Chapter 8

Modelling interconnected and
non-linear systems

This chapter presents an overview of the modelling process.

8.1 Energy, effort and flow

Table Rl presents the impedances of all the flow accumulators, effort accumu- Impedances
lators, and energy dissipators, summing up Tables 1] B 6.1, and [Z1] and
showing clearly the existing parallelism between systems of different types.
This is the place to notice that effort variables are measured in relation to
an arbitrary value that serves as zero:

e In Table Rl this is explicit for thermal systems, since temperature is
denoted as AT, as what matters is the temperature difference.

e In the case of electrical systems, what matters is always the electrical
tension at the extremities of the component.

e In the case of pipe flow, resistance and inductance depend on the pressure
difference at the extremities. Reservoirs with a free surface also depend
on a pressure difference, between the pressure of the liquid at the bottom
and the atmospheric pressure.

e In the case of mechanical systems, the energy dissipated by a damper
depends on the relative velocities of its extremities, and the energy accu-
mulated by a spring depends on the relative position of its extremities.

Notice that there may be values of these variables that we can think of as ab-

solute zeros, such as temperature —273.15 °C = 0 K, pressure 0 Pa of complete

vacuum, or position and velocity measured in an inertial frame of reference.

Still, it is often far more practical to use other values, such as atmospheric Dealing with initial condi-
pressure, room temperature, or resting position, as zero. tions

Example 8.1. A 300 kg dirigible balloon flies at constant altitude z = 200 m,
because its impulsion cancels its weight. It can move vertically thanks to two
electrical propulsors, each of which provides a force given by F,(t) = ~yU(t),
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Type of system | Mechanical, translation | Mechanical, rotation | Electrical Fluidic Thermal
effort e velocity & angular velocity w voltage U pressure P temperature T'
flow f force F' torque T current I | volume flow rate Q heat flow rate ¢
effort accumulator spring angular spring inductor fluidic inductance —
impedance Sfi((is)) =2 S;Z((;)) =2 [I]((j)) =Ls ggz; = Ls —
flow accumulator mass moment of inertia capacitor reservoir heat accumulator
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where U(t) is the tension applied (control input) and the gain is v = 15 N/V
(the force is upwards when U > 0). When the balloon moves, there is a viscous
drag force with coefficient ¢ = 30 Ns/m. How does the altitude change with
time when a 20 V tension is applied during 10 s?

A balance of forces shows that

3005(t) =2 x 15U(t) —304(t) (8.1)
—— ———— —

mass X acceleration propulsors  drag force

We know that initial conditions are z(0) = 200 and 2(0) = 0, so we could be
tempted to apply the Laplace transform as

300 (Z(s)s® — 200s) = 30U (s) — 30 (Z(s)s — 200) (8.2)

Rearranging terms,

(300s? + 30s)Z(s) = 30U (s) + 6 x 10*s + 6 x 103 (8.3)
1 2 x 10%s 2 x 10? 1 2 x 10?
= 7 =—— U = U
)= Gos 150 W Tos 7105 T 05115~ (057050 O T

Notice that it is impossible to find a transfer function 58 relating the (Laplace No transfer function if ini-

transforms of) the input and the output. To obtain a transfer function, make tial conditions are not zero
z*(t) = z(t) — (0), and then

‘(o) — " Zr(s) _ 1
300Z7%(s) =30U(s) — 30Z%(s)s < U(s) ~ (1057 1)s (8.4)

The result will of course be the same, but this allows us to use many results
established for transfer functions, such as those in Chapters [ and Tt also
allows us to use MATLAB to find the answer as follows:

>> G = tf(1, [10 1 0]);

>> Ts = 0.001; t =0 : Ts : 50;

>> U = zeros(size(t)); U(1:10/Ts) = 20*ones(1, 10/Ts);
>> z = 1sim(G, U, t); z = z + 200;

>> figure, plot(t,Z)

>> xlabel(’t [s]’), ylabel(’z [m]’)

Notice how we had to add 200 to the result (or else we would have to bear in
mind that the plot would show oscillations around 200 m). See Figure BRIl O

Remark 8.1. Remember that we already did something similar in Example[7.1]
O

8.2 System interconnection

Transfer functions are of great aid when modelling several interconnected sys-
tems, of the same or of different types.

Example 8.2. Consider the system in Figure The force exerted by the

inductance in the handle that undergoes displacement x4 is given by Fy(t) =
Xl(s)

ai(t), where i(t) is the current in the inductance. Find 77 OR
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Bond graphs

400

380

360

340

320

z [m]

300

280

260

240

220

200 L L L L
0 10 20 30 40 50

t[s]

Figure 8.1: Results of Example Bl

We can of course write all the equations, and obtain the desired result with
successive replacements. Transfer functions allow us to model each system sep-
arately, making such replacements easier.

As to the electrical system, remembering (5.45]),

22V (s) 1(s) =2
Ls="™ =_m .
R+ Ls T0s) @W(S) Rt Ls (8.5)
As to the lever, and letting F; be the force exerted on mass my,
o Fl(S) - b
Fi (t)a = FQ(t)b < FQ(S) =5 (86)
As to the mass,
Fu(t) — Kaa(t) = myin (1) & 218 1 (8.7)
! wy = Fi(s) mis?+ K
Finally,
Xu(s) _ Xa(s) Fils) Fa(s) I(s) _ % (©.8)
Vils) ~ Fi(s) Fa(s) 1(s) Vi(s)  (mus® + K)(R+ Ls) |

This way, we are also able to study each transfer function separately, analysing
its influence in the final result. O

Bond graphs are another tool that can be used to assist the modelling
of interconnected systems. They consist in a graphical representation of what
happens with energy in a system, based upon the concepts of effort and flux.
These are written above and below arrows (of which, by convention, only half the
tip is drawn). Figure B3] shows two examples of bond graphs in which several
elements have the same flux and different efforts; the corresponding junction
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Figure 8.2: System of Example

of the several efforts in one system is by convention denoted by number 1.
Figure [R4] shows two examples of bond graphs in which several elements have
the same effort and different flows; the corresponding junction of the several
flows in one system is by convention denoted by number 0. Also notice how
sources of energy are denoted by SE. We will not study bond graphs more
complicated than these, nor further explore the ability of this graphical tool to
assist in the modelling.

8.3 Dealing with non-linearities

Non-linearities can be classified as hard or soft, as they are respectively more
or less severe. Though no uniform definition is universally accepted, we will
say that a soft non-linearity is one that is differentiable, while a hard non-
linearity is not. Figure presents two examples.

Non-linearities are very common. They may be part of the design of a
system, even of a control system. In other courses you will learn how to deal
with hard non-linearities in control. What is important here is to notice that
soft non-linearities can be approximated by a first order approximation around
the operating point. Estimating how large the approximation error may be is
important; we will do that in Chapters [IHI3

Example 8.3. In Figure 8.6 mass m = 10 kg rests on a non-linear spring and
is pulled by force F' applied simultaneously on a linear spring with k& = 103 N/m
and on a linear damper with b = 500 N's/m. The non-linear force of the spring
is given by Fj, = 5000 — A;’i%_l (SI), where the Ay is the variation of length
around the uncompressed value. We want a linear model for this system around
nominal conditions of rest when F' = 0.

Figure 81 shows the non-linear force. When F' = 0, the non-linear spring is
compressed by the weight of m, which is —9.8 x 10 N (notice the minus sign,
since the weight is downwards and the positive sign of y corresponds to an

upwards direction), corresponding to

500
—98=5000— ———— — < Ay=-19x 1073 8.9
Ay+0.1 Y % o (89)
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Figure 8.3: Two bond graphs of systems where elements have the same flux and
there is an effort junction. Top: electrical circuit. Notice that V3 = (V4 — V) 4+
(Vo — V3) + V5. Bottom: fluidic system. Since the pipe has both resistance and
inductance, the pressure change from the pump delivering a constant pressure
P to the bottom of the reservoir where the hydraulic head is i and the pressure
is pgh is split into two, as if the fluid would first go through an inductance
without resistance and then through a resistance without inductance, so that
P =(P—P1)+ (PL— pgh) + pgh.
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Figure 8.4: Two bond graphs of systems where elements have the same effort
and there is a flux junction. Top: electrical circuit. Notice that [ = Iy + I5 + I3.

Bottom: mechanical system. Notice that FF — Kx — Bt = Mi < F = Kz +
Bt + Mi.
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Figure 8.5: Left: hard non-linearities (dead zone and saturation; in practice
limits need not be symmetric for positive and negative values, though this is

assumption is frequent). Right: soft non-linearity and one of its linear approxi-
mations.
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Figure 8.6: System of Example B3]
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Figure 8.7: Non-linear force of Example B.3]
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The linearised law is

dFy, 500
y =

— y = 5.2 x 10%y (SI)
d(Ay) Ay=—1.9x10-3 m (Ay +0.1) Ay=—1.9x10-3 m

(8.10)

where y = Ay + 1.9 x 1073 m, or, if you prefer, the variation of length around
Ay = —1.9 x 1073 m. Furthermore, the linear components are assumed to have
no mass, and hence transmit force F' to mass m. Thus

mij = F — 5.2 x 10* (ST (8.11)

It should be stressed that linear model (8IT) is only an approximation. O

Glossary

Desejoso ainda o Fucaradono, como mais douto q os outros, de leuar
a sua auante co pregiitas  embaracgassé o padre, lhe veyo arguindo
de nouo q porq razao punha nomes torpes ao Criador de todas as
cousas, & aos Satos q no ceo assistido em louuor seu, infaméadoo de
meétiroso, pois elle, como todos criad, era Deos de toda a verdade ?
& para § se entenda dode naceo a este dizer isto, se ha de saber q
na lingoa do Iapad se chama a métira diusa, & pord o padre quado
pregaua dezia ¢ aqella ley  elle vinha denticiar era a verdadeira ley
de Deos, o qual nome elles pela grossaria da sua lingoa nao podiao
proniiciar tad claro como nos & por dizeré Deos dezido dius, daquy
veyo que estes seruos do diabo tomarad motiuo de dizeré aos seus
que o padre era demonio em carne § vinha infamar a Deos podo-lhe
nome de mentiroso: (...) E porque tambem se saiba a raza6 porque
lhe este bonzo disse que punha nomes torpes aos santos, foy, porque
tinha o padre por custume quando acabaua de dizer missa rezar com
todos hua Ladaynha para rogar a N. Senhor pela augmétacao da fé
Catholica, & nesta ladainha dezia sempre, como nella se custuma,
Sancte Petre ora pro nobis, Sancte Paule ora pro nobis, & assi dos
mais Santos. E porq tambem este vocablo santi na lingoa Iapoa
he torpe & infame, daquy veyo arguyr este ao padre ¢ punha maos
nomes aos Satos, (...) & daly por didte madou o padre § se nad
dissesse mais sancte, senad beate Petre, beate Paule, & assi aos outros
Santos, porque ji dantes tinhad os bonzos todos perante el Rey feito
peconha disto.

Ferndo MENDES PINTO (15097 — 11583), Peregrina¢am, CCXIII

bond graph grafo de ligacao
linearisation, linearization (US) linearizagao

Exercises

1. Draw the bond graph of the system in Figure [R.8
2. Draw the bond graph of the balloon from Example Bl
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Figure 8.8: System of Exercise 11
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Figure 8.9: System of Exercise Bl

3. The system in Figure[89lis fed by a water pump with a characteristic curve
given by P(t) = 10° — 2 x 10°Q(t), where P and @ are the pressure (Pa)
and the volumetric flow (m?/s) provided.

The pipe has a 0.01 m? diameter and a length of 50 m. Its flow resistance
is neglectable; its inertance is not.

The tank has a free surface and 1 m? cross-section.

The valve is non-linear and verifies relation
Q.(t) = 0.3 x 107 N (t)\/Py (1) (8.12)

where Q, is the flow through the valve (m3/s), N is the opening of the
valve (dimensionless), and P, is the pressure (Pa) at the entrance of the
valve, which is also the pressure at the bottom of the tank.

In nominal conditions, P, = 8 x 10* Pa and Q, = 0.01 m?/s.

(a) Show that the pipe’s inertance is L = 5 x 10% kgm—%.

(b) Show that in nominal conditions the height of water in the tank is

h =8.16 m.
(c) Show that the non-linear relation of the valve (8I2) can be linearised
as

Qu(t) = Qu(t) + 0.085 (N(t) - W) +6.25% 1077 (Pv(t) N0
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Figure 8.10: System of Exercise @

(d) Show that the system can be modelled by [BI3) together with

P,(t) — P, = pyg (h h) )
Q1) - Q) = (Qu(H) - Q) = Ad('ﬁlh) ) (8.14)
(Po(t) = By) — (P (t) —E) _ LW

(e) Find transfer function %,

conditions.

relating variations around nominal

4. In Figure BI0 the lever with inertia I oscillates around the horizontal
position (i.e. #(t) = 0) and is moved by torque 7,,. Mass m moves verti-
cally, at distance d from the fulcrum of the lever, inside a cylinder with
two springs of constant k, filled with incompressible oil. The pressure
difference Ap(t) between the two chambers of the cylinder moves the oil
through fluidic resistance R. Thanks to oil lubrication, friction inside the
cylinder is neglectable.

(a) Write linearised equations for the dynamics of the system.

(b) Find transfer function T(:)n ((52)

5. In Figure BII] the lever with inertia I is actuated by force F(t) and
supported on the other side by a spring and a damper. On the lever
there is a car with mass m, moving to sidewards due to gravity, without
friction. When F = 0 and the car is on the fulcrum (i.e. its position is
2 = 0), the lever remains in the horizontal position. There is no friction
at the fulcrum.
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Figure 8.12: System of Exercise [6l

(a) Write linearised equations for the dynamics of the system.

X(s)
F(s)"

(b) Find transfer function

. The lever in Figure 812 with neglectable mass, is moved by a torque 7

applied on the fulcrum, in the absence of which the lever is horizontal (i.e.
6 =0). F is the force exerted on the fulcrum.

It is known that m; = 1.5 kg, ms = 2.0 kg, d; = 0.6 kg, do = 0.4 m, and
b =20 N's/m. The spring obeys the non-linear law in Figure[RI2, where §
is the length variation in mm (with § > 0 corresponding to compression),
and F,, is the resulting force in N.

(a) Show that, in nominal conditions, F,, = 1.63 N.

(b) Show from the plot in Figure B3 that the force of the spring can be
linearised as F,,, = 1.63 + 3.26 x 103z;.

(c) Write linearised equations for the dynamics of the system.

F(s)

(d) Find transfer function OB
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Figure 8.13: Non-linear law of the spring of Exercise [6

7. In Figure BI4] the fresh water (p = 1000 kg/m?) tank in the left is big
enough to keep a constant liquid height hg = 5 m, while the tank in the
right has a 10 m? cross-section and a variable liquid height h1(t).

Flow ¢.(t) bleeds this tank and does not depend on pressure; flow ¢ (t)
passes through a non-linear valve that verifies

q1(t) = 0.152,(t)/Ap(t) (SI) (8.15)

where Ap(t) is the pressure difference on both sides of the valve and a,(t)
is mechanically actuated by hi(t) through a rigid lever with a = 0.4 m
and b =4 m.

In nominal conditions, g.(t) = ¢1(t) = 0.2 m3/s and hy(t) = 3 m.

(a) Show that the model of the flow through the valve (8I3) can be
linearised around nominal conditions as

q1(t) = 21z, (t) +5.09 x 10~ 5Ap (SI) (8.16)

(b) Write linearised equations for the dynamics of the system.

(¢) Find transfer function AQHl(S).
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