5 Descent Trajectory Control

Now that we have obtained our cruise-optimized aircraft configuration, the last step is to optimize its

control variables to the second flight phase we will be considering, the descent.

5.5.1 Problem Setup

As mentioned in previous sections, the main changes we will be employing in order to perform this

optimization pertain to the flight conditions. Table 5.7 listed the cruise altitude and respective air density.

As laid out in section 3.6.2, we will now be performing computations at half the altitude, meaning





h2 = 5350m

ρ2 = 0.709kg/m3

c2 = 319.1m/s

, (5.9)

are our new atmospheric conditions, and where c2 is the speed of sound (at the new altitude).

Next, let us ascertain our new speed and Mach number. Our initial velocity (in cruise, that is) is

248.1m/s. During the main descent phase, the B777− 300 reduces its velocity to 154.3m/s [48].1 Aver-

aging both of these values yields

V2 =
248.1 + 154.3

2
= 201.2m/s, (5.10)

and therefore

M2 =
201.2

319.1
= 0.63. (5.11)

Furthermore, it was also established in section 3.6.2 that we would perform our descent at

γ = −3o,

which means we can determine the ground distance we will be covering in this phase, since we assume

1According to [48], this is an indicated airspeed - it is an approximation to utilize this value without accounting for the instru-
mentation and wind factors.
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we are descending from h = 10700m to sea level. The distance covered, R2, is given by

tan(3o) =
10700

R2
⇔ R2 = 204168.2m (5.12)

Now, in order to perform the control optimization for the descent step, we solve the following problem

minimize Fuelburn

with respect to α, γ, θt, δT

subject to L equals W = 0

T equals D = 0

CMy
= 0

γ = −3o

, (5.13)

over a range of 204168.2m. We have omitted all non-control variables and constraints in eq. (5.13),

i.e. any variables which would change the shape of our established wing. The initial (and constant)

values for these absent parameters will be those which we obtained from the ASP optimization, listed in

table 5.17.

5.5.2 Results

Control Variables

Figures 5.26 to 5.29 display the progression of the control variables through the optimization iterations.

Figure 5.26: Descent control optimization: α Figure 5.27: Descent control optimization: γ
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Figure 5.28: Descent control optimization: θt Figure 5.29: Descent control optimization: δT

And table 5.19 lists their final values.

Table 5.19: Final control variable values for the descent control optimization.

CV Final value

α(o) −0.186

γ(o) −3

θt(
o) −2.13

δT 0.0510

Constraints and Objective Function

Lastly, figs. 5.30 to 5.33 depict the progression of the trimming conditions and the amount of fuel burnt

through the control optimization iterations.

Figure 5.30: Descent control optimization: L equals W Figure 5.31: Descent control optimization: T equals D
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Figure 5.32: Descent control optimization: CMy Figure 5.33: Descent control optimization: Fuelburn

Table 5.20 lists the final values for these.

Table 5.20: Final constraint and fuelburn values for the descent control optimization.

Parameter Final value

L equals W −4.51× 10−4

T equals D −6.58× 10−5

CMy
−2.78× 10−5

Fuelburn (kg) 668.9

The final wing shape is the exact same as that depicted in fig. 5.25, and therefore there is no reason

to display the full plot again.

This optimization process elapsed 7 iterations over the course of 72.96s, which indicates a signif-

icantly lower computational load than the previous cases. This was to be expected since the control

optimization problem was, initial conditions apart, strictly simpler than any of the previously discussed

problems.

This approach, and therefore these results, cannot be completely separated from the optimization

process which we performed previously, since we are attributing an additional amount of fuel necessary

for the descent step which was not technically considered previously.

However, the ratio between the two fuel masses showcases why this is a reasonable approximation:

FuelburnDescent

FuelburnCruise
=

668.9

129872.9
= 0.0052. (5.14)

The decision to optimize upon the control of the descent phase in specific was deliberate, as this

phase incurs a relatively low fuel consumption when compared to other commonly defined flight phases.

With this process, we have showed that our design can handle these descent stipulations, and ob-

tained the control variable values that should employed. As with the previous optimizations, all con-

straints have been met, including the control variable boundaries. For the sake of completion, we can

even observe that the failure condition is not violated, as illustrated in fig. 5.34.
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Figure 5.34: Descent control optimization: Failure
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Chapter 6

Conclusions

6.1 Summary and Achievements

In this work, we have expanded upon existing aerostructural multidisciplinary optimization code by im-

plementing a propulsive system. We successfully performed MDO considering the three disciplines and

all their respective parameters for a cruise situation.

Several of the values we obtained in our final aircraft design closely resembled those of the original

aircraft we tried to emulate and improve upon, the B777 − 300. These included the empty operating

weight, wingspan and amount of fuel consumed in a maximum range situation.

We were also able to optimize the control variables of the system to perform on a different flight

phase, the descent. This meant operating under significantly different atmospheric conditions and that

the obtained aircraft was able to achieve trimming conditions with nothing else but its control inputs.

Overall, the final code managed to accomplish nearly everything it was expected to, though there are

still several aspects in which it can be improved.

6.2 Future Work

As was mentioned in the discussion of the ASP optimization results, the developed tool lacks robustness

for most of its parameters. It is quite sensitive to the initial values it is fed, and it was challenging to

converge most of the cases presented in this work. Some suggestions were already mentioned in that

same discussion, namely distributing the propulsive load and its moment across more than a single

structural node. Conceivably such a solution would alleviate the need for such a large convergence

tolerance, and allow for more interesting results.

Also regarding the propulsive force placement, the engine position in the span could have been

parameterized, and acted as a design variable. This could be accomplished either as a discrete variable,

assuming that the force would always be applied at a structural node (similar to what was done in this

work); or as a continuous parameter, if some load/moment transfer scheme were devised to move

the propulsive force to the neighbouring nodes. Another possibility would be a distributed propulsion
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solution, considering more than one engine per wing.

It could also be interesting to optimize the control variables upon more flight conditions. Because,

however, the initial cruise-only optimization becomes less and less accurate the more of these are

tacked on, an important improvement to this code would be to implement a complete multipoint opti-

mization scheme. This way, all of the design variables and all of the stipulated flight conditions would be

simultaneously considered, and the process would yield the control values for all stages in tandem with

an aircraft optimized upon all of the mission phases. This was an original goal for this work which could

not be accomplished.
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