
Chapter 8

Modelling interonneted and

non-linear systems

This hapter presents an overview of the modelling proess.

8.1 Energy, e�ort and �ow

Table 8.1 presents the impedanes of all the �ow aumulators, e�ort aumu- Impedanes

lators, and energy dissipators, summing up Tables 4.1, 5.1, 6.1, and 7.1, and

showing learly the existing parallelism between systems of di�erent types.

This is the plae to notie that e�ort variables are measured in relation to

an arbitrary value that serves as zero:

• In Table 8.1 this is expliit for thermal systems, sine temperature is

denoted as ∆T , as what matters is the temperature di�erene.

• In the ase of eletrial systems, what matters is always the eletrial

tension at the extremities of the omponent.

• In the ase of pipe �ow, resistane and indutane depend on the pressure

di�erene at the extremities. Reservoirs with a free surfae also depend

on a pressure di�erene, between the pressure of the liquid at the bottom

and the atmospheri pressure.

• In the ase of mehanial systems, the energy dissipated by a damper

depends on the relative veloities of its extremities, and the energy au-

mulated by a spring depends on the relative position of its extremities.

Notie that there may be values of these variables that we an think of as ab-

solute zeros, suh as temperature −273.15 ◦C = 0 K, pressure 0 Pa of omplete

vauum, or position and veloity measured in an inertial frame of referene.

Still, it is often far more pratial to use other values, suh as atmospheri Dealing with initial ondi-

tionspressure, room temperature, or resting position, as zero.

Example 8.1. A 300 kg dirigible balloon �ies at onstant altitude z = 200 m,

beause its impulsion anels its weight. It an move vertially thanks to two

eletrial propulsors, eah of whih provides a fore given by Fp(t) = γU(t),
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Type of system Mehanial, translation Mehanial, rotation Eletrial Fluidi Thermal

e�ort e veloity ẋ angular veloity ω̇ voltage U pressure P temperature T

�ow f fore F torque τ urrent I volume �ow rate Q heat �ow rate q

e�ort aumulator spring angular spring indutor �uidi indutane �

impedane

sX(s)
F (s) = s

K

sΩ(s)
T (s) = s

κ

U(s)
I(s) = Ls P (s)

Q(s) = Ls �

�ow aumulator mass moment of inertia apaitor reservoir heat aumulator

impedane

sX(s)
F (s) = 1

Ms

sΩ(s)
T (s) = 1

Js

U(s)
I(s) = 1

Cs

P (s)
Q(s) =

1
Cs

∆T (s)
Q(s) = 1

mCps

dissipator damper rotary damper resistor �uidi resistane thermal resistane

impedane

sX(s)
F (s) = 1

b

sΩ(s)
T (s) = 1

b

U(s)
I(s) = R P (s)

Q(s) = R ∆T (s)
Q(s) = R

1
0
8



where U(t) is the tension applied (ontrol input) and the gain is γ = 15 N/V

(the fore is upwards when U > 0). When the balloon moves, there is a visous

drag fore with oe�ient c = 30 Ns/m. How does the altitude hange with

time when a 20 V tension is applied during 10 s?

A balane of fores shows that

300z̈(t)
︸ ︷︷ ︸

mass×aeleration

= 2× 15U(t)
︸ ︷︷ ︸

propulsors

−30ż(t)
︸ ︷︷ ︸

drag fore

(8.1)

We know that initial onditions are z(0) = 200 and ż(0) = 0, so we ould be

tempted to apply the Laplae transform as

300
(
Z(s)s2 − 200s

)
= 30U(s)− 30 (Z(s)s− 200) (8.2)

Rearranging terms,

(300s2 + 30s)Z(s) = 30U(s) + 6× 104s+ 6× 103 (8.3)

⇔ Z(s) =
1

(10s+ 1)s
U(s) +

2× 103s

(10s+ 1)s
+

2× 102

(10s+ 1)s
=

1

(10s+ 1)s
U(s) +

2× 102

s

Notie that it is impossible to �nd a transfer funtion

Z(s)
U(s) relating the (Laplae No transfer funtion if ini-

tial onditions are not zero

transforms of) the input and the output. To obtain a transfer funtion, make

z∗(t) = z(t)− (0), and then

300Z∗(s) = 30U(s)− 30Z∗(s)s ⇔ Z∗(s)

U(s)
=

1

(10s+ 1)s
(8.4)

The result will of ourse be the same, but this allows us to use many results

established for transfer funtions, suh as those in Chapters 9 and 10. It also

allows us to use Matlab to �nd the answer as follows:

>> G = tf(1, [10 1 0℄);

>> Ts = 0.001; t = 0 : Ts : 50;

>> U = zeros(size(t)); U(1:10/Ts) = 20*ones(1, 10/Ts);

>> z = lsim(G, U, t); z = z + 200;

>> figure, plot(t,Z)

>> xlabel('t [s℄'), ylabel('z [m℄')

Notie how we had to add 200 to the result (or else we would have to bear in

mind that the plot would show osillations around 200 m). See Figure 8.1.

Remark 8.1. Remember that we already did something similar in Example 7.1.

8.2 System interonnetion

Transfer funtions are of great aid when modelling several interonneted sys-

tems, of the same or of di�erent types.

Example 8.2. Consider the system in Figure 8.2. The fore exerted by the

indutane in the handle that undergoes displaement x2 is given by F2(t) =

αi(t), where i(t) is the urrent in the indutane. Find

X1(s)
Vi(s)

.
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Figure 8.1: Results of Example 8.1.

We an of ourse write all the equations, and obtain the desired result with

suessive replaements. Transfer funtions allow us to model eah system sep-

arately, making suh replaements easier.

As to the eletrial system, remembering (5.45),

R+ Ls =
n2

n1
Vi(s)

I(s)
⇔ I(s)

Vi(s)
=

n2

n1

R + Ls
(8.5)

As to the lever, and letting F1 be the fore exerted on mass m1,

F1(t)a = F2(t)b ⇔
F1(s)

F2(s)
=

b

a
(8.6)

As to the mass,

F1(t)−Kx1(t) = m1ẍ1(t) ⇔
X1(s)

F1(s)
=

1

m1s2 +K
(8.7)

Finally,

X1(s)

Vi(s)
=

X1(s)

F1(s)

F1(s)

F2(s)

F2(s)

I(s)

I(s)

Vi(s)
=

b
a
αn2

n1

(m1s2 +K)(R+ Ls)
(8.8)

This way, we are also able to study eah transfer funtion separately, analysing

its in�uene in the �nal result.

Bond graphs are another tool that an be used to assist the modellingBond graphs

of interonneted systems. They onsist in a graphial representation of what

happens with energy in a system, based upon the onepts of e�ort and �ux.

These are written above and below arrows (of whih, by onvention, only half the

tip is drawn). Figure 8.3 shows two examples of bond graphs in whih several

elements have the same �ux and di�erent e�orts; the orresponding juntion
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Figure 8.2: System of Example 8.2.

of the several e�orts in one system is by onvention denoted by number 1.
Figure 8.4 shows two examples of bond graphs in whih several elements have

the same e�ort and di�erent �ows; the orresponding juntion of the several

�ows in one system is by onvention denoted by number 0. Also notie how

soures of energy are denoted by SE. We will not study bond graphs more

ompliated than these, nor further explore the ability of this graphial tool to

assist in the modelling.

8.3 Dealing with non-linearities

Non-linearities an be lassi�ed as hard or soft, as they are respetively more

or less severe. Though no uniform de�nition is universally aepted, we will

say that a soft non-linearity is one that is di�erentiable, while a hard non- Soft non-linearity

linearity is not. Figure 8.5 presents two examples.

Hard non-linearity

Non-linearities are very ommon. They may be part of the design of a

system, even of a ontrol system. In other ourses you will learn how to deal

with hard non-linearities in ontrol. What is important here is to notie that

soft non-linearities an be approximated by a �rst order approximation around

the operating point. Estimating how large the approximation error may be is

important; we will do that in Chapters 11�13.

Example 8.3. In Figure 8.6, mass m = 10 kg rests on a non-linear spring and

is pulled by fore F applied simultaneously on a linear spring with k = 103 N/m
and on a linear damper with b = 500 Ns/m. The non-linear fore of the spring

is given by Fk = 5000 − 500
∆y+0.1 (SI), where the ∆y is the variation of length

around the unompressed value. We want a linear model for this system around

nominal onditions of rest when F = 0.
Figure 8.7 shows the non-linear fore. When F = 0, the non-linear spring is

ompressed by the weight of m, whih is −9.8 × 10 N (notie the minus sign,

sine the weight is downwards and the positive sign of y orresponds to an

upwards diretion), orresponding to

−98 = 5000− 500

∆y + 0.1
⇔ ∆y = −1.9× 10−3 m (8.9)

111



Figure 8.3: Two bond graphs of systems where elements have the same �ux and

there is an e�ort juntion. Top: eletrial iruit. Notie that V1 = (V1 −V2) +
(V2 − V3) + V3. Bottom: �uidi system. Sine the pipe has both resistane and

indutane, the pressure hange from the pump delivering a onstant pressure

P to the bottom of the reservoir where the hydrauli head is h and the pressure

is ρgh is split into two, as if the �uid would �rst go through an indutane

without resistane and then through a resistane without indutane, so that

P = (P − P1) + (P1 − ρgh) + ρgh.
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Figure 8.4: Two bond graphs of systems where elements have the same e�ort

and there is a �ux juntion. Top: eletrial iruit. Notie that I = I1+ I2+ I3.
Bottom: mehanial system. Notie that F − Kx − Bẋ = Mẍ ⇔ F = Kx +
Bẋ+Mẍ.
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Figure 8.6: System of Example 8.3.
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Figure 8.7: Non-linear fore of Example 8.3.
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The linearised law is

Fk ≈ dFk

d(∆y)

∣
∣
∣
∣
∆y=−1.9×10−3 m

y =
500

(∆y + 0.1)2

∣
∣
∣
∣
∆y=−1.9×10−3 m

y = 5.2× 104y (SI)

(8.10)

where y = ∆y + 1.9 × 10−3 m, or, if you prefer, the variation of length around

∆y = −1.9× 10−3 m. Furthermore, the linear omponents are assumed to have

no mass, and hene transmit fore F to mass m. Thus

mÿ = F − 5.2× 104 (SI) (8.11)

It should be stressed that linear model (8.11) is only an approximation.

Glossary

Desejoso ainda o Fuarãdono, omo mais douto �q os outros, de leuar

a sua auante õ preg�utas �q embaraçass�e o padre, lhe veyo arguindo

de nouo �q por�q razão punha nomes torpes ao Criador de todas as

ousas, & aos Sãtos �q no eo assistião em louuor seu, infamãdoo de

m�etiroso, pois elle, omo todos riaõ, era Deos de toda a verdade ?

& para �q se entenda dõde naeo a este dizer isto, se ha de saber �q

na lingoa do Iapaõ se hama a m�etira diusa, & por�q o padre quãdo

pregaua dezia �q a�qella ley �q elle vinha den�uiar era a verdadeira ley

de Deos, o qual nome elles pela grossaria da sua lingoa não podião

pron�uiar taõ laro omo nos & por dizer�e Deos dezião diùs, daquy

veyo que estes seruos do diabo tomaraõ motiuo de dizer�e aos seus

que o padre era demonio em arne �q vinha infamar a Deos põdo-lhe

nome de mentiroso: (. . . ) E porque tambem se saiba a razaõ porque

lhe este bonzo disse que punha nomes torpes aos santos, foy, porque

tinha o padre por ustume quando aabaua de dizer missa rezar om

todos h�ua Ladaynha para rogar a N. Senhor pela augm�etação da fé

Catholia, & nesta ladainha dezia sempre, omo nella se ustuma,

Sante Petre ora pro nobis, Sante Paule ora pro nobis, & assi dos

mais Santos. E por�q tambem este voablo santi na lingoa Iapoa

he torpe & infame, daquy veyo arguyr este ao padre �q punha maos

nomes aos Sãtos, (. . . ) & daly por diãte mãdou o padre �q se naõ

dissesse mais sante, senaõ beate Petre, beate Paule, & assi aos outros

Santos, porque já dantes tinhaõ os bonzos todos perante el Rey feito

peçonha disto.

Fernão Mendes Pinto (1509? � †1583), Peregrinaçam, CCXIII

bond graph grafo de ligação

linearisation, linearization (US) linearização

Exerises

1. Draw the bond graph of the system in Figure 8.8.

2. Draw the bond graph of the balloon from Example 8.1.
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Figure 8.8: System of Exerise 1.

Figure 8.9: System of Exerise 3.

3. The system in Figure 8.9 is fed by a water pump with a harateristi urve

given by P (t) = 105 − 2× 106Q(t), where P and Q are the pressure (Pa)

and the volumetri �ow (m

3
/s) provided.

The pipe has a 0.01 m

2
diameter and a length of 50 m. Its �ow resistane

is negletable; its inertane is not.

The tank has a free surfae and 1 m

2
ross-setion.

The valve is non-linear and veri�es relation

Qv(t) = 0.3× 10−4N(t)
√

Pv(t) (8.12)

where Qv is the �ow through the valve (m

3
/s), N is the opening of the

valve (dimensionless), and Pv is the pressure (Pa) at the entrane of the

valve, whih is also the pressure at the bottom of the tank.

In nominal onditions, Pv = 8× 104 Pa and Qv = 0.01 m

3
/s.

(a) Show that the pipe's inertane is L = 5× 106 kgm

−4
.

(b) Show that in nominal onditions the height of water in the tank is

h̄ = 8.16 m.

() Show that the non-linear relation of the valve (8.12) an be linearised

as

Qv(t) = Qv(t) + 0.085
(

N(t)−N(t)
)

+ 6.25× 10−7
(

Pv(t)− Pv(t)
)

(8.13)

116



Figure 8.10: System of Exerise 4.

(d) Show that the system an be modelled by (8.13) together with







Pv(t)− Pv = ρg
(
h− h̄

)

(
Q(t)− Q̄

)
−
(
Qv(t)−Qv

)
= A

d(h−h̄)
dt

(
Pb(t)− Pb

)
−
(
Pv(t)− Pv

)
= L

d(Q(t)−Q̄)
dt

(8.14)

(e) Find transfer funtion

∆Pv(s)
∆N(s) , relating variations around nominal

onditions.

4. In Figure 8.10, the lever with inertia I osillates around the horizontal

position (i.e. θ(t) = 0) and is moved by torque τm. Mass m moves verti-

ally, at distane d from the fulrum of the lever, inside a ylinder with

two springs of onstant k, �lled with inompressible oil. The pressure

di�erene ∆p(t) between the two hambers of the ylinder moves the oil

through �uidi resistane R. Thanks to oil lubriation, frition inside the

ylinder is negletable.

(a) Write linearised equations for the dynamis of the system.

(b) Find transfer funtion

Θ(s)
Tm(s) .

5. In Figure 8.11, the lever with inertia I is atuated by fore F (t) and

supported on the other side by a spring and a damper. On the lever

there is a ar with mass m, moving to sidewards due to gravity, without

frition. When F = 0 and the ar is on the fulrum (i.e. its position is

x = 0), the lever remains in the horizontal position. There is no frition

at the fulrum.
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Figure 8.11: System of Exerise 5.

Figure 8.12: System of Exerise 6.

(a) Write linearised equations for the dynamis of the system.

(b) Find transfer funtion

X(s)
F (s) .

6. The lever in Figure 8.12, with negletable mass, is moved by a torque τ
applied on the fulrum, in the absene of whih the lever is horizontal (i.e.

θ = 0). F is the fore exerted on the fulrum.

It is known that m1 = 1.5 kg, m2 = 2.0 kg, d1 = 0.6 kg, d2 = 0.4 m, and

b = 20 Ns/m. The spring obeys the non-linear law in Figure 8.12, where δ
is the length variation in mm (with δ > 0 orresponding to ompression),

and Fm is the resulting fore in N.

(a) Show that, in nominal onditions, Fm = 1.63 N.

(b) Show from the plot in Figure 8.13 that the fore of the spring an be

linearised as Fm = 1.63 + 3.26× 103x1.

() Write linearised equations for the dynamis of the system.

(d) Find transfer funtion

F (s)
T (s) .
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Figure 8.13: Non-linear law of the spring of Exerise 6.

7. In Figure 8.14, the fresh water (ρ = 1000 kg/m

3
) tank in the left is big

enough to keep a onstant liquid height h0 = 5 m, while the tank in the

right has a 10 m

2
ross-setion and a variable liquid height h1(t).

Flow qc(t) bleeds this tank and does not depend on pressure; �ow q1(t)
passes through a non-linear valve that veri�es

q1(t) = 0.15xv(t)
√

∆p(t) (SI) (8.15)

where ∆p(t) is the pressure di�erene on both sides of the valve and xv(t)
is mehanially atuated by h1(t) through a rigid lever with a = 0.4 m

and b = 4 m.

In nominal onditions, qc(t) = q1(t) = 0.2 m

3
/s and h1(t) = 3 m.

(a) Show that the model of the �ow through the valve (8.15) an be

linearised around nominal onditions as

q1(t) = 21xv(t) + 5.09× 10−6∆p (SI) (8.16)

(b) Write linearised equations for the dynamis of the system.

() Find transfer funtion

∆H1(s)
Qc(s)

.
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Figure 8.14: System of Exerise 7.
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