
Chapter 8

Modelling inter
onne
ted and

non-linear systems

This 
hapter presents an overview of the modelling pro
ess.

8.1 Energy, e�ort and �ow

Table 8.1 presents the impedan
es of all the �ow a

umulators, e�ort a

umu- Impedan
es

lators, and energy dissipators, summing up Tables 4.1, 5.1, 6.1, and 7.1, and

showing 
learly the existing parallelism between systems of di�erent types.

This is the pla
e to noti
e that e�ort variables are measured in relation to

an arbitrary value that serves as zero:

• In Table 8.1 this is expli
it for thermal systems, sin
e temperature is

denoted as ∆T , as what matters is the temperature di�eren
e.

• In the 
ase of ele
tri
al systems, what matters is always the ele
tri
al

tension at the extremities of the 
omponent.

• In the 
ase of pipe �ow, resistan
e and indu
tan
e depend on the pressure

di�eren
e at the extremities. Reservoirs with a free surfa
e also depend

on a pressure di�eren
e, between the pressure of the liquid at the bottom

and the atmospheri
 pressure.

• In the 
ase of me
hani
al systems, the energy dissipated by a damper

depends on the relative velo
ities of its extremities, and the energy a

u-

mulated by a spring depends on the relative position of its extremities.

Noti
e that there may be values of these variables that we 
an think of as ab-

solute zeros, su
h as temperature −273.15 ◦C = 0 K, pressure 0 Pa of 
omplete

va
uum, or position and velo
ity measured in an inertial frame of referen
e.

Still, it is often far more pra
ti
al to use other values, su
h as atmospheri
 Dealing with initial 
ondi-

tionspressure, room temperature, or resting position, as zero.

Example 8.1. A 300 kg dirigible balloon �ies at 
onstant altitude z = 200 m,

be
ause its impulsion 
an
els its weight. It 
an move verti
ally thanks to two

ele
tri
al propulsors, ea
h of whi
h provides a for
e given by Fp(t) = γU(t),
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Type of system Me
hani
al, translation Me
hani
al, rotation Ele
tri
al Fluidi
 Thermal

e�ort e velo
ity ẋ angular velo
ity ω̇ voltage U pressure P temperature T

�ow f for
e F torque τ 
urrent I volume �ow rate Q heat �ow rate q

e�ort a

umulator spring angular spring indu
tor �uidi
 indu
tan
e �

impedan
e

sX(s)
F (s) = s

K

sΩ(s)
T (s) = s

κ

U(s)
I(s) = Ls P (s)

Q(s) = Ls �

�ow a

umulator mass moment of inertia 
apa
itor reservoir heat a

umulator

impedan
e

sX(s)
F (s) = 1

Ms

sΩ(s)
T (s) = 1

Js

U(s)
I(s) = 1

Cs

P (s)
Q(s) =

1
Cs

∆T (s)
Q(s) = 1

mCps

dissipator damper rotary damper resistor �uidi
 resistan
e thermal resistan
e

impedan
e

sX(s)
F (s) = 1

b

sΩ(s)
T (s) = 1

b

U(s)
I(s) = R P (s)

Q(s) = R ∆T (s)
Q(s) = R

1
0
8



where U(t) is the tension applied (
ontrol input) and the gain is γ = 15 N/V

(the for
e is upwards when U > 0). When the balloon moves, there is a vis
ous

drag for
e with 
oe�
ient c = 30 Ns/m. How does the altitude 
hange with

time when a 20 V tension is applied during 10 s?

A balan
e of for
es shows that

300z̈(t)
︸ ︷︷ ︸

mass×a

eleration

= 2× 15U(t)
︸ ︷︷ ︸

propulsors

−30ż(t)
︸ ︷︷ ︸

drag for
e

(8.1)

We know that initial 
onditions are z(0) = 200 and ż(0) = 0, so we 
ould be

tempted to apply the Lapla
e transform as

300
(
Z(s)s2 − 200s

)
= 30U(s)− 30 (Z(s)s− 200) (8.2)

Rearranging terms,

(300s2 + 30s)Z(s) = 30U(s) + 6× 104s+ 6× 103 (8.3)

⇔ Z(s) =
1

(10s+ 1)s
U(s) +

2× 103s

(10s+ 1)s
+

2× 102

(10s+ 1)s
=

1

(10s+ 1)s
U(s) +

2× 102

s

Noti
e that it is impossible to �nd a transfer fun
tion

Z(s)
U(s) relating the (Lapla
e No transfer fun
tion if ini-

tial 
onditions are not zero

transforms of) the input and the output. To obtain a transfer fun
tion, make

z∗(t) = z(t)− (0), and then

300Z∗(s) = 30U(s)− 30Z∗(s)s ⇔ Z∗(s)

U(s)
=

1

(10s+ 1)s
(8.4)

The result will of 
ourse be the same, but this allows us to use many results

established for transfer fun
tions, su
h as those in Chapters 9 and 10. It also

allows us to use Matlab to �nd the answer as follows:

>> G = tf(1, [10 1 0℄);

>> Ts = 0.001; t = 0 : Ts : 50;

>> U = zeros(size(t)); U(1:10/Ts) = 20*ones(1, 10/Ts);

>> z = lsim(G, U, t); z = z + 200;

>> figure, plot(t,Z)

>> xlabel('t [s℄'), ylabel('z [m℄')

Noti
e how we had to add 200 to the result (or else we would have to bear in

mind that the plot would show os
illations around 200 m). See Figure 8.1.

Remark 8.1. Remember that we already did something similar in Example 7.1.

8.2 System inter
onne
tion

Transfer fun
tions are of great aid when modelling several inter
onne
ted sys-

tems, of the same or of di�erent types.

Example 8.2. Consider the system in Figure 8.2. The for
e exerted by the

indu
tan
e in the handle that undergoes displa
ement x2 is given by F2(t) =

αi(t), where i(t) is the 
urrent in the indu
tan
e. Find

X1(s)
Vi(s)

.
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Figure 8.1: Results of Example 8.1.

We 
an of 
ourse write all the equations, and obtain the desired result with

su

essive repla
ements. Transfer fun
tions allow us to model ea
h system sep-

arately, making su
h repla
ements easier.

As to the ele
tri
al system, remembering (5.45),

R+ Ls =
n2

n1
Vi(s)

I(s)
⇔ I(s)

Vi(s)
=

n2

n1

R + Ls
(8.5)

As to the lever, and letting F1 be the for
e exerted on mass m1,

F1(t)a = F2(t)b ⇔
F1(s)

F2(s)
=

b

a
(8.6)

As to the mass,

F1(t)−Kx1(t) = m1ẍ1(t) ⇔
X1(s)

F1(s)
=

1

m1s2 +K
(8.7)

Finally,

X1(s)

Vi(s)
=

X1(s)

F1(s)

F1(s)

F2(s)

F2(s)

I(s)

I(s)

Vi(s)
=

b
a
αn2

n1

(m1s2 +K)(R+ Ls)
(8.8)

This way, we are also able to study ea
h transfer fun
tion separately, analysing

its in�uen
e in the �nal result.

Bond graphs are another tool that 
an be used to assist the modellingBond graphs

of inter
onne
ted systems. They 
onsist in a graphi
al representation of what

happens with energy in a system, based upon the 
on
epts of e�ort and �ux.

These are written above and below arrows (of whi
h, by 
onvention, only half the

tip is drawn). Figure 8.3 shows two examples of bond graphs in whi
h several

elements have the same �ux and di�erent e�orts; the 
orresponding jun
tion
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Figure 8.2: System of Example 8.2.

of the several e�orts in one system is by 
onvention denoted by number 1.
Figure 8.4 shows two examples of bond graphs in whi
h several elements have

the same e�ort and di�erent �ows; the 
orresponding jun
tion of the several

�ows in one system is by 
onvention denoted by number 0. Also noti
e how

sour
es of energy are denoted by SE. We will not study bond graphs more


ompli
ated than these, nor further explore the ability of this graphi
al tool to

assist in the modelling.

8.3 Dealing with non-linearities

Non-linearities 
an be 
lassi�ed as hard or soft, as they are respe
tively more

or less severe. Though no uniform de�nition is universally a

epted, we will

say that a soft non-linearity is one that is di�erentiable, while a hard non- Soft non-linearity

linearity is not. Figure 8.5 presents two examples.

Hard non-linearity

Non-linearities are very 
ommon. They may be part of the design of a

system, even of a 
ontrol system. In other 
ourses you will learn how to deal

with hard non-linearities in 
ontrol. What is important here is to noti
e that

soft non-linearities 
an be approximated by a �rst order approximation around

the operating point. Estimating how large the approximation error may be is

important; we will do that in Chapters 11�13.

Example 8.3. In Figure 8.6, mass m = 10 kg rests on a non-linear spring and

is pulled by for
e F applied simultaneously on a linear spring with k = 103 N/m
and on a linear damper with b = 500 Ns/m. The non-linear for
e of the spring

is given by Fk = 5000 − 500
∆y+0.1 (SI), where the ∆y is the variation of length

around the un
ompressed value. We want a linear model for this system around

nominal 
onditions of rest when F = 0.
Figure 8.7 shows the non-linear for
e. When F = 0, the non-linear spring is


ompressed by the weight of m, whi
h is −9.8 × 10 N (noti
e the minus sign,

sin
e the weight is downwards and the positive sign of y 
orresponds to an

upwards dire
tion), 
orresponding to

−98 = 5000− 500

∆y + 0.1
⇔ ∆y = −1.9× 10−3 m (8.9)
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Figure 8.3: Two bond graphs of systems where elements have the same �ux and

there is an e�ort jun
tion. Top: ele
tri
al 
ir
uit. Noti
e that V1 = (V1 −V2) +
(V2 − V3) + V3. Bottom: �uidi
 system. Sin
e the pipe has both resistan
e and

indu
tan
e, the pressure 
hange from the pump delivering a 
onstant pressure

P to the bottom of the reservoir where the hydrauli
 head is h and the pressure

is ρgh is split into two, as if the �uid would �rst go through an indu
tan
e

without resistan
e and then through a resistan
e without indu
tan
e, so that

P = (P − P1) + (P1 − ρgh) + ρgh.
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Figure 8.4: Two bond graphs of systems where elements have the same e�ort

and there is a �ux jun
tion. Top: ele
tri
al 
ir
uit. Noti
e that I = I1+ I2+ I3.
Bottom: me
hani
al system. Noti
e that F − Kx − Bẋ = Mẍ ⇔ F = Kx +
Bẋ+Mẍ.
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Figure 8.5: Left: hard non-linearities (dead zone and saturation; in pra
ti
e

limits need not be symmetri
 for positive and negative values, though this is

assumption is frequent). Right: soft non-linearity and one of its linear approxi-

mations.
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Figure 8.6: System of Example 8.3.
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Figure 8.7: Non-linear for
e of Example 8.3.
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The linearised law is

Fk ≈ dFk

d(∆y)

∣
∣
∣
∣
∆y=−1.9×10−3 m

y =
500

(∆y + 0.1)2

∣
∣
∣
∣
∆y=−1.9×10−3 m

y = 5.2× 104y (SI)

(8.10)

where y = ∆y + 1.9 × 10−3 m, or, if you prefer, the variation of length around

∆y = −1.9× 10−3 m. Furthermore, the linear 
omponents are assumed to have

no mass, and hen
e transmit for
e F to mass m. Thus

mÿ = F − 5.2× 104 (SI) (8.11)

It should be stressed that linear model (8.11) is only an approximation.

Glossary

Desejoso ainda o Fu
arãdono, 
omo mais douto �q os outros, de leuar

a sua auante 
õ preg�utas �q embaraçass�e o padre, lhe veyo arguindo

de nouo �q por�q razão punha nomes torpes ao Criador de todas as


ousas, & aos Sãtos �q no 
eo assistião em louuor seu, infamãdoo de

m�etiroso, pois elle, 
omo todos 
riaõ, era Deos de toda a verdade ?

& para �q se entenda dõde na
eo a este dizer isto, se ha de saber �q

na lingoa do Iapaõ se 
hama a m�etira diusa, & por�q o padre quãdo

pregaua dezia �q a�qella ley �q elle vinha den�u
iar era a verdadeira ley

de Deos, o qual nome elles pela grossaria da sua lingoa não podião

pron�u
iar taõ 
laro 
omo nos & por dizer�e Deos dezião diùs, daquy

veyo que estes seruos do diabo tomaraõ motiuo de dizer�e aos seus

que o padre era demonio em 
arne �q vinha infamar a Deos põdo-lhe

nome de mentiroso: (. . . ) E porque tambem se saiba a razaõ porque

lhe este bonzo disse que punha nomes torpes aos santos, foy, porque

tinha o padre por 
ustume quando a
abaua de dizer missa rezar 
om

todos h�ua Ladaynha para rogar a N. Senhor pela augm�etação da fé

Catholi
a, & nesta ladainha dezia sempre, 
omo nella se 
ustuma,

San
te Petre ora pro nobis, San
te Paule ora pro nobis, & assi dos

mais Santos. E por�q tambem este vo
ablo santi na lingoa Iapoa

he torpe & infame, daquy veyo arguyr este ao padre �q punha maos

nomes aos Sãtos, (. . . ) & daly por diãte mãdou o padre �q se naõ

dissesse mais san
te, senaõ beate Petre, beate Paule, & assi aos outros

Santos, porque já dantes tinhaõ os bonzos todos perante el Rey feito

peçonha disto.

Fernão Mendes Pinto (1509? � †1583), Peregrinaçam, CCXIII

bond graph grafo de ligação

linearisation, linearization (US) linearização

Exer
ises

1. Draw the bond graph of the system in Figure 8.8.

2. Draw the bond graph of the balloon from Example 8.1.
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Figure 8.8: System of Exer
ise 1.

Figure 8.9: System of Exer
ise 3.

3. The system in Figure 8.9 is fed by a water pump with a 
hara
teristi
 
urve

given by P (t) = 105 − 2× 106Q(t), where P and Q are the pressure (Pa)

and the volumetri
 �ow (m

3
/s) provided.

The pipe has a 0.01 m

2
diameter and a length of 50 m. Its �ow resistan
e

is negle
table; its inertan
e is not.

The tank has a free surfa
e and 1 m

2

ross-se
tion.

The valve is non-linear and veri�es relation

Qv(t) = 0.3× 10−4N(t)
√

Pv(t) (8.12)

where Qv is the �ow through the valve (m

3
/s), N is the opening of the

valve (dimensionless), and Pv is the pressure (Pa) at the entran
e of the

valve, whi
h is also the pressure at the bottom of the tank.

In nominal 
onditions, Pv = 8× 104 Pa and Qv = 0.01 m

3
/s.

(a) Show that the pipe's inertan
e is L = 5× 106 kgm

−4
.

(b) Show that in nominal 
onditions the height of water in the tank is

h̄ = 8.16 m.

(
) Show that the non-linear relation of the valve (8.12) 
an be linearised

as

Qv(t) = Qv(t) + 0.085
(

N(t)−N(t)
)

+ 6.25× 10−7
(

Pv(t)− Pv(t)
)

(8.13)

116



Figure 8.10: System of Exer
ise 4.

(d) Show that the system 
an be modelled by (8.13) together with







Pv(t)− Pv = ρg
(
h− h̄

)

(
Q(t)− Q̄

)
−
(
Qv(t)−Qv

)
= A

d(h−h̄)
dt

(
Pb(t)− Pb

)
−
(
Pv(t)− Pv

)
= L

d(Q(t)−Q̄)
dt

(8.14)

(e) Find transfer fun
tion

∆Pv(s)
∆N(s) , relating variations around nominal


onditions.

4. In Figure 8.10, the lever with inertia I os
illates around the horizontal

position (i.e. θ(t) = 0) and is moved by torque τm. Mass m moves verti-


ally, at distan
e d from the ful
rum of the lever, inside a 
ylinder with

two springs of 
onstant k, �lled with in
ompressible oil. The pressure

di�eren
e ∆p(t) between the two 
hambers of the 
ylinder moves the oil

through �uidi
 resistan
e R. Thanks to oil lubri
ation, fri
tion inside the


ylinder is negle
table.

(a) Write linearised equations for the dynami
s of the system.

(b) Find transfer fun
tion

Θ(s)
Tm(s) .

5. In Figure 8.11, the lever with inertia I is a
tuated by for
e F (t) and

supported on the other side by a spring and a damper. On the lever

there is a 
ar with mass m, moving to sidewards due to gravity, without

fri
tion. When F = 0 and the 
ar is on the ful
rum (i.e. its position is

x = 0), the lever remains in the horizontal position. There is no fri
tion

at the ful
rum.
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Figure 8.11: System of Exer
ise 5.

Figure 8.12: System of Exer
ise 6.

(a) Write linearised equations for the dynami
s of the system.

(b) Find transfer fun
tion

X(s)
F (s) .

6. The lever in Figure 8.12, with negle
table mass, is moved by a torque τ
applied on the ful
rum, in the absen
e of whi
h the lever is horizontal (i.e.

θ = 0). F is the for
e exerted on the ful
rum.

It is known that m1 = 1.5 kg, m2 = 2.0 kg, d1 = 0.6 kg, d2 = 0.4 m, and

b = 20 Ns/m. The spring obeys the non-linear law in Figure 8.12, where δ
is the length variation in mm (with δ > 0 
orresponding to 
ompression),

and Fm is the resulting for
e in N.

(a) Show that, in nominal 
onditions, Fm = 1.63 N.

(b) Show from the plot in Figure 8.13 that the for
e of the spring 
an be

linearised as Fm = 1.63 + 3.26× 103x1.

(
) Write linearised equations for the dynami
s of the system.

(d) Find transfer fun
tion

F (s)
T (s) .
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Figure 8.13: Non-linear law of the spring of Exer
ise 6.

7. In Figure 8.14, the fresh water (ρ = 1000 kg/m

3
) tank in the left is big

enough to keep a 
onstant liquid height h0 = 5 m, while the tank in the

right has a 10 m

2

ross-se
tion and a variable liquid height h1(t).

Flow qc(t) bleeds this tank and does not depend on pressure; �ow q1(t)
passes through a non-linear valve that veri�es

q1(t) = 0.15xv(t)
√

∆p(t) (SI) (8.15)

where ∆p(t) is the pressure di�eren
e on both sides of the valve and xv(t)
is me
hani
ally a
tuated by h1(t) through a rigid lever with a = 0.4 m

and b = 4 m.

In nominal 
onditions, qc(t) = q1(t) = 0.2 m

3
/s and h1(t) = 3 m.

(a) Show that the model of the �ow through the valve (8.15) 
an be

linearised around nominal 
onditions as

q1(t) = 21xv(t) + 5.09× 10−6∆p (SI) (8.16)

(b) Write linearised equations for the dynami
s of the system.

(
) Find transfer fun
tion

∆H1(s)
Qc(s)

.
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Figure 8.14: System of Exer
ise 7.

120


	The name of the game
	The Laplace transform
	Definition
	Finding Laplace transforms
	Finding inverse Laplace transforms
	Important properties: derivatives and integrals
	What do we need this for?
	More important properties: initial and final values, convolution
	The Fourier transform
	Glossary
	Exercises

	Examples of mechatronic systems and signals
	Systems
	Signals
	Models
	Glossary
	Exercises

	Modelling mechanical systems
	Modelling the translation movement
	Simulating transfer functions in Matlab
	Modelling the rotational movement
	Energy, effort and flow
	Other components
	Glossary
	Exercises

	Modelling electrical systems
	Passive components
	Energy, effort and flow
	The operational amplifier (OpAmp), an active component
	Other components
	Glossary
	Exercises

	Modelling fluidic systems
	Energy, effort and flow
	Basic components of a fluidic system
	Other components
	Glossary
	Exercises

	Modelling thermal systems
	Energy, effort and flow
	Basic components of a thermal system
	Glossary
	Exercises

	Modelling interconnected and non-linear systems
	Energy, effort and flow
	System interconnection
	Dealing with non-linearities
	Glossary
	Exercises

	Transfer functions and block diagrams
	More on transfer functions
	Block diagrams
	Control in open-loop and in closed-loop
	Glossary
	Exercises

	Time and frequency responses
	Time responses: steps and impulses as inputs
	Steady-state response and transient response
	Time responses: periodic inputs
	Frequency responses
	The Bode diagram
	Time and frequency responses of a first-order system without zeros
	Time and frequency responses of a second-order system without zeros
	Responses of systems with more zeros and poles: effects of poles and zeros
	The Routh-Hurwitz criterion
	Responses of systems with more zeros and poles: dominant poles and zeros
	Glossary
	Exercises

	Measuring chains and control loops
	Glossary
	Exercises

	Sensors
	Actuators
	What next?



