Probabilidades e Estatística

LEE, LEGI, LENO, LETI, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMat, MEQ

1º semestre – 2018/2019 12/06/2019 – **9:00**

2º Teste A

Duração: 90 minutos

Justifique convenientemente todas as respostas

Grupo I 10 valores

- 1. Considere que o número de ovos partidos em cada embalagem de 6 ovos vendida por uma cadeia de supermercados é uma variável aleatória X com distribuição binomial com parâmetros n = 6 e $p \in [0,1]$.
 - (a) Obtenha o estimador de máxima verosimilhança do parâmetro p baseado numa amostra aleatória (3.0) $(X_1, X_2, ..., X_m)$ de X.
 - V.a. de interesse / distribuição

X = número de ovos partidos em embalagem de 6 ovos

 $X \sim \text{binomial}(6, p)$

• E.p. de X

$$P(X = x) = {6 \choose x} p^x (1-p)^{6-x}, \quad x = 0, 1, ..., 6$$

· Parâmetro desconhecido

$$p$$
, $0 \le p \le 1$

• Amostra aleatória

$$\underline{\underline{X}} = (X_1, \dots, X_m)$$

$$X_i \overset{i.i.d}{\sim} X, \quad i = 1, \dots, m$$

• Amostra

 $x = (x_1, ..., x_m)$ amostra de dimensão m proveniente da população X

• Obtenção da estimativa de MV de p

Passo 1 — Função de verosimilhança

$$L(p \mid \underline{x}) = P(\underline{X} = \underline{x})$$

$$X_i \stackrel{i.i.d}{\sim} X \prod_{i=1}^m P(X = x_i)$$

$$= \prod_{i=1}^m \left[\binom{6}{x_i} p^{x_i} (1-p)^{6-x_i} \right]$$

$$= \left[\prod_{i=1}^m \binom{6}{x_i} \right] p^{\sum_{i=1}^m x_i} (1-p)^{\sum_{i=1}^m (6-x_i)}, \quad 0 \le p \le 1$$

Passo 2 — Função de log-verosimilhança

$$\ln L(p \mid \underline{x}) = \sum_{i=1}^{m} \ln \left[\begin{pmatrix} 6 \\ x_i \end{pmatrix} \right] + \ln(p) \sum_{i=1}^{m} x_i + \ln(1-p) \sum_{i=1}^{m} (6-x_i), \quad 0$$

Passo 3 — Maximização

A estimativa de MV de p é doravante representada por \hat{p} e

$$\hat{p} : \begin{cases} \frac{d \ln L(p|\underline{x})}{dp} \Big|_{p=\hat{p}} = 0 & \text{(ponto de estacionaridade)} \\ \frac{d^2 \ln L(p|\underline{x})}{dp^2} \Big|_{p=\hat{p}} < 0 & \text{(ponto de máximo)} \end{cases}$$

$$\begin{cases} \frac{\sum_{i=1}^m x_i}{\hat{p}} - \frac{\sum_{i=1}^m (6-x_i)}{1-\hat{p}} = 0 \\ -\frac{\sum_{i=1}^m x_i}{\hat{p}^2} - \frac{\sum_{i=1}^m (6-x_i)}{(1-\hat{p})^2} < 0 \end{cases}$$

$$\hat{p} : \begin{cases} (1-\hat{p}) \sum_{i=1}^{m} x_i - \hat{p} \sum_{i=1}^{m} (6-x_i) = 0 \\ \text{Prop. verdadeira já que } \sum_{i=1}^{m} x_i \in \{0,1,\ldots,6m\}, \quad \sum_{i=1}^{m} (6-x_i) \in \{6m,6m-1,\ldots,0\} \\ \sum_{i=1}^{m} x_i - 6m \, \hat{p} = 0 \\ --- \\ \begin{cases} \hat{p} = \frac{\sum_{i=1}^{m} x_i}{6m} \quad \text{[estimativa também válida se } \sum_{i=1}^{m} x_i = 0 \text{ ou } \sum_{i=1}^{m} x_i = 6m] \\ --- \end{cases}$$

• Passo 4 — Estimador de MV de p

$$EMV(p) = \frac{\sum_{i=1}^{m} X_i}{6m}$$
$$= \frac{\bar{X}}{6}.$$

- (b) Com base numa amostra $(x_1,...,x_{200})$ tal que $\sum_{i=1}^{200} x_i = 20$, calcule a estimativa de máxima (1.5) verosimilhança da probabilidade de uma embalagem de ovos não conter qualquer ovo partido.
 - Estimativa de MV de p

$$\hat{p} = \frac{\sum_{i=1}^{m} x_i}{6m}$$

$$= \frac{20}{6 \times 200}$$

$$= \frac{1}{60}$$

$$= 0.01(6)$$

· Outro parâmetro desconhecido

$$h(p) = P(X = 0) = (1 - p)^6$$

• Estimativa de MV de h(p)

Ao invocarmos a propriedade de invariância dos estimadores de máxima verosimilhança, obtemos a estimativa de MV de h(p):

$$\widehat{h(p)} = h(\widehat{p})$$

= $(1 - \widehat{p})^6$
= $[1 - 0.01(6)]^6$
\approx 0.904075.

- **2.** Uma fábrica de instrumentos de medida efectua estudos da qualidade da sua produção. De anteriores estudos sabe-se que as leituras efetuadas são realizações independentes de uma variável aleatória X e possuem distribuição normal. As leituras feitas em nove instrumentos selecionados ao acaso conduziram a $\bar{x} = 0.995$ e s = 0.0085.
 - (a) Construa um intervalo de confiança a 95% para o valor esperado da leitura dos instrumentos (2.5) fabricados.
 - V.a. de interesse

X = leitura na medição do objecto-padrão

• Situação

 $X \sim \text{normal}(\mu, \sigma^2)$ $\mu \text{ DESCONHECIDO}$ $\sigma^2 \text{ desconhecido}$

• Obtenção do IC para μ

Passo 1 — Selecção da v.a. fulcral para μ

$$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{(n-1)}$$

[dado que é suposto determinar um IC para o valor esperado de uma população normal, com variância desconhecida.]

Passo 2 — Obtenção dos quantis de probabilidade

Ao ter-se em consideração que $(1 - \alpha) \times 100\% = 95\%$, far-se-á uso dos quantis

$$(a_{\alpha}, b_{\alpha}) : \begin{cases} P(a_{\alpha} \leq Z \leq b_{\alpha}) = 1 - \alpha \\ P(Z < a_{\alpha}) = P(Z > b_{\alpha}) = \alpha/2. \end{cases}$$

$$\begin{cases} a_{\alpha} = F_{t_{(n-1)}}^{-1}(\alpha/2) = F_{t_{(9-1)}}^{-1}(0.025) = -F_{t_{(8)}}^{-1}(1 - 0.025) \stackrel{tabela/calc.}{=} -2.306 \\ b_{\alpha} = F_{t_{(n-1)}}^{-1}(1 - \alpha/2) = F_{t_{(9-1)}}^{-1}(0.975) \stackrel{tabela/calc.}{=} 2.306. \end{cases}$$

Passo 3 — Inversão da desigualdade $a_{\alpha} \le Z \le b_{\alpha}$

$$\begin{split} P(a_{\alpha} \leq Z \leq b_{\alpha}) &= 1 - \alpha \\ P\left[a_{\alpha} \leq \frac{\bar{X} - \mu}{S / \sqrt{n}} \leq b_{\alpha}\right] &= 1 - \alpha \\ P\left[\bar{X} - b_{\alpha} \times \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X} - a_{\alpha} \times \frac{S}{\sqrt{n}}\right] &= 1 - \alpha \end{split}$$

Passo 4 — Concretização

Tendo em conta os quantis acima, as concretizações de \bar{X} e S,

$$\bar{x} = 0.995$$
 $s = 0.0085$,

e o facto de

$$IC_{(1-\alpha)\times 100\%}(\mu) = \left[\bar{x} - F_{t_{(n-1)}}^{-1}(1-\alpha/2) \times \frac{s}{\sqrt{n}}, \quad \bar{x} + F_{t_{(n-1)}}^{-1}(1-\alpha/2) \times \frac{s}{\sqrt{n}}\right],$$

segue-se

$$IC_{95\%}(\mu) = \left[0.995 - 2.306 \times \frac{0.0085}{\sqrt{9}}, \quad 0.995 + 2.306 \times \frac{0.0085}{\sqrt{9}}\right]$$

= $[0.988466, 1.001534].$

• Comentário

Atendendo a que o valor-alvo da leitura, 1, pertence ao $IC_{95\%}(\mu)$, podemos afirmar que os dados não apontam para qualquer desvio sistemático na calibração dos instrumentos.

- (b) Avalie se os dados não contrariam a hipótese H_0 de que o desvio-padrão das leituras é igual a 0.008 (3.0) a favor da hipótese H_1 de que tal desvio-padrão é superior a 0.008. Decida com base no valor-p.
 - Hipóteses

$$H_0: \sigma = \sigma_0 = 0.008$$

 $H_1: \sigma > \sigma_0$

• Estatística de teste

$$T = \frac{(n-1)S^2}{\sigma_0^2} \sim_{H_0} \chi_{(n-1)}^2$$

[pois pretendemos efectuar teste sobre o desvio-padrão de população normal, com valor esperado desconhecido.]

• Região de rejeição de H₀ (para valores de T)

Tratando-se de um teste unilateral superior $(H_1: \sigma > \sigma_0)$, a região de rejeição de H_0 é do tipo $W = (c, +\infty)$.

Decisão (com base em intervalo para o valor-p)

O valor observado da estatística de teste é dado por

$$t = \frac{(n-1)s^2}{\sigma_0^2}$$
$$= \frac{(9-1) \times 0.0085^2}{0.008^2}$$
$$\approx 9.031250.$$

Dado que a região de rejeição deste teste é um intervalo à direita, temos:

$$\begin{array}{rcl} valor - p & = & P(T > t \mid H_0) \\ & = & 1 - F_{\chi^2_{(B)}}(t) \\ & \simeq & 1 - F_{\chi^2_{(B)}}(9.031250). \end{array}$$

Recorrendo às tabelas de quantis da distribuição do qui-quadrado podemos adiantar um intervalo para o valor-*p*:

$$\begin{split} F_{\chi^2_{(8)}}^{-1}(0.60) &= 8.351 &< 9.031250 &< 9.524 = F_{\chi^2_{(8)}}^{-1}(0.70) \\ &1 - 0.7 = 0.3 &< valor - p = 1 - F_{\chi^2_{(8)}}(9.031250) &< 0.40 = 1 - 0.60. \end{split}$$

Consequentemente:

- não devemos rejeitar H_0 a qualquer n.s. α_0 ≤ 30%, nomeadamente aos n.u.s. de 1%, 5% e 10%;
- devemos rejeitar H_0 a qualquer n.s. α_0 ≥ 40%.

• [Decisão (com base no valor-p)

Tendo em conta o que se refere acima

$$valor - p \simeq 1 - F_{\chi^2_{(8)}}(9.031250)$$

$$\stackrel{calc.}{\simeq} 0.339667.$$

Logo, é suposto:

- − não rejeitar H_0 a qualquer n.s. $\alpha_0 \le 33.9667\%$, nomeadamente aos n.u.s. de 1%, 5% e 10%;
- rejeitar H_0 a qualquer n.s. $\alpha_0 > 33.9667\%$.]

Grupo II 10 valores

1. Uma investigadora defende a hipótese H_0 de que a variável aleatória X, que representa o número de dias de internamento por doente em certo serviço hospitalar, possui função de probabilidade dada por

$$P(X=x) = {x-1 \choose 3} p^4 (1-p)^{x-4}, \quad x \in \{4, 5, \dots\},$$

onde $p \in]0,1[$ é desconhecido. Para avaliar esta conjectura, ela recolheu dados referentes a 200 internamentos selecionados ao acaso e agrupou-os em 5 classes na tabela de frequências abaixo:

Classe	{4,5}	{6}	{7}	{8}	{9,10,}
Frequência absoluta observada	63	33	37	24	43
Estimativa da frequência absoluta esperada sob H_0	51.24	e_2	33.35	26.27	e_5

(a) Sabendo que a estimativa de máxima verosimilhança de p é $\hat{p}=0.55$, obtenha os valores das (1.0) estimativas e_2 e e_5 (aproximando-as às centésimas).

• V.a. de interesse

X = número de dias de internamento por doente em certo serviço hospitalar

• E.p. conjecturada

 $P(X = x) = {x-1 \choose 3} p^4 (1-p)^{x-4}, x \in \{4, 5, ...\}, \text{ onde } p \text{ \'e um parâmetro desconhecido em }]0,1[.$

• Estimativas das frequências absolutas esperadas omissas

Atendendo à dimensão da amostra n=200, à f.p. conjecturada, à estimativa de MV facultada $\hat{p} \simeq 0.55$ e à propriedade de invariância dos EMV, temos:

$$e_{2} = n \times \widehat{P(X=6)}$$

$$= n \times P(X=6 \mid p=\hat{p})$$

$$= 200 \times \binom{6-1}{3} \hat{p}^{4} (1-\hat{p})^{6-4}$$

$$\approx 37.06;$$

$$e_{5} = n - \sum_{i=1}^{4} e_{i}$$

$$\approx 200 - (51.24 + 37.06 + 33.35 + 26.27)$$

$$= 52.08.$$

(b) Teste H_0 , ao nível de significância de 5%.

Hipóteses

 $H_0: P(X = x) = {x-1 \choose 3} p^4 (1-p)^{x-4}, x \in \{4, 5, ...\}$ (p desconhecido)

• Nível de significância

 $\alpha_0 = 5\%$

• Estatística de teste

$$T = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} \stackrel{a}{\sim}_{H_0} \chi^2_{(k-\beta-1)},$$

onde:

k = No. de classes = 5

 O_i = Frequência absoluta observável da classe i

 E_i = ESTIMADOR da frequência absoluta esperada, sob H_0 , da classe i

 β = No. de parâmetros a estimar = 1 [dado que p é uma probabilidade desconhecida.]

• Estimativas das frequências absolutas esperadas sob H_0

De acordo com a tabela facultada e a alínea (a), as estimativas [de MV] das frequências absolutas esperadas sob H_0 aproximadas às centésimas são: $e_1 \simeq 51.24$; $e_2 \simeq 37.06$; $e_3 \simeq 33.35$; $e_4 \simeq 26.27$; $e_5 \simeq 52.08$.

[Não é necessário fazer qualquer agrupamento de classes uma vez que em pelo menos 80% das classes se verifica $e_i \ge 5$ e que $e_i \ge 1$ para todo o i. Caso fosse preciso efectuar agrupamento de classes, os valores de k e $c = F_{\chi^2_{(k-\beta-1)}}^{-1} (1-\alpha_0)$ teriam que ser recalculados...]

• Região de rejeição de H_0 (para valores de T)

Tratando-se de um teste de ajustamento, a região de rejeição de H_0 é o intervalo à direita $W=(c,+\infty)$, onde

$$c = F_{\chi^{2}_{(k-\beta-1)}}^{-1} (1-\alpha_{0})$$

$$= F_{\chi^{2}_{(5-1-1)}}^{-1} (1-0.05)$$

$$tabela/calc. 7.815.$$

(3.0)

	Classe i	Freq. abs. obs.	Estim. freq. abs.	Parcelas valor obs
			esp. sob H_0	estat. teste
i		o_i	e_i	$\frac{(o_i - e_i)^2}{e_i}$
1	{4,5}	63	51.24	$\frac{\frac{(63-51.24)^2}{51.24}}{\frac{(33-37.06)^2}{37.06}} \approx 2.699$
2	{6 }	33	37.06	$\frac{(33-37.06)^2}{37.06} \simeq 0.445$
3	{7 }	37	33.35	0.399
4	{8}	24	26.27	0.196
5	$\{9, 10, \ldots\}$	43	52.08	1.583
		$\sum_{i=1}^{k} o_i = n = 200$	$\sum_{i=1}^{k} e_i = n = 200$	$t = \sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i} \approx 5.3$

Uma vez que $t \simeq 5.322 \not\in W = (7.815, +\infty)$, não devemos rejeitar H_0 ao n.s. de $\alpha_0 = 5\%$ [nem a qualquer outro n.s. inferior a α_0].

2. Um conjunto de seis medições independentes conduziu aos seguintes resultados referentes ao desgaste de um rolamento (*Y*) e à viscosidade do óleo usado no mesmo rolamento (*x*):

$$\sum_{i=1}^{6} x_i = 155.1, \ \sum_{i=1}^{6} x_i^2 = 5264.81, \ \sum_{i=1}^{6} y_i = 931, \ \sum_{i=1}^{6} y_i^2 = 158759, \ \sum_{i=1}^{6} x_i y_i = 20172,$$

onde $[\min_{i=1,\dots,6} x_i, \max_{i=1,\dots,5} x_i] = [1.6, 43].$

(a) Admitindo a validade das hipóteses de trabalho habituais para o modelo de regressão linear simples (1.5) de Y em x, obtenha as estimativas de máxima verosimilhança dos coeficientes β_0 e β_1 .

$$\epsilon_i \stackrel{i.i.d.}{\sim} \text{Normal}(0, \sigma^2), i = 1, ..., n$$

• Estimativas de MV de β_0 e β_1

Dado que

$$n = 6$$

$$\sum_{i=1}^{n} x_i = 155.1$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{155.1}{6} = 25.85$$

$$\sum_{i=1}^{n} x_i^2 = 5264.81$$

$$\sum_{i=1}^{n} x_i^2 - n(\bar{x})^2 = 5264.81 - 6 \times 25.85^2 = 1255.4750$$

$$\sum_{i=1}^{n} y_i = 931$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{931}{6} = 155.1(6)$$

$$\sum_{i=1}^{n} y_i^2 = 158759$$

$$\sum_{i=1}^{n} y_i^2 - n(\bar{y})^2 = 158759 - 6 \times 155.1(6)^2 = 14298.8(3)$$

$$\sum_{i=1}^{n} x_i y_i = 20172$$

$$\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} = 20172 - 6 \times 25.85 \times 155.1(6) = -3894.35,$$

as estimativas de MQ de β_1 , β_0 são, para este modelo de RLS, iguais a:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2} - n (\bar{x})^{2}}$$

$$= \frac{-3894.35}{1255.4750}$$

$$\approx -3.101894$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \times \bar{x}$$

$$\approx 155.1(6) - (-3.101894) \times 25.85$$

$$\approx 235.350619.$$

(b) Obtenha um intervalo de confiança a 95% para o valor esperado do desgaste de um rolamento (3.5) usando óleo com viscosidade igual a 35.

Confronte $H_0: \beta_0 + 35\beta_1 = 100$ e $H_1: \beta_0 + 35\beta_1 \neq 100$, ao nível de significância de 5%, tirando partido do intervalo que obteve.

• Obtenção do IC para $E(Y \mid x = x_0) = \beta_0 + \beta_1 x_0$, com $x_0 = 35$

Passo 1 — V.a. fulcral para $E(Y | x = x_0) = \beta_0 + \beta_1 x_0$

$$Z = \frac{(\hat{\beta}_0 + \hat{\beta}_1 x_0) - (\beta_0 + \beta_1 x_0)}{\sqrt{\hat{\sigma}^2 \times \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n x_i^2 - n \, \bar{x}^2}\right]}} \sim t_{(n-2)}$$

Passo 2 — Quantis de probabilidade

Já que $(1 - \alpha) \times 100\% = 95\%$, temos $\alpha = 0.05$ e lidaremos com os quantis

$$\left\{ \begin{array}{l} a_{\alpha} = F_{t_{(n-2)}}^{-1}(\alpha/2) = -F_{t_{(6-2)}}^{-1}(1-0.05/2) = -F_{t_{(4)}}^{-1}(0.975) \stackrel{tabela/calc.}{=} -2.776 \\ b_{\alpha} = F_{t_{(6-2)}}^{-1}(1-0.05/2) = F_{t_{(4)}}^{-1}(0.975) \stackrel{tabela/calc.}{=} 2.776. \end{array} \right.$$

Passo 3 — Inversão da desigualdade $a_{\alpha} \le Z \le b_{\alpha}$

$$P(a_{\alpha} \le Z \le b_{\alpha}) = 1 - \alpha$$

$$P\left[a_{\alpha} \leq \frac{(\hat{\beta}_{0} + \hat{\beta}_{1}x_{0}) - (\beta_{0} + \beta_{1}x_{0})}{\sqrt{\hat{\sigma}^{2} \times \left[\frac{1}{n} + \frac{(x_{0} - \bar{x})^{2}}{\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2}}\right]}} \leq b_{\alpha}\right] = 1 - \alpha$$

$$\begin{split} P\left[(\hat{\beta}_0 + \hat{\beta}_1 x_0) - b_\alpha \times \sqrt{\hat{\sigma}^2 \times \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n x_i^2 - n \, \bar{x}^2} \right]} \leq \beta_0 + \beta_1 x_0 \\ & \leq (\hat{\beta}_0 + \hat{\beta}_1 x_0) - a_\alpha \times \sqrt{\hat{\sigma}^2 \times \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n x_i^2 - n \, \bar{x}^2} \right]} \right] = 1 - \alpha \end{split}$$

• Passo 4 — Concretização

Dado que a estimativa de σ^2 é igual a

$$\hat{\sigma}^2 = \frac{1}{n-2} \left[\left(\sum_{i=1}^n y_i^2 - n \, \bar{y}^2 \right) - (\hat{\beta}_1)^2 \left(\sum_{i=1}^n x_i^2 - n \, \bar{x}^2 \right) \right]$$

$$\simeq \frac{1}{6-2} \left(14298.8(3) - (-3.101894)^2 \times 1255.4750 \right)$$

$$\simeq 554.742814$$

e a expressão geral do IC pretendido é

$$IC_{(1-\alpha)\times 100\%}(\beta_0+\beta_1x_0) = \left[(\hat{\beta}_0+\hat{\beta}_1x_0) \pm F_{t_{(n-2)}}^{-1}(1-\alpha/2) \times \sqrt{\hat{\sigma}^2 \times \left[\frac{1}{n} + \frac{(x_0-\bar{x})^2}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} \right]} \right],$$

temos

$$\begin{split} & IC_{95\%}(\beta_0 + \beta_1 \times 35) \\ & \simeq \left[[235.350619 + (-3.101894) \times 35] \pm 2.776 \times \sqrt{554.742814 \times \left[\frac{1}{6} + \frac{(35-25.85)^2}{1255.4750} \right]} \right] \\ & \simeq [126.784339 \pm 2.776 \times 11.377645] \\ & \simeq [95.199997, 158.368681]. \end{split}$$

Hipóteses

$$H_0: \beta_0 + 35\beta_1 = 100$$

 $H_1: \beta_0 + 35\beta_1 \neq 100$

• N.s. $\alpha_0 = 0.05$

• Decisão

Invocando a relação entre intervalos de confiança e testes de hipóteses (bilaterais), não devemos rejeitar a hipótese $H_0: \beta_0 + 35\beta_1 = 100$ (a favor da hipótese $H_1: \beta_0 + 35\beta_1 \neq 100$), ao n.s. de $\alpha \times 100\% = 100\% - 95\% = 5\%$ [ou a qualquer n.s. inferior a 5%] já que

$$100 \in IC_{95\%}\beta_0 + 35\beta_1) = [95.199997, 158.368681].$$

(c) Obtenha e interprete o valor do coeficiente de determinação do modelo ajustado.

(1.0)

• Cálculo do coeficiente de determinação

$$r^{2} = \frac{\left(\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}\right)^{2}}{\left(\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}\right) \times \left(\sum_{i=1}^{n} y_{i}^{2} - n \bar{y}^{2}\right)}$$

$$\stackrel{(a)}{=} \frac{(-3894.35)^{2}}{1255.4750 \times 14298.8(3)}$$

$$\approx 0.844814.$$

• Interpretação coeficiente de determinação

Cerca de 84.5% da variação total da variável resposta Y é explicada pela variável x, através do modelo de regressão linear simples ajustado. Logo podemos afirmar que a recta estimada parece ajustar-se bem ao conjunto de dados.