

Reallocating operating room capacity: a Portuguese case study

Mariana Oliveira, Inês Marques

Centre for Management Studies Instituto Superior Técnico, Universidade de Lisboa Portugal

ORAHS 2019 | Oliveira and Marques | July, 2019

OUTLINE

Introduction

ImproveOR project

Motivation

Case Study

Problem Description

Objectives, Literature Review, Methodology, Model

Preliminary results

Conclusions

Future work

IMPROVEOR PROJECT

CENTRO HOSPITALAR Lisboa Norte, epe

- Propose changes to resource planning and scheduling on the operating rooms
- Improve operating rooms efficiency
 - Increase surgeries production (to increase hospital financing from the state)
 - Health improvements to the patient
 - Maximize surgeons satisfaction
 - Comply with the goals established by Sistema Integrado de Gestão de Inscritos para Cirurgia (SIGIC)

THIS TALK: year 0

MOTIVATION

Continuously increasing complexity of health care organizations

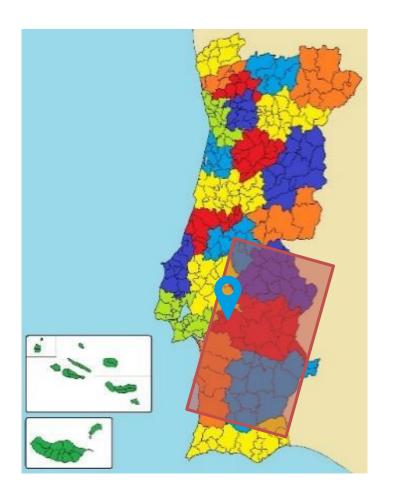
Aging population
Increasing demand
New and expensive
technologies

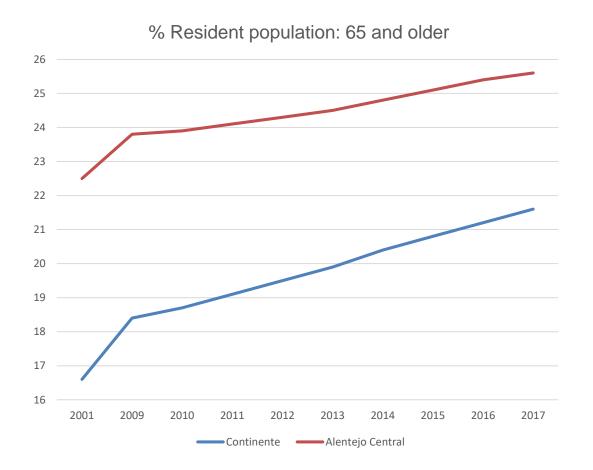
Operating rooms are the main center of costs and revenues at an hospital

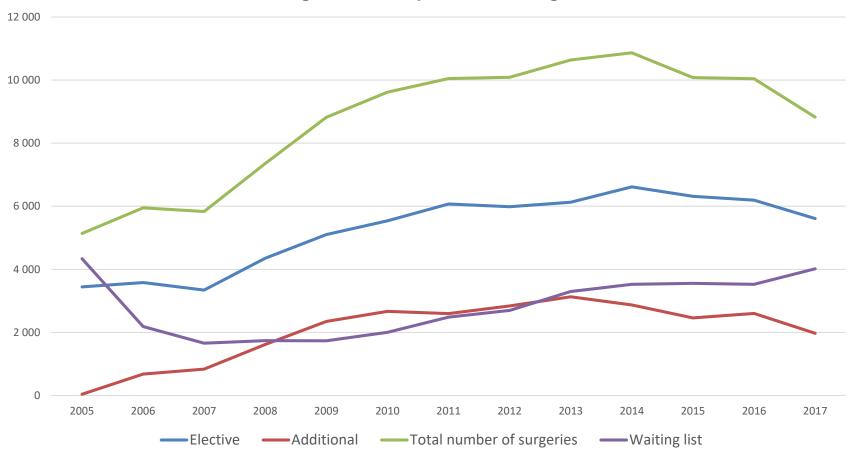
Coordination of scarce resources

Lack of surgeons

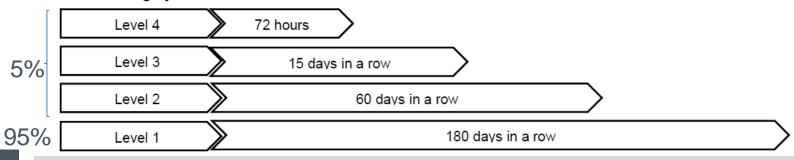
Lack of anesthesiologists


Lack of beds


- Portuguese public hospital
 - Serves 325.237 people
 - 5 operating rooms
 - Occupancy rate 51.5%
 - 8 surgical specialties



Surgical activity and Waiting list



CASE STUDY (WL 2018 Dec 28)

Specialty	Patients		WT ≤180 days		WT > 180		WT 181-270 days		WT 271-260 days		WT > 360 days		Surgeon s
	#	%	#	%	#	%	#	%	#	%	#	%	Sn
General	1043	36.5	745	71.4	298	28.6	91	8.7	55	5.3	151	14.5	14
Plastic	295	10.3	292	99.0	3	1.0	3	1.0	0	0	0	0	2
Stomatology	14	0.5	9	64.3	5	35.7	2	14.3	1	7.1	2	14.3	2
Ophthalmology	684	24.0	606	88.6	78	11.4	39	5.7	12	1.8	19	2.8	10
Orthopedics	240	8.4	204	85.0	36	15.0	18	7.5	7	2.9	11	4.6	5
ORL	226	7.9	104	46.0	122	54.0	21	9.3	7	3.1	94	41.6	4
Pediatric	89	3.1	88	98.9	1	1.1	1	1.1	1	1.1	0	0	2
Urology	265	9.3	117	44.2	148	55.8	20	7.5	22	8.3	106	40.0	4
Total	2856	100	2165	75.8	691	24.2	195	6.8	105	3.7	383	13.4	43

Elective surgery:

- Portuguese public hospital
 - High levels of demand
 - Low resources
- Changes in surgical demand and staff pattern
- High rates of idle OR time
- High waiting times for elective patients
- Almost unchanged MSS for more than 30 years

Oncologia

Liga Portuguesa Contra o Cancro

Cargas e Descargas

Consultas Externas Gerais

Consultas Externas de Pediatria

Visitas

Informações

Internamentos

Laboratório de Saúde Pública

Imunohemoterapia

Dadores de Sangue

Entrada Principal (Outros Serviços)

Unidade de Radioterapia

Unidades de Saúde Familiar

					- HO	SOILUI 00
	OR1	OR2	OR3	OR4	OR5	írito Santo E.P.E.
MON	C. Geral	Urologia		Ortopedia	Oftalmologia	
	C. Geral	C.Geral Tira I ou Tira II a)				esa Contra o Cancro
	C. Geral	C. Geral		Ortopedia	Oftalmologia	cargas $ ightarrow$
	C. Mama	C. Plástica			Oftalmologia	ternas Gerais
WED	C. Plástica	C. Pediátrica	-	Ortopedia	Oftalmologia	(
	C. Ger. Varizes		O.R.L.			\
THU	C. Geral	C. Geral		Ortopedia	Oftalmologia	terapia
		Urologia	O.R.L.			
FRI	C. Geral	Estomat. b)		0	Oftalmologia c/ locais	Sangue ←
		Implantofix c)		Ortopedia		cipal (Outros Serviços)
						Radioterapia \leftarrow
						Saúde Familiar \leftarrow

PROBLEM DESCRIPTION

- Capacity planning MSS
 - Tactical (aggregate) level
- Long planning horizon
- MSS stability
- Number of slots assigned to each specialty
 - specialty capacity
 - defined by the # doctors and the max workload of each surgeon
 - surgeon workload measured in number of slots
- Up- and downstream capacity

SURGICAL TEAM PREFERENCES

BALANCE SUPPLY AND DEMAND

UP- AND DOWNSTREAM UNITS WORKLOAD

LITERATURE REVIEW

Objectives	Surgical team preferences	Balance supply and demand	Up and downstream units workload	Stability/Flexibility of MSS
Banditori et al. (2013)		# PAT WL + DUEDATE		
Abdelrasol et al. (2014)				MOD BLOCK SCHED
Malik et al. (2015)		MIN # PAT WL		
Visintin et al. (2016)				FLEX_ALLOW VAR
Abedini et al. (2017)			PAT FLOW	
Dellaert et al. (2017)			TARGET WORKLOAD	
Penn et al. (2017)	MAX SURG PREF			
Marques et al. (2019)			MIN VARIABILITY	MAX STAB
OUR PROPOSAL	SURG + ANEST PREF	OR TIME	TARGET WORK + CAP	STAB CONSTRAINT

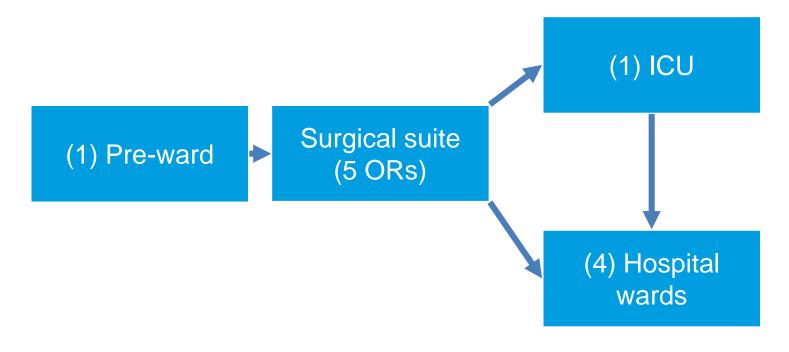
OpLog
Research Grou

SURGICAL TEAM PREFERENCES

Surgeons
Preference on
Day
Slot

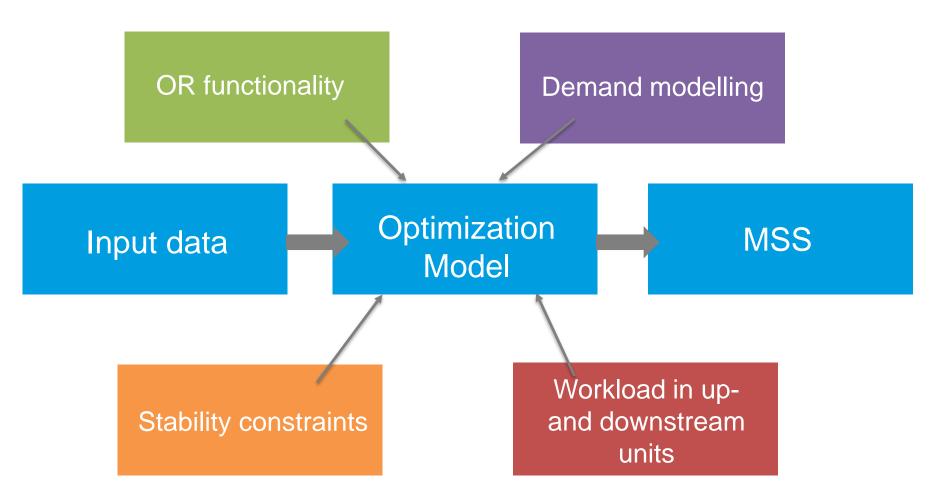
BALANCE SUPPLY AND DEMAND

WL in 28-12-2018


Specialties	% Overall WL length (WL)	% Overall WL duration (WD)	% Allocated blocks (AB)	Differenc e (WL-AB)	Differenc e (WD-AB)
General	36.5 %	48.6 %	37.2 %	- 0.7 %	11.4 %
Plastic	10.3 %	8.6 %	6.6 %	3.7 %	2.0 %
Stomatology	0.5 %	0.3 %	0.3 %	0.2 %	0.0 %
Ophtalmology	24.0 %	13.6 %	18.6 %	5.4 %	-5.0 %
Orthopedics	8.4 %	10.0 %	16.3 %	-7.9 %	-6.3 %
ORL	7.9 %	5.8 %	9.2 %	- 1.3 %	-3.4 %
Pediatric	3.1 %	1.3 %	2.4 %	0.7 %	-1.1 %
Urology	9.3 %	11.8 %	9.3 %	0.0 %	2.5 %

OpLog
Research Group

UP- AND DOWNSTREAM UNITS WORKLOAD



METHODOLOGY

Gaps: 0.21-2.34 30min CPU

OR Functionality

$$\begin{split} &\sum_{s \in \mathcal{S}} x_{swdbr} \leq 1 \quad \forall w \in \mathcal{W}, d \in \mathcal{D}, b \in \mathcal{B}, r \in \mathcal{R} \\ &\sum_{s \in \mathcal{S}} \sum_{d \in \mathcal{D}} \sum_{b \in \mathcal{B}} \sum_{r \in \mathcal{R}} x_{swdbr} \leq slot \, s_w \quad \forall w \in \mathcal{W} \\ &\delta^{surg} \sum_{r \in \mathcal{R}} \sum_{swdbr} \leq a^{surg}_{swdb} \quad \forall s \in \mathcal{S}, w \in \mathcal{W}, d \in \mathcal{D}, b \in \mathcal{B} \\ &\delta^{surg} \sum_{b \in \mathcal{B}} \sum_{r \in \mathcal{R}} x_{swdbr} \leq \sum_{i \in \mathcal{I}_s} a^{surgD}_{iwd} \quad \forall s \in \mathcal{S}, w \in \mathcal{W}, d \in \mathcal{D} \\ &\delta^{surg} \sum_{d \in \mathcal{D}} \sum_{b \in \mathcal{B}} \sum_{r \in \mathcal{R}} x_{swdbr} \leq \sum_{i \in \mathcal{I}_s} w w_i^{surg} \quad \forall s \in \mathcal{S}, w \in \mathcal{W} \\ &\delta^{anest} \sum_{s \in \mathcal{S}} \sum_{r \in \mathcal{R}} x_{swdbr} \leq a^{anest}_{wdb} \quad \forall w \in \mathcal{W}, d \in \mathcal{D}, b \in \mathcal{B} \\ &\delta^{anest} \sum_{s \in \mathcal{S}} \sum_{b \in \mathcal{B}} \sum_{r \in \mathcal{R}} x_{swdbr} \leq \sum_{a \in \mathcal{A}} a^{anestD}_{awd} \quad \forall w \in \mathcal{W}, d \in \mathcal{D} \\ &\delta^{anest} \sum_{s \in \mathcal{S}} \sum_{d \in \mathcal{D}} \sum_{b \in \mathcal{B}} \sum_{r \in \mathcal{R}} x_{swdbr} \leq \sum_{a \in \mathcal{A}} a^{anestD}_{awd} \quad \forall w \in \mathcal{W}, d \in \mathcal{D} \\ &\delta^{anest} \sum_{s \in \mathcal{S}} \sum_{d \in \mathcal{D}} \sum_{b \in \mathcal{B}} \sum_{r \in \mathcal{R}} x_{swdbr} \leq \sum_{a \in \mathcal{A}} w w_a^{anest} \quad \forall w \in \mathcal{W} \\ &\sum_{w \in \mathcal{W}_m} \sum_{d \in \mathcal{D}} \sum_{b \in \mathcal{B}} \sum_{r \in \mathcal{R}} x_{swdbr} \geq m w_{sm} \quad \forall s \in \mathcal{S}, m \in \mathcal{M} \end{split}$$

- One specialty in each slot
- Total OR capacity/constraints
- Portuguese legislation
- Staff availability
- Maximum number of slots for staff
- Minimum number of slots for specialty

Demand modelling

$$p_{sw} = p_{s,w-1} + ent_{s,w-1} - \sum_{d \in D} \sum_{b \in B} \sum_{r \in R} \lambda_s x_{s,w-1,d,b,r} \quad \forall s \in S, w \in W \setminus \{1\}$$

$$p_{s1} = inic_s \quad \forall s \in S$$

$$t_{sw} = p_{sw} dur_s \quad \forall s \in S, w \in W$$

$$\theta \sum_{d \in D} \sum_{b \in B} \sum_{r \in R} x_{swdbr} + t_{sw}^- - t_{sw}^+ = t_{sw} \quad \forall s \in S, w \in W$$

- Demand definition
 - Number of patients in the waiting list
 - Expected duration of surgeries
- Waiting list evolution
 - Weekly
 - Past results
 - New entries forecast

OpLog
Research Group

Stability

$$\begin{aligned} |x_{swdbr} - x_{sw_{1m}dbr}| &= y_{swdbr} \quad \forall s \in S, w \in W_m \setminus \{w_{1m}\}, m \in M, d \in D, \\ & b \in B, r \in R \end{aligned}$$

$$\sum_{s \in S} \sum_{d \in D} \sum_{b \in B} \sum_{r \in R} y_{swdbr} \leq \Delta_w \quad \forall w \in W$$

$$|x_{swdbr} - x_{sldbr}| &= j_{swdbr} \quad \forall s \in S, w \in W_m, m \in M \setminus \{1\}, \\ & l = w - \sum_{g < m} |W_g|, d \in D, b \in B, r \in R$$

$$\sum_{s \in S} \sum_{w \in W_m} \sum_{d \in D} \sum_{b \in B} \sum_{r \in R} j_{swdbr} \leq \Delta_m \quad \forall m \in M$$

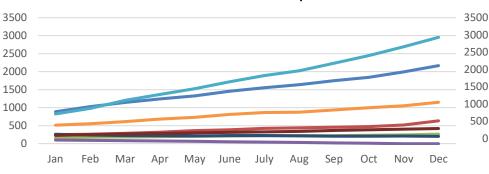
- Monthly differences number in MSS
- Weekly differences number in MSS
- Maximum number of monthly differences
- Maximum number of weekly differences

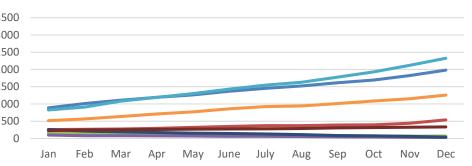
Up and downstream units

$$\begin{split} 0 &\leq f_{zk} - \sum_{s \in \mathcal{S}_z} \sum_{b \in \mathcal{B}} \sum_{r \in \mathcal{R}} \sum_{l=0}^{\mathcal{n}_{zs}-1} \lambda_s e_{zsk} x_{s,w,d \pm l,b,r} \leq 1 \quad \forall z \in \mathcal{Z}, k \in \mathcal{K} : k \to (w,d), \\ w &\in \mathcal{W}, d \in \mathcal{D} \\ f_{zk} + u_{zk}^- - u_{zk}^+ = u_{zk} \quad \forall z \in \mathcal{Z}, k \in \mathcal{K} \\ u_{zk}^+ &\leq c_{zk} - u_{zk} \quad \forall z \in \mathcal{Z}, k \in \mathcal{K} \\ u_{zk}^- &\leq G \left(1 - v_{zk}^{\mathbf{u}}\right) \quad \forall z \in \mathcal{Z}, k \in \mathcal{K} \\ u_{zk}^+ &\leq G v_{zk}^{\mathbf{u}} \quad \forall z \in \mathcal{Z}, k \in \mathcal{K} \end{split}$$

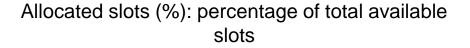
- Expected number of patients in pre-ward
- Expected number of patients in each ward
 - Specialty wards
- Overutilization definition
- Underutilization definition

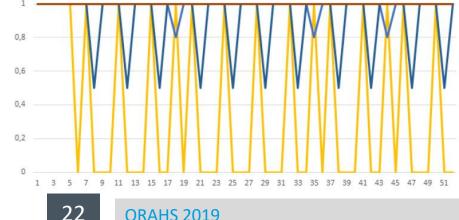
RESULTS

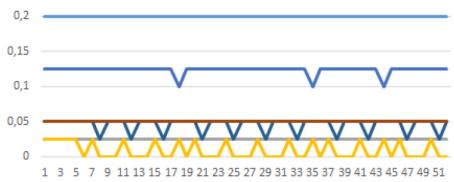




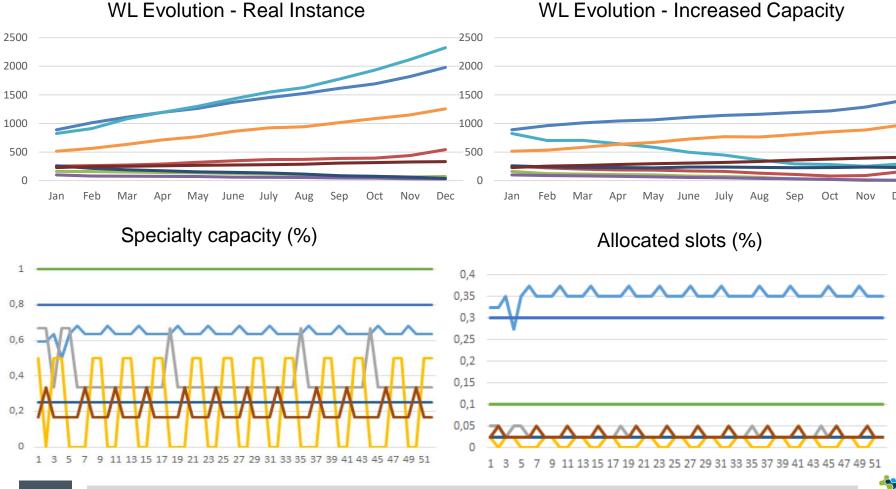
Real Capacity


WL Evolution - Hospital



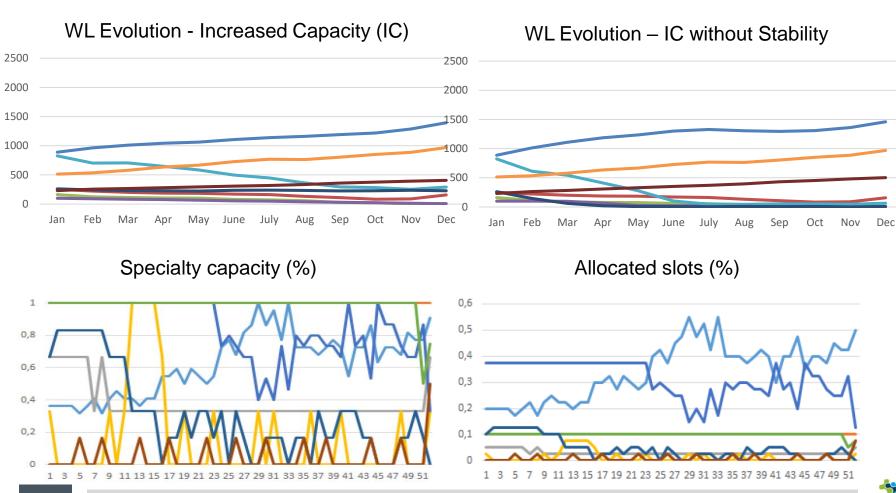

WL Evolution - Real Instance

Specialty capacity (%), compared to the max capacity of the specialty


RESULTS

Increased Capacity (Real Capacity + 2 slots per doctor)

RESULTS



Increased Capacity + No Stability Constraints

CONCLUSIONS

Static old MSS
Inefficient use of OR
Long WT

Major bottleneck: workforce (mainly surgeons)

CONCLUSIONS

Real Instance

Increased Instance

Increased Instance without Stability

- Specialties at max capacity
- Low compliance supply vs demand
- Only 55% slots assigned
- More flexibility regarding capacity
- Better compliance supply vs demand
- About 95% slots assigned
- More flexibility to chase demand
- Potential to schedule more patients
- About 95% slots assigned
- Doctors not satisfied

26

FUTURE WORK

Predictive model for demand forecast

Sensitivity analysis on stability parameters

Consistent models for stakeholders' preferences

Simulation model for an evaluation of the model at disaggregated level

Impact of preferences in OR utilization

Reallocating operating room time: a Portuguese case

Obrigada!

mariana.m.oliveira@tecnico.ulisboa.pt ines.marques.p@tecnico.ulisboa.pt

The authors acknowledge the support provided by FCT and P2020 under the project PTDC/EGE-OGE/30442/2017, Lisboa-01.0145-Feder-30442

