

Facing dynamic demand for surgeries in a Portuguese case study

Mariana Oliveira, Inês Marques

Centre for Management Studies Instituto Superior Técnico, Universidade de Lisboa Portugal

IO 2019 |@ Oliveira et al. |July, 2019

OUTLINE

|--|

Introduction

ImproveOR project

Motivation

Case Study

Problem Description

Objectives, Literature Review, Methodology, Model

Preliminary results

Conclusions

Future work

|July, 2019

IMPROVEOR PROJECT

CENTRO HOSPITALAR Lisboa Norte, epe

- Propose changes to resource planning and scheduling on the operating rooms
- Improve operating rooms efficiency
 - Increase surgeries production (to increase hospital financing from the state)
 - Health improvements to the patient
 - Maximize surgeons satisfaction
 - Comply with the goals established by Sistema Integrado de Gestão de Inscritos para Cirurgia (SIGIC)

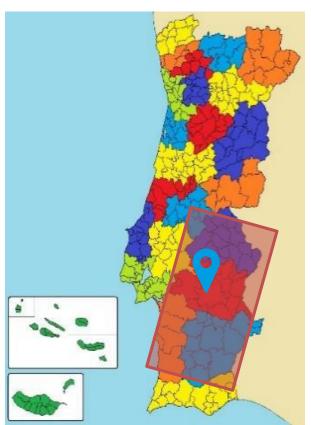
THIS TALK: year 0

MOTIVATION

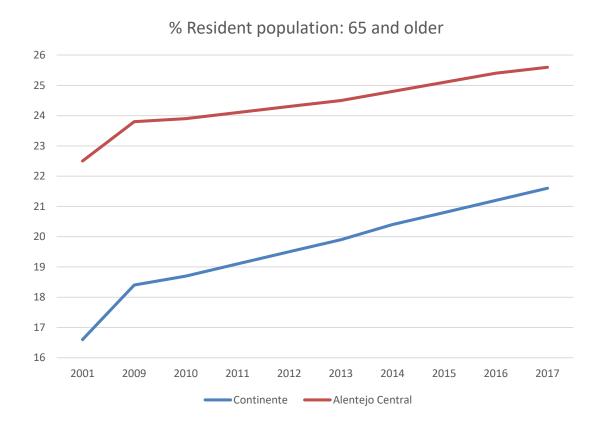
Continuously increasing complexity of health care organizations

Aging population
Increasing demand
New and expensive
technologies

Operating rooms are the main center of costs and revenues at an hospital

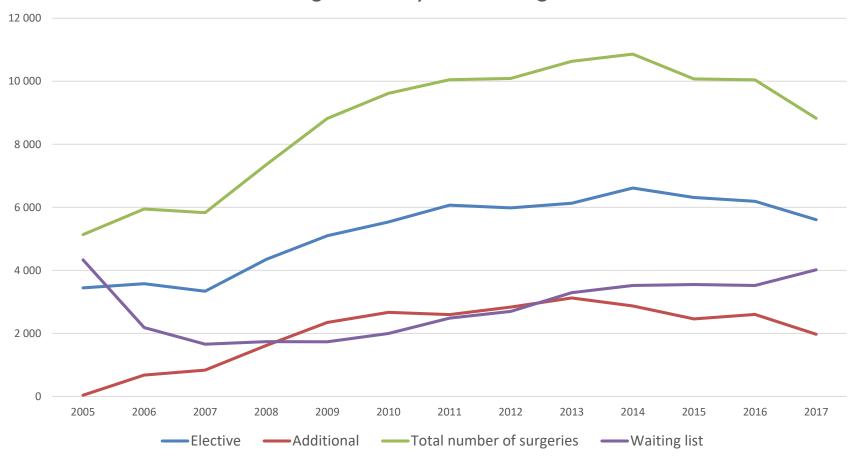


Coordination of scarce resources


Lack of surgeons
Lack of anesthesiologists
Lack of beds

CASE STUDY

Influence area of the hospital (325.237 people)



CASE STUDY

Surgical activity and Waiting list

IO 2019

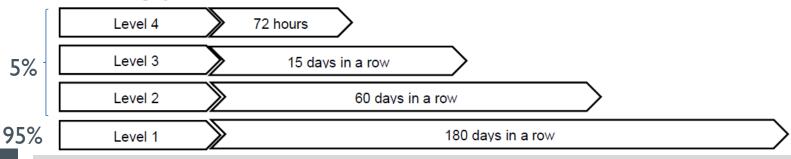
CASE STUDY

- Portuguese public hospital
 - Serves 325.237 people
 - 5 operating rooms
 - 8 surgical specialties
- Changes in surgical demand and staff pattern
- Almost unchanged MSS for more than 30 years
- High rates of idle OR time
- High waiting times for elective patients

oncologia Liga Portuguesa Contra o Cancro Cargas e Descargas Consultas Externas Gerais Consultas Externas de Pediatria **Visitas** Informações Internamentos Laboratório de Saúde Pública Imunohemoterapia Dadores de Sangue Entrada Principal (Outros Serviços)

Unidade de Radioterapia

Unidades de Saúde Familiar



CASE STUDY (WL 2018 Dec 28)

Specialty	Patients		WT ≤180 days		WT > 180		WT 181-270 days		WT 271-260 days		WT > 360 days		Surgeons
	#	%	#	%	#	%	#	%	#	%	#	%	Sur
General	1043	36.5	745	71.4	298	28.6	91	8.7	55	5.3	151	14.5	14
Plastic	295	10.3	292	99.0	3	1.0	3	1.0	0	0	0	0	2
Stomatology	14	0.5	9	64.3	5	35.7	2	14.3	I	7.1	2	14.3	2
Ophthalmology	684	24.0	606	88.6	78	11.4	39	5.7	12	1.8	19	2.8	10
Orthopedics	240	8.4	204	85.0	36	15.0	18	7.5	7	2.9	П	4.6	5
ORL	226	7.9	104	46.0	122	54.0	21	9.3	7	3.1	94	41.6	4
Pediatric	89	3.1	88	98.9	I	1.1	- 1	1.1	I	1.1	0	0	2
Urology	265	9.3	117	44.2	148	55.8	20	7.5	22	8.3	106	40.0	4
Total	2856	100	2165	75.8	691	24.2	195	6.8	105	3.7	383	13.4	43

Elective surgery:

PROBLEM DESCRIPTION

- Capacity planning MSS
 - Tactical (aggregate) level
- Long planning horizon
- MSS stability
- Max number of slots assigned to each specialty
 - specialty capacity
 - defined by the # doctors and the max workload of each surgeon
 - surgeon workload measured in number of slots
- Up- and downstream capacity

SURGICAL TEAM PREFERENCES

BALANCE SUPPLY AND DEMAND

UP- AND DOWNSTREAM UNITS WORKLOAD

SURGICAL TEAM PREFERENCES

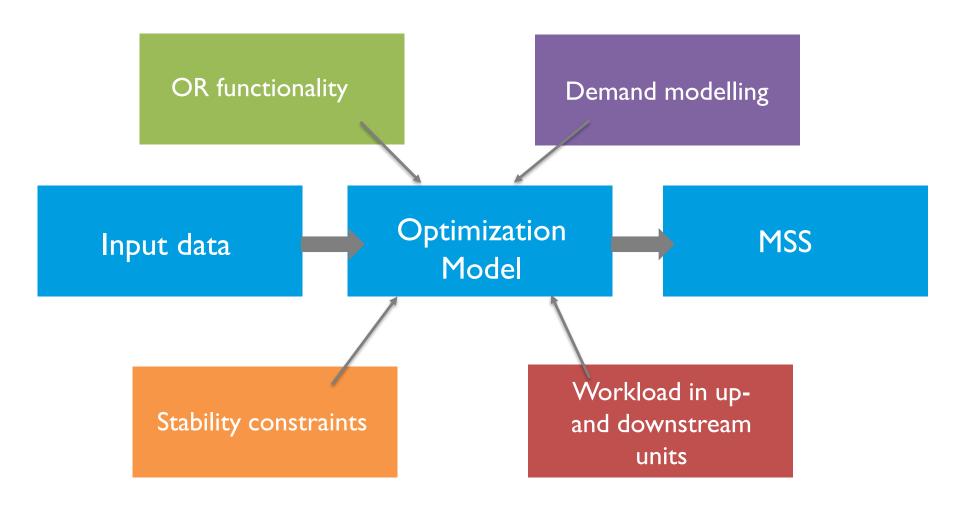
Surgeons
Preference on
Slot

BALANCE SUPPLY AND DEMAND

WL in 28-12-2018

Specialties	% Overall WL length (WL)	% Overall WL duration (WD)	% Allocated blocks (AB)	Difference (WL-AB)	Difference (WD-AB)
General	36.5 %	48.6 %	37.2 %	- 0.7 %	11.4 %
Plastic	10.3 %	8.6 %	6.6 %	3.7 %	2.0 %
Stomatology	0.5 %	0.3 %	0.3 %	0.2 %	0.0 %
Ophtalmology	24.0 %	13.6 %	18.6 %	5.4 %	-5.0 %
Orthopedics	8.4 %	10.0 %	16.3 %	-7.9 %	-6.3 %
ORL	7.9 %	5.8 %	9.2 %	- 1.3 %	-3.4 %
Pediatric	3.1 %	1.3 %	2.4 %	0.7 %	-1.1 %
Urology	9.3 %	11.8 %	9.3 %	0.0 %	2.5 %

UP- AND DOWNSTREAM UNITS WORKLOAD


LITERATURE REVIEW

Objectives	Surgical team preferences	Balance supply and demand	Up and downstream units workload	Stability/Flexibility of MSS
Banditori et al. (2013)		# PAT WL + DUEDATE		
Abdelrasol et al. (2014)				MOD BLOCK SCHED
Malik et al. (2015)		MIN # PAT WL		
Visintin et al. (2016)				FLEX_ALLOW VAR
Abedini et al. (2017)			PAT FLOW	
Dellaert et al. (2017)			TARGET WORKLOAD	
Penn et al. (2017)	MAX SURG PREF			
Marques et al. (2019)			MIN VARIABILITY	MAX STAB
OUR PROPOSAL	SURG + ANEST PREF	OR TIME	TARGET WORK + CAP	STAB CONSTRAINT

METHODOLOGY

$$\sum_{s \in S} x_{swdbr} \le 1 \quad \forall w \in W, d \in D, b \in B, r \in R$$

$$\sum_{s \in S} \sum_{d \in D} \sum_{b \in B} \sum_{r \in R} x_{swdbr} \le slot s_w \quad \forall w \in W$$

$$\delta^{surg} \sum_{r \in \mathbb{R}} x_{swdbr} \le a^{surg}_{swdb} \quad \forall s \in \mathbb{S}, w \in \mathbb{W}, d \in \mathbb{D}, b \in \mathbb{B}$$

$$\delta^{surg} \sum_{b \in B} \sum_{r \in R} x_{swdbr} \le \sum_{i \in I_r} a^{surgD}_{iwd} \quad \forall s \in S, w \in W, d \in D$$

$$\delta^{surg} \sum_{d \in D} \sum_{b \in B} \sum_{r \in R} x_{swdbr} \le \sum_{i \in L} w w_i^{surg} \quad \forall s \in S, w \in W$$

$$\delta^{anest} \sum_{s \in S} \sum_{r \in R} x_{swdbr} \le a_{wdb}^{anest} \quad \forall w \in W, d \in D, b \in B$$

$$\delta^{anest} \sum_{s \in S} \sum_{b \in B} \sum_{r \in R} x_{swdbr} \le \sum_{a \in A} a_{awd}^{anestD} \quad \forall w \in W, d \in D$$

$$\delta^{anest} \sum_{s \in S} \sum_{d \in D} \sum_{b \in B} \sum_{r \in R} x_{swdbr} \le \sum_{a \in A} ww_a^{anest} \quad \forall w \in W$$

$$\sum_{w \in W_m} \sum_{d \in D} \sum_{b \in B} \sum_{r \in R} x_{swdbr} \ge mw_{sm} \quad \forall s \in S, m \in M$$

MODEL

Gaps: 0.21-2.34 30min CPU

Demand modelling

$$p_{sw} = p_{s,w-1} + ent_{s,w-1} - \sum_{d \in D} \sum_{b \in B} \sum_{r \in R} \lambda_s x_{s,w-1,d,b,r} \quad \forall s \in S, w \in W \setminus \{1\}$$

$$p_{s1} = inic_s \quad \forall s \in S$$

$$t_{sw} = p_{sw} dur_s \quad \forall s \in S, w \in W$$

$$\theta \sum_{d \in D} \sum_{b \in B} \sum_{r \in R} x_{swdbr} + t_{sw}^{-} - t_{sw}^{+} = t_{sw} \quad \forall s \in S, w \in W$$

OR Functionality

Input data

Stability

 $\max \sum_{s \in S} \sum_{w \in W} \sum_{d \in D} \sum_{b \in B} \sum_{r \in R} \left(\frac{\sum_{i \in I_s} \kappa_{idb}^{surg}}{|I|} + \frac{\sum_{a \in A} \kappa_{adb}^{anest}}{|A|} \right) x_{swdbr}$ $-\frac{1}{|W|} \sum_{s \in S} \sum_{w \in W} \left(t_{sw}^- + t_{sw}^+ \right) - \sum_{z \in Z} w_z \sum_{k \in K} \frac{u_{zk}^- + u_{zk}^+}{u_{zk}}$

Up and downstream units

 $|x_{swdbr} - x_{sw_{1m}dbr}| = y_{swdbr} \quad \forall s \in S, w \in W_m \setminus \{w_{1m}\}, m \in M, d \in D,$ $b \in B, r \in R$

$$\sum_{s \in S} \sum_{d \in D} \sum_{b \in B} \sum_{r \in R} y_{swdbr} \le \Delta_w \quad \forall w \in W$$

$$|x_{swdbr} - x_{sldbr}| = j_{swdbr} \quad \forall s \in S, w \in W_m, m \in M \setminus \{1\},$$

$$l = w - \sum_{g \le m} |W_g|, d \in D, b \in B, r \in R$$

$$\sum_{s \in S} \sum_{w \in W} \sum_{d \in D} \sum_{k \in D} \sum_{r \in P} j_{swdbr} \le \Delta_m \quad \forall m \in M$$

 $0 \le f_{zk} - \sum_{s \in S_z} \sum_{b \in B} \sum_{r \in R} \sum_{l=0}^{n_{zs}-1} \lambda_s e_{zsk} x_{s,w,d \pm l,b,r} \le 1 \quad \forall z \in \mathbb{Z}, k \in \mathbb{K} : k \to (w,d),$

$$w \in \mathbf{W}, d \in \mathbf{D}$$

$$f_{zk} + u_{zk}^- - u_{zk}^+ = u_{zk} \quad \forall z \in Z, k \in K$$

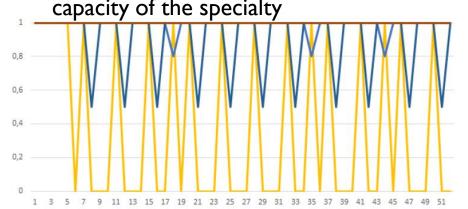
 $u_{zk}^+ \le c_{zk} - u_{zk} \quad \forall z \in Z, k \in K$

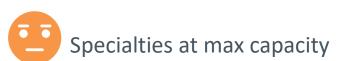
$$u^- \le C(1-v^u) \quad \forall z \in \mathbb{Z}, k \in \mathbb{K}$$

$$u_{zk}^{-} \le G(1 - v_{zk}^{\mathbf{u}}) \quad \forall z \in \mathbf{Z}, k \in \mathbf{K}$$

$$u_{zk}^+ \le G \ v_{zk}^{\mathbf{u}} \quad \forall z \in \mathbf{Z}, k \in \mathbf{K}$$

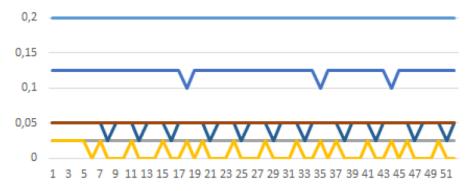
Real Capacity

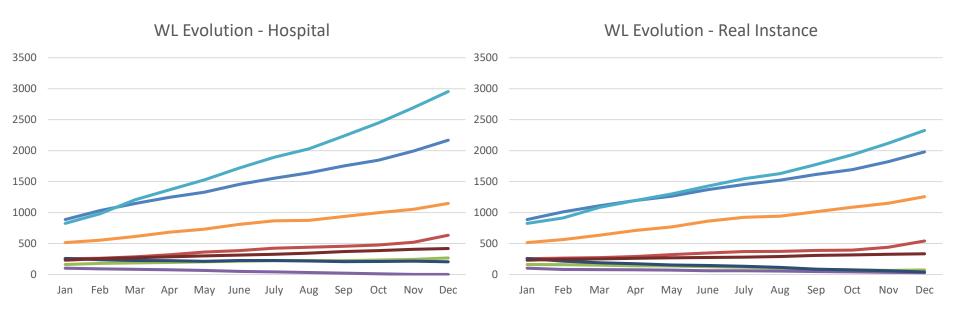

Waiting list (%)


9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

High demand, short surgeries, high resources consumption

Specialty capacity (%), compared to the max capacity of the specialty

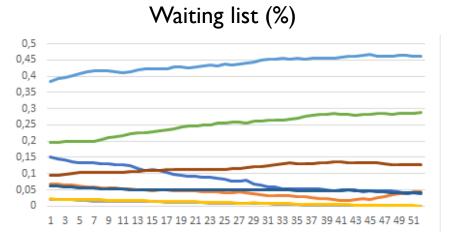


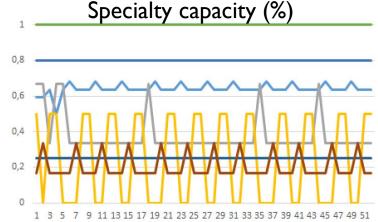

Allocated slots (%): percentage of total available slots

0.35

Real Capacity: Evolution of the waiting list

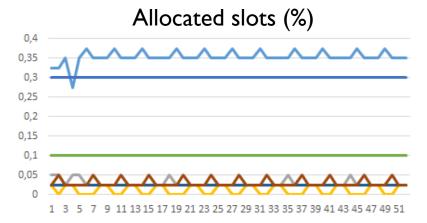
- ✓ Capacity constraints
- ✓ Better management of low resources

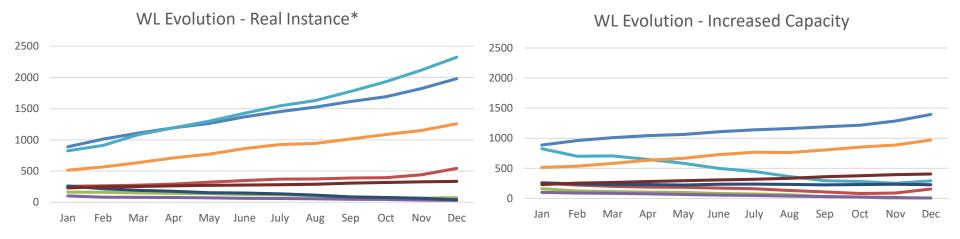




High demand, long surgeries, 5 surgeons – difficult to match demand

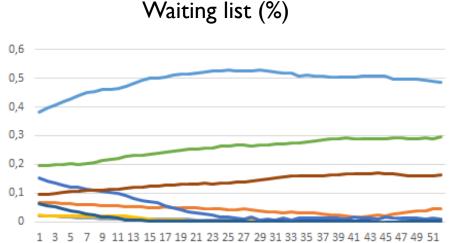
Increased Capacity (Real Capacity + 2 slots per doctor)



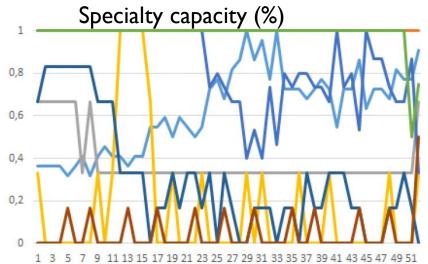


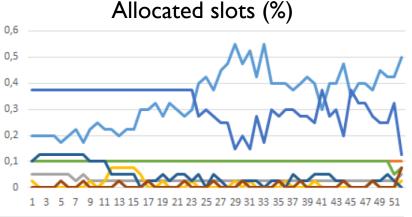
Increased Capacity: Evolution of the waiting list

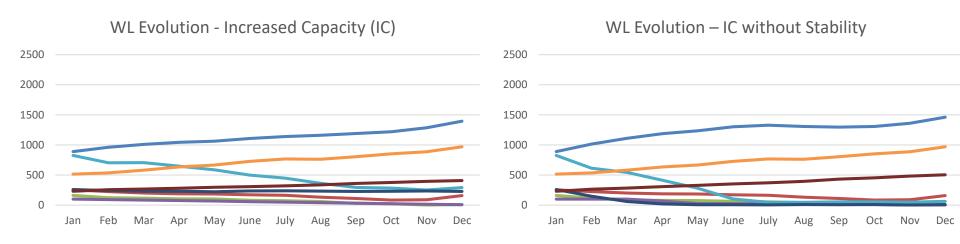
- * Assuming 100% utilization
- ✓ WL reduces for large demand specialties
- Ophthalmology, General surgery, Orthopedics (lower decrease)


Specialty	General	Plastic	Pediatric	Stomathology	Ophtalmology	Orthopedics	ORL	Urology
#Doctors	14	2	2	2	10	5	4	4

Increased Capacity + No Stability Constraints







No Stability Constraints: Evolution of the waiting list

- ✓ WL reduces for most specialties
- ✓ Except General surgery and Orthopedics (already reduced in IC) and Urology (4 surgeons)
- ✓ Schedules more patients
- ✓ Tradeoff nb of surgeries vs surgeons satisfaction

CONCLUSIONS

Static & old MSS

Inefficient use of OR

Long WT

Major bottleneck: workforce (mainly surgeons)

Stability constraints and workload capacity influence the compliance with the dynamic demand

FUTURE WORK

Predictive model for demand forecast

Sensitivity analysis on stability parameters

Consistent models for stakeholders' preferences

Simulation model for an evaluation of the model at disaggregated level

Impact of preferences in OR utilization

Reallocating operating room time: a Portuguese case

Thank you!

mariana.m.oliveira@tecnico.ulisboa.pt ines.marques.p@tecnico.ulisboa.pt

The authors acknowledge the support provided by FCT and P2020 under the project PTDC/EGE-OGE/30442/2017, Lisboa-01.0145-Feder-30442

