
Chapter 9

Transfer funtions and blok

diagrams

In this hapter we will show how transfer funtions an be used together with

a graphi representation of system interonnetion alled blok diagram. We

onlude using blok diagrams as a tool for a short introdution to ontrol.

9.1 More on transfer funtions

Remember De�nition 4.1 about what is a transfer funtion of a SISO system

modelled by a di�erential equation: it is the ratio between the Laplae transform

of the output and the Laplae transform of the input, assuming initial onditions

equal to zero. Also remember that behind eah transfer funtion there is a

di�erential equation, and that di�erential equations are models of real things. Transfer funtions are dif-

ferential equations

Using transfer funtions, we an easily study the behaviour of a system

abstrating from its physial reality. This is the approah we will take from now

on. This said, notie that remembering the atual system that is being studied

an be useful to hek if results are possible or not. Remember that models

approximate reality, not the other way round. Also remember Example 4.1

about the spring strethed to an impossible length (it breaks, of ourse), or

Remark 6.5 about pipes where the �ow annot be negative. We would not have

found that just by looking at our models, whih are linear.

Theorem 9.1. The transfer funtion of a SISO LTI ontinuous in time an be Ratio of polynomials in s
expressed as the ratio of two polynomials in s.

Proof. Let the input of the SISO system be u(t) and its output be y(t). Beause
the system is LTI and ontinuous in time, it is modelled by a linear di�erential

equation:

a0y(t) + a1
dy(t)

dt
+ a2

d2y(t)

dt2
+ a3

d3y(t)

dt3
+ . . . = b0u(t) + b1

du(t)

dt
+ b2

d2u(t)

dt2
+ b3

d3u(t)

dt3
+ . . .

⇔
n∑

k=0

ak
dky(t)

dtk
=

m∑

k=0

bk
dku(t)

dtk
(9.1)

121



In the last expression, n and m are the highest derivative orders of the equa-

tion. Assuming zero initial onditions and applying the Laplae transform, this

beomes

a0Y (s) + a1Y (s)s+ a2Y (s)s2 + a3Y (s)s3 + . . . = b0U(s) + b1U(s)s+ b2U(s)s2 + b3U(s)s3 + . . .

⇔
n∑

k=0

akY (s)sk =

m∑

k=0

bkU(s)sk (9.2)

Rearranging terms,

Y (s)

U(s)
=

b0 + b1s+ b2s
2 + b3s

3 + . . .

a0 + a1s+ a2s2 + a3s3 + . . .
=

m∑

k=0

bks
k

n∑

k=0

aks
k

(9.3)

Remark 9.1. Some authors hange the order of the oe�ients, and instead of

(9.3) write

Y (s)

U(s)
=

m∑

k=0

bm−ks
k

n∑

k=0

am−ks
k

(9.4)

This is a mere detail of notation.

Remark 9.2. (9.3) orresponds to an in�nite number of representations of a

same transfer funtion. It su�es to multiply both numerator and denominator

by a onstant. But it is ommon to normalise oe�ients so that a0 = 1, orNormalising transfer fun-

tion oe�ients an = 1, or b0 = 1.

Example 9.1. Consider the miropreision ontrol setup test in Figure 3.9 from

Example 3.19. The transfer funtion from one of the atuators to the position

of the mass has been identi�ed as

G(s) =
9602

s2 + 4.27s+ 7627
(9.5)

This was normalised so that a2 = 1, n = 2. We ould also normalise a0 or b0:

G(s) =
1.2589

131.11× 10−6s2 + 559.85× 10−6s+ 1

=
1

104.14× 10−6s2 + 444.70× 10−6s+ 0.7943
(9.6)

It is easy to �nd the di�erential equation from a transfer funtion. When theGetting the transfer fun-

tion bak transfer funtion is represented merely by a letter, meaning that it is a funtion

of s, as in (9.5) above, it still orresponds to the ratio of the Laplae transforms

of output and input.

122



Example 9.2. (9.5) an be rewritten as

Y (s)

U(s)
=

9602

s2 + 4.27s+ 7627
⇔ Y (s)(s2 + 4.27s+ 7627) = 9602U(s)

⇔Y (s)s2 + 4.27Y (s)s+ 7627Y (s) = 9602U(s) (9.7)

whih is the Laplae transform of the di�erential equation governing the plant:

y′′(t) + 4.27y′(t) + 7627y(t) = 9602u(t) (9.8)

De�nition 9.1. A transfer funtion is proper if the order of the polynomial Proper transfer funtion

in the numerator is equal to or less than the order of the polynomial in the

denominator.

A transfer funtion is stritly proper if the order of the polynomial in the Stritly proper transfer

funtionnumerator is less than the order of the polynomial in the denominator.

In the notation of (9.3), the transfer funtion is proper if m ≤ n, and stritly

proper if m < n.

For reasons we shall address in Chapter 10, we will be working only with

proper transfer funtions, and most of the times with stritly proper transfer

funtions.

De�nition 9.2. The order of a transfer funtion is the highest order of the Order of a transfer fun-

tionpolynomials in the numerator and the denominator. If the transfer funtion is

proper, its order is the order of the denominator.

Remark 9.3. The order of a transfer funtion is also the order of the di�erential

equation from whih it was formed. In fat, sk orresponds to a derivative of

order k.

Remark 9.4. Notie that some transfer funtions an be simpli�ed beause

numerator and denominator have ommon fators. Eliminating them redues

the order of the transfer funtion.

Example 9.3. Here are examples of proper transfer funtions of:

• Order 0

Ga(s) = 20 (9.9)

• Order 1

Gb(s) =
19

s+ 18
(9.10)

Gc(s) =
17s+ 16

s+ 15
(9.11)

Gd(s) =
14

s
(9.12)

Ge(s) =
13s+ 12

s
(9.13)

123



• Order 2

Gf (s) =
11

s2 + 10s+ 9
(9.14)

Gg(s) =
8s+ 7

s2 + 6s+ 5
(9.15)

Gh(s) =
4s2 + 3s+ 2

s2 + s− 1
(9.16)

Gi(s) =
s2 − 2s+ 1

s2
(9.17)

Gj(s) =
s2 − 3s− 4

s2 − 5s− 6
(9.18)

They have all been normalised so that the oe�ient of the highest order mono-

mial in the denominator is 1 (i.e. an = 1). Transfer funtions Gb(s), Gd(s),
Gf (s), Gg(s), and Gi(s) are stritly proper; the other ones are not.

Gj(s) is of order 2 but an be simpli�ed and beome of order 1:

Gj(s) =
s2 − 3s− 4

s2 − 5s− 6
=

(s− 4)(s+ 1)

(s− 6)(s+ 1)
=

s− 4

s− 6
(9.19)

Transfer funtions are often put in the following form, that expliitly shows

the zeros of the transfer funtion (i.e. the zeros of the polynomial in the nu-Zeros

merator) and the poles of the transfer funtion (i.e. the zeros of the polynomialPoles

in the denominator):

Y (s)

U(s)
=

bm(s− z1)(s− z2)(s− z3) . . .

an(s− p1)(s− p2)(s− p3) . . .
=

bm

m∏

k=1

(s− zk)

an

n∑

k=0

(s− pk)

(9.20)

Here the zeros are zk, k = 1, 2, . . .m and the poles are pk, k = 1, 2, . . .m. Be-

ause both inputs and outputs are real, transfer funtion oe�ients are real,

and onsequently the poles and zeros are either real or pairs of omplex onju-

gates. (Remember Remark 2.6.) So in (9.20) it is usual to multiply suh pairs,

presenting a seond order term instead of two omplex terms.

Example 9.4. The seond order transfer funtions in Example 9.3 an be

rewritten as

Gf (s) =
11

(s+ 9)(s+ 1)
(9.21)

Gg(s) =
8s+ 7

(s+ 5)(s+ 1)
(9.22)

Gh(s) =
4
(

s+ 3+
√
23j

8

)(

s+ 3−
√
23j

8

)

(

s+ 1+
√
5

2

)(

s+ 1−
√
5

2

) =
4s2 + 3s+ 2

(

s+ 1+
√
5

2

)(

s+ 1−
√
5

2

)
(9.23)

Gi(s) =
(s− 1)2

s2
(9.24)

124



For Gj(s), see (9.19). Notie that, in the ase of Gh(s), only the seond expres-

sion is usual; the �rst one, expliitly showing the two omplex onjugate zeros,

is not.

Remark 9.5. From De�nition 9.2 results that the order of a proper transfer

funtion is the number of its poles.

The following Matlab funtions use transfer funtions in this form:

• zpk reates a transfer funtion from its zeros, poles, and the

bm
an

ratio in Transfer funtion from ze-

ros, poles, gain(9.20), here alled gain k, and also onverts a transfer funtion reated

with tf into this form;

• pole �nds the poles of a transfer funtion;

• tzero �nds the zeros of a transfer funtion.

Example 9.5. Transfer funtion (9.15) or (9.22)

• has one zero, 8s+ 7 = 0 ⇔ s = − 7
8 = −0.875,

• has two poles, (s+ 5)(s+ 1) = 0 ⇔ s = −5 ∨ s = −1,

• veri�es k = bm
an

= 8
1 = 1.

It an be reated, onverted to a ratio of two polynomials as in (9.3), and Matlab's ommand zpk

onverted bak to the (9.20) form as follows:

>> G_g = zpk(-7/8, [-5 -1℄, 8)

G_g =

8 (s+0.875)

-----------

(s+5) (s+1)

Continuous-time zero/pole/gain model.

>> G_g = tf(G_g)

G_g =

8 s + 7

-------------

s^2 + 6 s + 5

Continuous-time transfer funtion.

>> G_g = zpk(G_g)

G_g =

8 (s+0.875)

-----------

125



(s+5) (s+1)

Continuous-time zero/pole/gain model.

Its poles and zeros an be found as follows:Matlab's ommands

pole and tzero

>> tzero(G_g)

ans =

-0.8750

>> pole(G_g)

ans =

-5

-1

It does not matter whether a transfer funtion was reated with tf or with

zpk (or with any other funtion to reate transfer funtions that we did not

study yet): pole and tzero work just the same.

Another way of �nding the poles and the zeros is to aess the numerator and

the denominator, and then using roots to �nd the roots of these polynomials.

The transfer funtion must be in the tf form this time, the only one that has

the num and den �elds:

>> G_g = tf(G_g);

>> G_g.num{1}

ans =

0 8 7

>> roots(ans)

ans =

-0.8750

>> G_g.den{1}

ans =

1 6 5

>> roots(ans)

ans =

-5

-1

Notie that the {1} is neessary sine Matlab presumes that the transfer

funtion is MIMO and thus has many transfer funtions relating the many inputs

with the many outputs. The ell array index aesses the �rst transfer funtion,

whih, as the system is SISO, is the only one.

A very important property of transfer funtions for the rest of this hapter

has already been mention in Setion 8.2 and illustrated in Example 8.2: if two

systems G1(s) =
y1(s)
u1(s)

and G2(s) =
y2(s)
u2(s)

are interonneted so that the outputMultiplying transfer fun-

tions

of one is the input of the other, y1(s) = u1(s), then the resulting transfer

funtion is

y2(s)

u1(s)
=

y2(s)

u2(s)

y1(s)

u1(s)
= G1(s)G2(s) (9.25)

Remark 9.6. Remember that the multipliation of two Laplae transformsMultipliation of L is on-

volution in t does not orrespond to the multipliation of the original funtions, but rather

126



Figure 9.1: Generi blok.

Figure 9.2: Linear blok.

to their onvolution, as we have shown in (2.78). Operation onvolution is

de�ned in (2.76). (This is sometimes a soure of onfusion, beause the sum of

two Laplae transforms is the sum of the original funtions, as L is linear.)

9.2 Blok diagrams

Blok diagrams are graphial representations of the relations between vari-

ables and funtions. In our ase, funtions will be systems, and variables will

be signals (whih are themselves, as you remember, funtions of time, or spae).

Figure 9.1 shows a generi system (represented by a blok) relating two signals

(represented by lines with arrows).

The pratial thing to do for LTI systems is to represent them using their

transfer funtions, and onsequently to represent signals by their Laplae trans-

forms. The blok in Figure 9.2 means that Y (s) = G(s)U(s). This is yet another
advantage of using the Laplae transform: the (Laplae transform of the) out-

put is the produt of the (transfer funtion of the) system and the (Laplae

transform of the) input.

Example 9.6. The mehatroni system in Example 8.2 had four transfer fun-

tions, as follows:

G1(s) =
I(s)

Vi(s)
=

n2

n1

R+ Ls
(9.26)

G2(s) =
F2(s)

I(s)
= α (9.27)

G3(s) =
F1(s)

F2(s)
=

b

a
(9.28)

G4(s) =
X1(s)

F1(s)
=

1

m1s2 +K
(9.29)

127



Figure 9.3: Blok diagram of Example 9.6, orresponding to the mehatroni

system in Figure 8.2 from Example 8.2.

Figure 9.4: Blok diagram with two bloks in parallel.

The orresponding blok diagram is shown in Figure 9.3. In fat,

I(s) = G1(s)Vi(s) (9.30)

F2(s) = G2(s)I(s) (9.31)

F1(s) = G3(s)F2(s) (9.32)

X1(s) = G4(s)F1(s) (9.33)

The Example above shows that several interonneted systems orrespond

to a sequene of bloks. By similarity with eletrial iruits, bloks in suh a

sequene are said to be in series or in asade. This is beause of the propertyBloks in series

Bloks in asade of transfer funtions illustrated in (9.25). Clearly, two bloks A and B in series

are equivalent to one blok AB.

Adding signals is represented as shown in Figure 9.4, where

y = y1 + y2 = Au +Bu = (A+B)u (9.34)

By similarity with eletrial iruits, bloks A and B are said to be in parallel.Bloks in parallel

Clearly, they are equivalent to one blok A+B. Signal subtration is indiated

similarly.

The blok on�gurations in Figure 9.5, wherein the input of a blok dependsFeedbak

on its output, is alled feedbak loop or just feedbak: feedbak, beause

the output is fed bak to the blok it originates from; and loop, beause of theLoop

on�guration of the diagram. In that Figure, A is alled diret branh and

Diret branh

B feedbak branh. The two blok diagrams only di�er beause of the sign

Feedbak branh

a�eting signal d(s):

• when b(s) = a(s)− d(s), there is negative feedbak;Negative feedbak

• when b(s) = a(s) + d(s), there is positive feedbak.Positive feedbak

128



Figure 9.5: Blok diagrams with feedbak loops. Left: negative feedbak. Right:

positive feedbak.

Negative feedbak is far more ommon; when feedbak is mentioned without

speifying whether it is positive or negative, you an safely presume it is nega-

tive. Notie that, for both:

• the input of the loop is a(s); Input of the feedbak loop

• the output of the loop is c(s); Output of the feedbak loop

• the input of the diret branh is b(s) = a(s)∓ d(s);

• the output of the diret branh is a(s);

• the input of the feedbak branh is c(s);

• the output of the feedbak branh is d(s).

Consequently, for negative feedbak,

c = Ab = A(a− d) = A(a−Bc) = Aa−ABc

⇒ c+ ABc = Aa ⇒ c = a
A

1 +AB
(9.35)

and, for positive feedbak,

c = Ab = A(a+ d) = A(a+Bc) = Aa+ABc

⇒ c− ABc = Aa ⇒ c = a
A

1−AB
(9.36)

Example 9.7. The entrifugal governor (see Figure 9.6) is a ontrol system Centrifugal governor

whih had widespread use to ontrol the pressure in boilers. It rotates beause

of the pressure of the steam. The faster it rotates, the more the two spheres

go up, thereby opening a valve relieving steam pressure. Consequently the

regulator spins slower, the balls go down, and this loses the valve, so pressure

is no longer relieved and goes up again. This is negative feedbak: an inrease

of any variable has as onsequene the derease of another variable that aused

the original inrease, and vie-versa.

129



Figure 9.6: Centrifugal governor of a boiler in the former Barbadinhos water

pumping station (urrently the Water Museum), Lisbon.

Example 9.8. Audio feedbak (or �howl�) is an example of positive feedbak.

Surely you must have heard it often, whenever there is a sound system amplify-

ing the sound deteted by a mirophone whih is too lose to the loudspeakers,

so that even bakground noise is ampli�ed to the point of being reeived again

by the mirophone and ampli�ed further � see Figure 9.7. The amplitude of

the resulting sound does not beome in�nite beause at some point the ampli�er

and/or the loudspeakers saturate, but the �howl� an damage the equipment or,

more importantly, the listeners' auditory systems.

Example 9.9. Biologial proesses provide numerous examples of both positive

and negative feedbak. We will go bak to this in Chapter 14.

The best way to simplify blok diagrams is to write the orresponding equa-

tions and do so analytially.

Figure 9.7: How audio feedbak ours.

130



Example 9.10. In the blok diagram of Figure 9.8 we make

G1(s) = 2 (9.37)

G2(s) =
s+ 10

s2 + 0.5s+ 5
(9.38)

G3(s) =
1

s+ 1
(9.39)

G4(s) =
20(s− 0.5)

(s− 1)(s− 3)
(9.40)

G5(s) =
1

s
(9.41)

(9.42)

(The blok for G1(s) is triangular beause Simulink, whih we will mention

below, uses triangles for onstants, but this onvention is unusual; when drawing

bloks by hand, they are all usually retangles.) Then

e = G2c = G2G1b = G2G1(a− d) = G1G2(a−G3e) ⇒ (1 +G1G2G3)e = G1G2a ⇒ e = a
G1G2

1 +G1G2G3

(9.43)

h = G5g = G5(e + f) = G5

(

a
G1G2

1 +G1G2G3
+G4a

)

= a

(
G1G2G5

1 +G1G2G3
+G4G5

)

(9.44)

Finally, the whole blok diagram orresponds to transfer funtion

h(s)

a(s)
=

2 s+10
s2+0.5s+5

1
s

1 + 2 s+10
s2+0.5s+5

1
s+1

+
20(s− 0.5)

s(s− 1)(s− 3)
(9.45)

It is usually a good idea to put the result in one of the forms (9.3) or (9.20).

Sine alulations are rather ompliated, we an use Matlab:

>> s = tf('s');

>> (2/s*(s+10)/(s^2+0.5*s+5))/(1+2/(s+1)*(s+10)/(s^2+0.5*s+5))+...

20*(s-0.5)/((s-1)*(s-3)*s)

ans =

22 s^7 + 45 s^6 + 200 s^5 + 617.5 s^4 + 380.5 s^3 + 1960 s^2 - 950 s

----------------------------------------------------------------------

s^9 - 2 s^8 + 8.25 s^7 - 10.75 s^6 - 55.25 s^5 + 33.75 s^4 - 350 s^3

+ 375 s^2

Continuous-time transfer funtion.

131



Figure 9.8: Blok diagram of Example 9.10.

>> zpk(ans)

ans =

22 s (s+2.931) (s-0.4226) (s^2 + 0.5s + 5) (s^2 - 0.9629s + 6.972)

------------------------------------------------------------------

s^2 (s-3) (s+2.5) (s-1) (s^2 + 0.5s + 5) (s^2 - s + 10)

Continuous-time zero/pole/gain model.

As you an see from the last result, it is possible to eliminate s and s2+0.5∗s+5

from both the numerator and the denominator. So

h(s)
a(s) is of sixth order.

Matlab has ommands to ombine transfer funtions:

• operators + and * add and multiply transfer funtions (remember that two

bloks in series orrespond to the produt of their transfer funtions);

• feedbak reeives the diret and the feedbak branhes and gives the

transfer funtion of the negative feedbak loop.

Example 9.11. We an verify our alulations of Example 9.10 as follows:Matlab's ommand

feedbak

>> G1 = 2;

>> G2 = (s+10)/(s^2+0.5*s+5);

>> G3 = 1/(s+1);

>> G4 = 20*(s-0.5)/((s-1)*(s-3));

>> G5 = 1/s;

>> loop_from_a_to_e = feedbak(G1*G2, G3)

loop_from_a_to_e =

2 s^2 + 22 s + 20

--------------------------

s^3 + 1.5 s^2 + 7.5 s + 25

Continuous-time transfer funtion.

132



Figure 9.9: Commonly used bloks of Simulink.

>> from_a_to_g = loop_from_a_to_e + G4

from_a_to_g =

22 s^4 + 34 s^3 + 73 s^2 + 411 s - 190

-----------------------------------------------

s^5 - 2.5 s^4 + 4.5 s^3 - 0.5 s^2 - 77.5 s + 75

Continuous-time transfer funtion.

>> from_a_to_h = from_a_to_g * G5

from_a_to_h =

22 s^4 + 34 s^3 + 73 s^2 + 411 s - 190

---------------------------------------------------

s^6 - 2.5 s^5 + 4.5 s^4 - 0.5 s^3 - 77.5 s^2 + 75 s

Continuous-time transfer funtion.

>> zpk(from_a_to_h)

ans =

22 (s+2.931) (s-0.4226) (s^2 - 0.9629s + 6.972)

-----------------------------------------------

s (s+2.5) (s-3) (s-1) (s^2 - s + 10)

Continuous-time zero/pole/gain model.

This is the same transfer funtion we found above, with the poles and zeros

ommon to the numerator and denominator eliminated.

Matlab's most powerful tool for working with blok diagrams is Simulink. Simulink

All the blok diagrams above have been reated with Simulink, and then

ropped so as not to show what Simulink alls soure and sink, whih are

not part of what is shown in standard blok diagrams (you must not inlude

them when drawing blok diagrams by hand). To use Simulink, aess its

library in Matlab by liking the orresponding button or typing simulink.

The library looks like very di�erent in di�erent versions of Matlab, but its

organisation is similar: the most ommonly used bloks are in one of the several

subsets of the Simulink library; then there are libraries orresponding to the

133



toolboxes you have installed. Figure 9.9 shows the bloks you will likely need:Commonly used Simulink

bloks

• The Transfer Fn blok, from the Continuous subset of the Simulink

library, reates a transfer funtion like funtion tf.

• The Zero-Pole blok, from the Continuous subset of the Simulink li-

brary, reates a transfer funtion like funtion zpk.

• The LTI System blok, from the Control System Toolbox library, re-

ates a transfer funtion using funtion tf or funtion zpk. It is also pos-

sible just to put there a variable with a transfer funtion, reated in the

ommand line.

• The Sum blok (name hidden by default), from the Math operations sub-

set of the Simulink library, is a sum point.

• The Gain blok, from the Math operations subset of the Simulink li-

brary, multiplies a signal by a onstant.

• The From Workspae blok, from the Soures subset of the Simulink

library, provides a signal to run a simulation. The signal is either a stru-

ture (see the blok's dialogue for details) or a matrix with time instants in

the �rst olumn and the orresponding values of the signal in the seond

olumn (these will be interpolated).

• The Sope blok, from the Sinks subset of the Simulink library, plots

the signal it reeives. It an be on�gured to reord the data to a variable

in the workspae, whih is most pratial to reuse it later.

• The Mux blok (from �multiplexer�, name hidden by default), from the

Signal Routing subset of the Simulink library, joins two (or more) sig-

nals into one. The result is a vetor-valued signal. If two real-values signals

are multiplexed, the result is a vetor-valued signal with dimension 2.

To use a blok, reate an empty Simulink �le and drag it there. Connet bloks

with arrows by liking and dragging from one blok's output to another's input.

Double-lik a blok to see a dialogue where you an �ll in the arguments you

would use in a Matlab ommand written in the ommand line (i.e. after the

>>). Most of the times you an use numbers or variables; you just have to

reate the variables before you reate the model. Right-liking a blok shows a

ontext menu with many options, among whih those of showing or hiding the

blok's name, or rotating it. You an edit a blok's name by liking it, and

add a label to a signal by double-liking it.

To run a simulation, hoose its duration in the box on the top of the window,

or go to Simulation > Model Configuration Parameters. Then lik the

Play button, or use ommand sim with the name of the (previously saved) �le

with the blok diagram model.

Example 9.12. Let us simulate the mehatroni system of Examples 8.2 and 9.6,

given by (9.26)�(9.29). The Simulink �le is as shown in Figure 9.10 and its

running time was set to 3 s; variables have been used and must be de�ned before

running the simulation, but this means that they are easier to hange. Blok

From Workspae has matrix [0 1℄, meaning that at time 0 it will output value

134



Figure 9.10: Simulink �le of Example 9.12.

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

time [s]

x 1 [m
]

Figure 9.11: Output of Example 9.12.

1, and sine no other value is provided this one will be kept. So we are �nding

the response of the system to a Heaviside funtion (2.5), or rather to a tension

of 1 V being applied when the simulation begins. Blok Sope is on�gured to

save data to variable Data. The following ommands reate the variables, run

the simulation, and plot again the results whih you ould also see in the Sope

itself:

>> n2 = 200; n1 = 100; L = 1e-2; R = 100; alpha = 100; b = 0.3; a = 0.1; m1 = 1; K = 100;

>> sim('prob3_fiha3_2011_modif_2')

>> figure, plot(Data.time,Data.signals.values(:,2)), xlabel('time [s℄'), ylabel('x_1 [m℄')

See Figure 9.11. We ould have expeted these osillations with onstant am-

plitude, and you will know why in Chapter 10.

Remark 9.7. Notie that the input signal was spei�ed in time and the out-

put variable was obtained as a funtion of time, but the di�erential equations

were spei�ed as transfer funtions, i.e. not as relations in variable t but in the

Laplae transform variable s. This is the way Simulink works. However, do not

forget that, sine in a blok diagram system dynamis is indiated by transfer

funtions, signals too must be given by their Laplae transforms, as funtions

135



Figure 9.12: Left: open loop ontrol. Right: losed loop ontrol.

of s. It is orret to say that y(s) = G(s)u(s); it makes no sense at all to write

y(t) = G(s)u(t) mixing t and s.

The dialogue Model Configuration Parameters, whih an also be a-

essed through a button, allows speifying many other things, among whih:

• the numerial method used to solve the di�erential equations;

• the maximum and minimum time steps used by the numerial method;

• a tolerane that will not be exeeded by the numerial method's estimate

of the errors inurred.

Notie that some numerial methods use �xed time steps. These may be used

with di�erential equations, but are the only ones that an be used with di�erene

equations (orresponding to digital models).

9.3 Control in open-loop and in losed-loop

There are two generi on�gurations for ontrol systems: open-loop ontrol

and losed-loop ontrol, shown in Figure 9.12. Every ontrol system is a

variation of one of these two on�gurations, or a ombination thereof. Both add,

to the system we want to ontrol, another system alled ontroller, intended

to make the ontrolled system's output y(t) follow some spei�ed referene, or

desired output, r(t) (remember Setion 3.1). In a perfetly ontrolled system,

y(t) = r(t), ∀t. The output of the ontroller is the system's input in the strit

sense (the input must be a manipulated variable).

In open-loop ontrol the ontroller reeives the referene that the systemOpen-loop ontrol

should follow, and deides from this desired output what ontrol ation to take.

This ontrol ation will be the input of the system. It is not heked whether or

not the system's output does follow the referene. So, if there is some unexpeted

deviation from the referene, this does not hange the ontrol ation. Open-loop

ontrol only uses bloks in series.

In open-loop ontrol,

y(s) = G(s)u(s) = G(s)C(s)r(s) (9.46)

and sine we want y(s) = r(s) then we should have C(s) = G−1(s), i.e. the
ontroller should be an inverse model of the system to ontrol. Notie that

if the model of the system is proper then the ontroller is not proper; you will

learn why this brings problems in Chapter 10.

136



Figure 9.13: Closed-loop ontrol with disturbanes and sensor dynamis.

Closed-loop ontrol uses negative feedbak. The referene is ompared withClosed-loop ontrol

the system output. Ideally, the error should be zero. What the ontroller

reeives is this error, so the ontrol ation is based on the error.

The simplest losed-loop ontroller is proportional: C(s) = K ∈ R. With

proportional ontrol, if the error is small, the ontrol ation is small too; if Proportional ontrol

the error is large, the ontrol ation is also large. There are tehniques to hoose

an appropriate value of K, and also to develop more omplex ontrollers, with

poles and zeros, whih you will learn in other ourses.

Atually, no ontrol system is that simple. Figure 9.13 shows a more realisti

situation, inluding the following additions:

• H(s) is the sensor that measures output y. A perfet sensor measures Sensor dynamis

the output exatly: ŷ(t) = y(t), ∀t; and hene H(s) = 1. No sensor is

perfet, but it is often possible to assume H(s) = 1 even so (in whih ase

the blok does not need to be there). If this is not the ase, H(s) must be
expliitly taken into aount.

• du(t) is a disturbane that a�ets the ontrol ation. This means that Control ation disturbane

the ontrol ation is not preisely reeived by the ontrolled system. For

instane, if the ontrol ation is a fore, this means that there are other

fores ating upon the system. Or, if the ontrol ation is a urrent, there

are unintended �utuations of the value determined by the ontroller.

• dy(t) is a disturbane that a�ets the system output. This means that the System output disturbane

output is a�eted by something else other than the system. For instane,

if the output is a �ow, there is some other soure of �uid, or some bleeding

of �uid somewhere, that must be added or subtrated. Or, if the output

is a position, there may be vibrations that have to be superimposed.

• dŷ(t) is a disturbane that a�ets the sensor's measurement of the system Output measurement dis-

turbaneoutput. Just like u(t) an su�er a disturbane, so an ŷ(t).

Remark 9.8. Disturbanes in Figure 9.13 follow what is alled an additive

model, sine the disturbane is added to the signal it disturbs. Other models Additive disturbanes

use multipliative disturbanes, that are multiplied rather than summed. Here Multipliative disturbanes

we will stik to additive disturbanes, whih result in linear models.

137



Figure 9.14: The same as Figure 9.13, but with MIMO systems.

Figure 9.15: The same as Figure 9.13, but using transfer funtions (9.48)�(9.51).

138



Remark 9.9. We saw in Chapter 3 that MIMO systems may have some inputs

in the general sense that are disturbanes and others that are manipulated

variables. Figure 9.14 represents disturbanes using MISO systems. The blok

diagram in Figure 9.13 re�ets the same situation using only SISO systems. The

prie to pay for using SISO systems is less freedom in establishing mathematial

relations between disturbanes and outputs.

The output of the blok diagram in Figure 9.13 is

ỹ = dy + y = dy +Gũ = dy +G(du + u) = dy +Gdu +GCe

= dy +Gdu +GC(r − ˆ̃y) = dy +Gdu +GCr −GC(dŷ + ŷ)

= dy +Gdu +GCr −GCdŷ −GCHỹ

⇒ (1 +GCH)ỹ = dy +Gdu +GCr −GCdŷ (9.47)

⇒ ỹ =
1

1 +GCH
dy +

G

1 +GCH
du +

GC

1 +GCH
r +

−GC

1 +GCH
dŷ

Beause of the linearity of the relations involved, (9.47) gives the same result as

if four transfer funtions were involved as seen in Figure 9.15:

G1 =
ỹ

r
=

GC

1 +GCH
(9.48)

G2 =
ỹ

du
=

G

1 +GCH
(9.49)

G3 =
ỹ

dy
=

1

1 +GCH
(9.50)

G4 =
ỹ

dŷ
=

−GC

1 +GCH
(9.51)

Notie that eah of the four transfer funtions above an be obtained assuming

that all inputs but one of them are zero. If the system were not linear, that

would not be the ase.

Glossary

D'altra parte gli aveva detto la sera prima he lui possedeva un'dono:

he gli bastava udire due he parlavano in una lingua qualsiasi, e

dopo un poo era apae di parlare ome loro. Dono singolare, he

Nieta redeva fosse stato onesso solo agli apostoli.

Umberto Eo (1932 � †2016), Baudolino, 2

blok diagram diagrama de bloos

bloks in asade bloos em asata

bloks in parallel bloos em paralelo

losed-loop anel fehado, malha fehada

diret branh ramo direto

disturbane perturbação

feedbak retroação

feedbak branh ramo de retroação

139



feedbak loop anel de retroação, malha de retroação

inverse model modelo inverso

open-loop anel aberto, malha aberta

order ordem

proper transfer funtion função de transferênia própria

proportional ontrol ontrolo proporional

stritly proper transfer funtion função de transferênia estritamente própria

Exerises

1. For eah of the transfer funtions below, answer the following questions:

• What are its poles?

• What are its zeros?

• What is its order?

• Is it a proper transfer funtion?

• Is it a stritly proper transfer funtion?

• What is the di�erential equation it orresponds to?

(a)

s
s2 + 12s+ 20

(b)

s+ 1
s− 5

()

s2 + 2s+ 10
s3 − 5s2 + 15.25s

(d)

10
(s+ 1)2(s2 + 5s+ 6)

(e)

s2 + 2
s2(s+ 3)(s+ 50)

(f)

(s4 + 6s3 + 8.75s2)
(s2 + 4s+ 4)2

2. Find the following transfer funtions for the blok diagram in Figure 9.16:

(a)

y(s)
d(s)

(b)

y(s)
r(s)

()

y(s)
m(s)

(d)

y(s)
n(s)

(e)

u(s)
d(s)

(f)

u(s)
r(s)

(g)

u(s)
m(s)

140



Figure 9.16: Blok diagram of Exerise 2.

(h)

u(s)
n(s)

(i)

e(s)
d(s)

(j)

e(s)
r(s)

(k)

e(s)
m(s)

(l)

e(s)
n(s)

3. Figure 9.17 shows a variation of losed-loop ontrol alled internal model

ontrol (IMC). It has this name beause it requires knowing a model of the

system to ontrol, as well as an inverse model of the system to ontrol.In

that blok diagram:

• G(s) is the plant to ontrol,

• G∗(s) is the model of the plant to ontrol,

• G−1(s) is the inverse model of the plant to ontrol.

(a) Show that, if the model is perfet, i.e. if

G∗(s) = G(s), then the error is given by E(s) = R(s)−D(s).

(b) Show that, if, additionally, the inverse model is perfet, i.e.G−1(s)G(s) =
1, then the output is Y (s) = R(s).

() Show that, whether the models are perfet or not, the blok diagram

of IMC in Figure 9.17 is equivalent to the blok diagram of losed-

loop ontrol in Figure 9.12, if C(s) = G−1(s)
1−G−1(s)G∗(s) .

4. Figure 9.18 shows a variation of losed-loop ontrol alled asade ontrol

(or master�slave ontrol, though that designation is out of favour nowa-

days). In that blok diagram, the plant to ontrol is G(s) = G1(s)G2(s),
and it possible to measure both Y1(s) and Y2(s). Eah of the two parts of

the system to ontrol is ontrolled separately.

141



Figure 9.17: Internal model ontrol (IMC).

Figure 9.18: Casade (or master�slave) ontrol.

(a) Find transfer funtion

Y1(s)
U2(s)

.

(b) Use that result to �nd transfer funtion

Y2(s)
R(s)

.

5. Redraw the blok diagram of Figure 9.10 from Example 9.12 as follows:

• use the values of the variables given in Example 9.12,

• let the input Vi(s) be a manipulated variable,

• let there be some referene r(t) for x1(t) to follow,

• add proportional ontrol K.

Then �nd transfer funtion

X1(s)
R(s) as a funtion of K.

6. For eah of the two blok diagrams in Figure 9.19:

(a) Find transfer funtion

Y (s)
R(s) .

(b) Let A(s) = 1
s
, B(s) = 10

s+1 , C(s) = 2, D(s) = s+0.1
s+2 . Find the value

of

Y (s)
R(s) .

142



Figure 9.19: Blok diagrams of Exerise 6.

143



144


	The name of the game
	The Laplace transform
	Definition
	Finding Laplace transforms
	Finding inverse Laplace transforms
	Important properties: derivatives and integrals
	What do we need this for?
	More important properties: initial and final values, convolution
	The Fourier transform
	Glossary
	Exercises

	Examples of mechatronic systems and signals
	Systems
	Signals
	Models
	Glossary
	Exercises

	Modelling mechanical systems
	Modelling the translation movement
	Simulating transfer functions in Matlab
	Modelling the rotational movement
	Energy, effort and flow
	Other components
	Glossary
	Exercises

	Modelling electrical systems
	Passive components
	Energy, effort and flow
	The operational amplifier (OpAmp), an active component
	Other components
	Glossary
	Exercises

	Modelling fluidic systems
	Energy, effort and flow
	Basic components of a fluidic system
	Other components
	Glossary
	Exercises

	Modelling thermal systems
	Energy, effort and flow
	Basic components of a thermal system
	Glossary
	Exercises

	Modelling interconnected and non-linear systems
	Energy, effort and flow
	System interconnection
	Dealing with non-linearities
	Glossary
	Exercises

	Transfer functions and block diagrams
	More on transfer functions
	Block diagrams
	Control in open-loop and in closed-loop
	Glossary
	Exercises

	Time and frequency responses
	Time responses: steps and impulses as inputs
	Steady-state response and transient response
	Time responses: periodic inputs
	Frequency responses
	The Bode diagram
	Time and frequency responses of a first-order system without zeros
	Time and frequency responses of a second-order system without zeros
	Responses of systems with more zeros and poles: effects of poles and zeros
	The Routh-Hurwitz criterion
	Responses of systems with more zeros and poles: dominant poles and zeros
	Glossary
	Exercises

	Measuring chains and control loops
	Glossary
	Exercises

	Sensors
	Actuators
	What next?



