A brief Introduction to Language Recognition

Alberto Abad

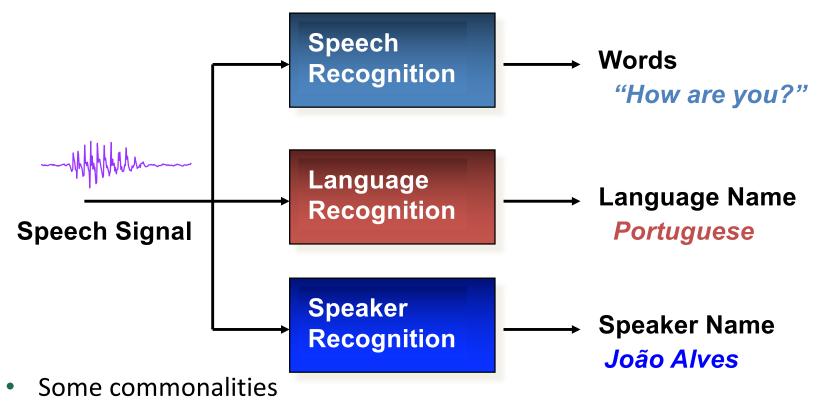
IST/INESC-ID Lisboa, Portugal

alberto.abad@tecnico.ulisboa.pt

Speech Processing - IST Lisboa, May, 2019

Intro: Speech processing

Large area includes: analysis/synthesis, coding, **recognition**.



• Also many particulaties \rightarrow We will see some of them today!!

Intro: LR vs SR

- Speaker Recognition (SR) and Language Recognition (LR) are closely related topics that share some techniques/methods:
 - Similar feature extraction.
 - GMM short-term acoustics modeling.
 - SVM modelling (instead of GMMs) methods.
 - ... but also have some particularities, ie:
 - LR: Phonotactic approaches, many samples for training, etc.
 - SR: Inter-session variability, 1-few samples for training, etc.
- SR and LR have seen great recent improvements (partially) motivated by NIST SRE and LRE competitive evaluation workshops.

Outline

- LR application and approaches
 - Acoustic approaches
 - Phonotactic approaches
- Evaluation and performance
- Other topics:
 - Variety identification
 - Native language (L1) identification

Language recognition applications

- Language Recognition has the potential of being of great utility in the Broadcast News processing chain:
 - Select right ASR (and other language-dependent modules)
 - Reject segments for processing in case of not-covered (or unknown) languages
 - Enrich transcription of spoken documents
 - Select/purify material for unsupervised training
- Variety or **dialect** recognition poses similar (more challenging) problems
- Recent and current work at L²F:
 - LRE evaluation campaigns: ALBAYZIN-2008, NIST LRE 2009, ALBAYZIN-2010 (CTS & BN), LRE 201, ALBAYZIN-2012, ComParE2015 (Nativeness degree), ComParE2016 (Native language detection)
 - Portuguese variety identification: EP, BP & AP

Language recognition approaches

What does people do for Language Verification (LV)?

 Different LV approaches classified according to the kind of source of information they rely on:

– Acoustic phonetics:

- Short-term modelling with GMM, NN, SVM, i-vectors...

- Phonotactics:

- Model rules that govern phoneme combinations.
- Others less common:
 - prosody, morphology, syntax...

LR acoustic approaches

• LR acoustic methods are very similar to the methods used for SR, including:

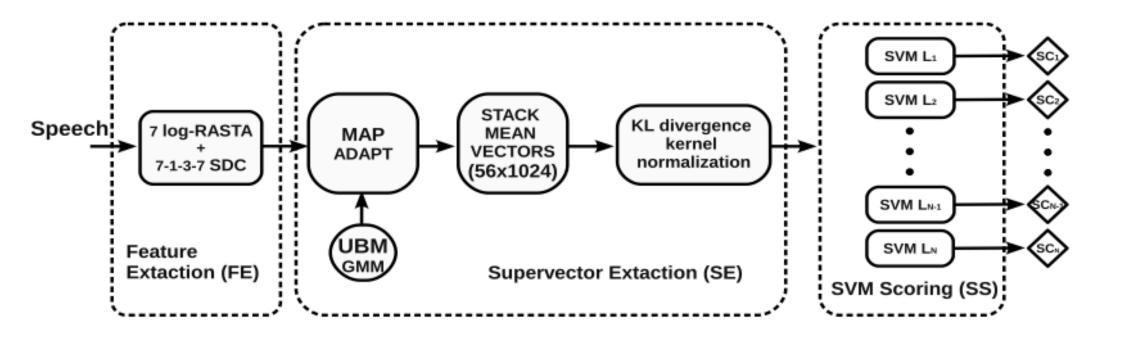
- Cepstral-based features
- GMM-UBM
- Gaussian supervectors
- Factor analysis methods
- Feature normalization, channel compensation, etc...
- Some of the differences are:
 - Features Use features that try to incorporate speech evolution information
 - **Models** In LR we have large amounts of samples of the target classes in contrast to SR where we usually have few utterances
 - Channel compensation is important, but it is not as dramatic as in SR
 - **Back-end** Language scores are used as a kind features for a back-end

LR acoustic approaches: SDC

- Shifted-delta cepstrum (SDC) features are standard for acoustic based LR
 - Concatenate delta frames
 - Typical configuration 7-1-3-7
- Example of front-end (used by us in our systems):

LR acoustic approaches: GSV

 1 LR Gaussian super-vector system (as used for NIST LRE 2011)

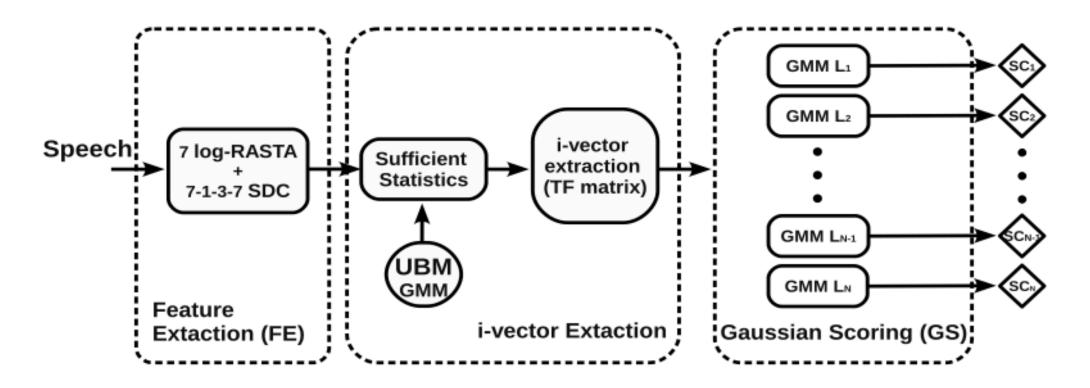


LR acoustic approaches: i-vectors

- The availability of large number of target examples has an impact on techniques.
- For instance in the i-vectors approach:
 - In SR, model and test i-vectors are extracted and cosine score is used.
 - In LR, i-vectors are used as features to train Language Models (GMM, SVM, etc...)

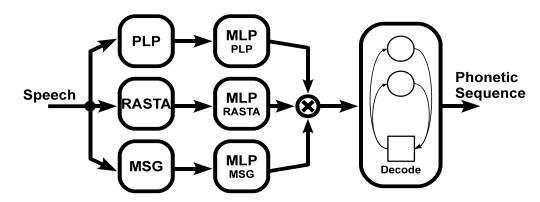
LR acoustic approaches: i-vectors

 i-vector based LR system (as used for NIST LRE2011)



LR: Phonotactics basics (PRLM)

• Use a phonetic tokenizer (of any language) to extract phonetic sequences of every speech segment:



Train For every target language, train an n-gram model with all the training sequences of this language

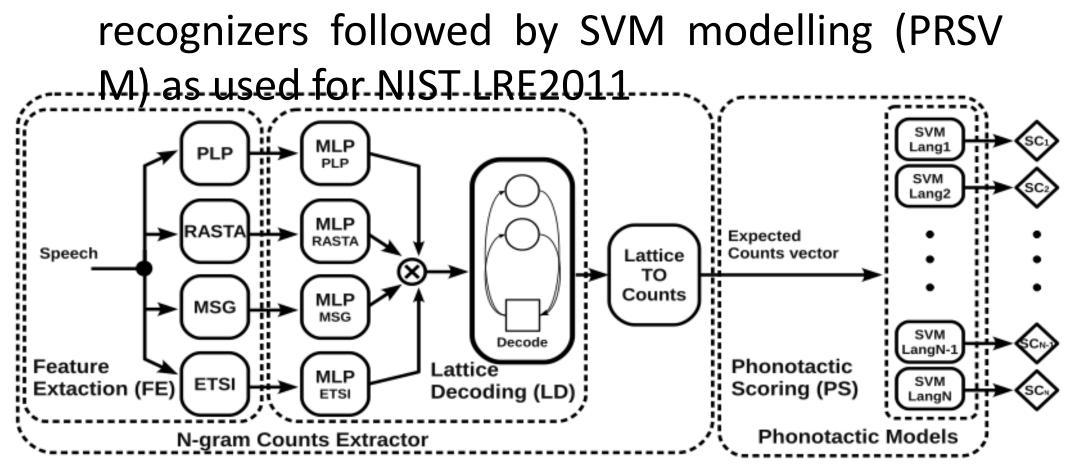
Test Tokenize test segment and compute likelihood for every target language n-gram model

LR: PRLM improvements

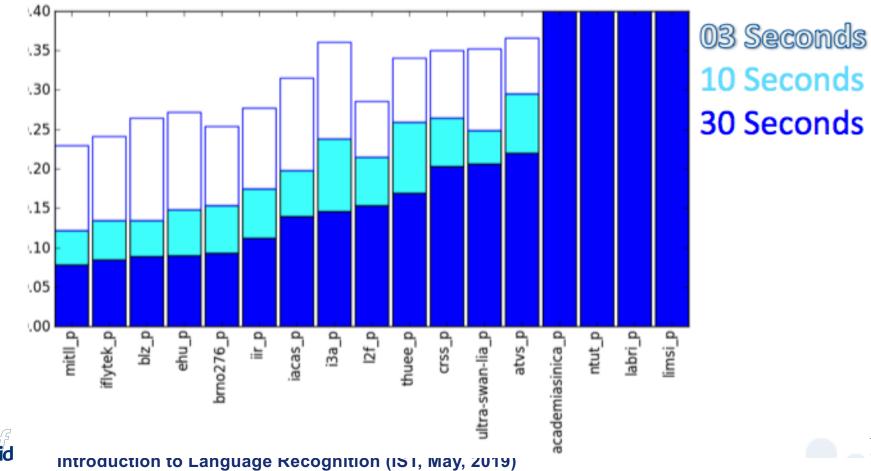
- PRLM methods work extremely well for LR
- Some common approaches to improve PRLM methods include:
 - Parallel systems (PPRLM)
 - Model vector of counts with SVM (instead of ngrams)
 - \odot Use expected n-gram counts
 - \circ Higher orders
 - \odot Dimensionallity reduction

LR: PRLM improvements

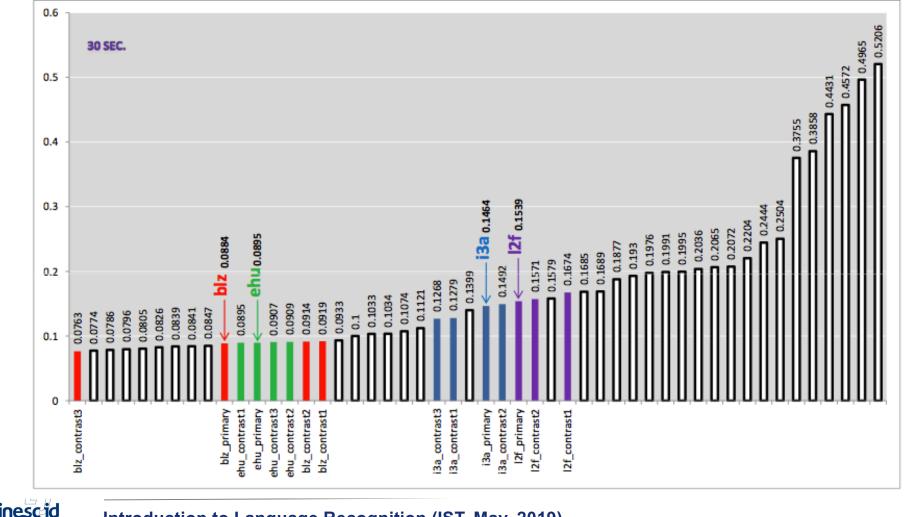
4 Phone-



- Addressed to CTS and telephone BN data
- 24 target highly-confusable languages \rightarrow Language pair detection task
- Cost \rightarrow Average of the 24 more confusable pairs (worse)

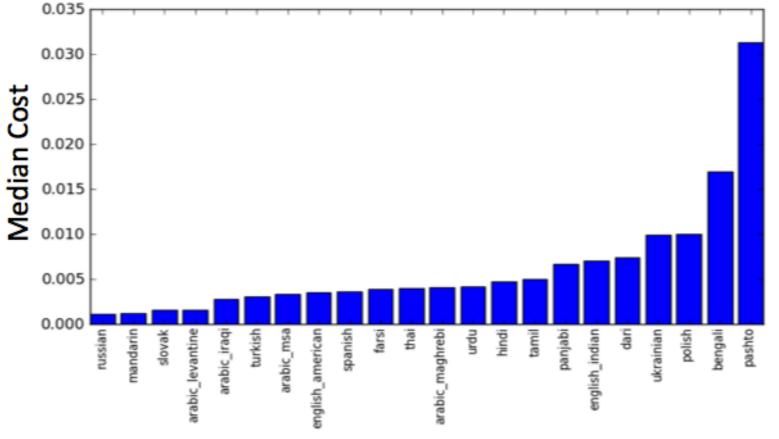


• 30 seconds (all submitted systems)



Introduction to Language Recognition (IST, May, 2019)

Most confusable languages



Most confusable pairs

Pair	min-C _{avg}	act- C_{avg}	act - min	%
Hindi-Urdu	0.2775	0.2952	0.0177	6.38
Lao-Thai	0.1232	0.1724	0.0492	39.94
Panjabi-Urdu	0.1163	0.1446	0.0283	24.33
Hindi-Panjabi	0.0656	0.0761	0.0105	16.01
Czech-Slovak	0.0578	0.0762	0.0184	31.83
Arabic_Maghrebi-Pashto	0.0484	0.0996	0.0512	105.79
Arabic_Iraqi-Arabic_Levantine	0.0471	0.0519	0.0048	10.19
Panjabi-Pashto	0.0413	0.0641	0.0228	55.21
Polish-Ukrainian	0.0401	0.0564	0.0163	40.65
Russian-Ukrainian	0.0344	0.0953	0.0609	177.03
Arabic_Levantine-Arabic_MSA	0.0342	0.0358	0.0016	4.68
Arabic_Levantine-Pashto	0.0316	0.0721	0.0405	128.16
Slovak-Ukrainian	0.0314	0.0413	0.0099	31.53
Arabic_Maghrebi-Panjabi	0.0299	0.0368	0.0069	23.08
Arabic_Iraqi-Pashto	0.0293	0.0643	0.0350	119.45
Dari-Farsi	0.0261	0.0668	0.0407	155.94
Arabic_Levantine-Arabic_Maghrebi	0.0260	0.0309	0.0049	18.85
Panjabi-Tamil	0.0254	0.0797	0.0543	213.78
Pashto-Tamil	0.0249	0.0344	0.0095	38.15
Dari-Pashto	0.0236	0.0966	0.0730	309.32
Bengali-Pashto	0.0235	0.0274	0.0039	16.60
Bengali-Panjabi	0.0229	0.0587	0.0358	156.33
English_Indian-Hindi	0.0216	0.0355	0.0139	64.35
Arabic_Maghrebi-Arabic_MSA	0.0196	0.0213	0.0017	8.67

Introduction to Language Recognition (IST, May, 2019)

- Use automatic variety identification to get more material for unsupervised training (BN shows with mixed AP / EP)
- Based on the combination (LLR fusion) of:
 - Conventional PPRLM
 - Conventional GSV
 - **NEW** PRLM mono-phonemic approach

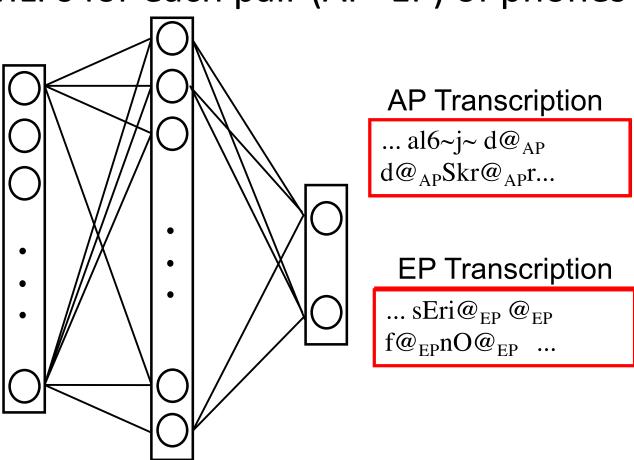
 \odot Phones that appear in a single variety

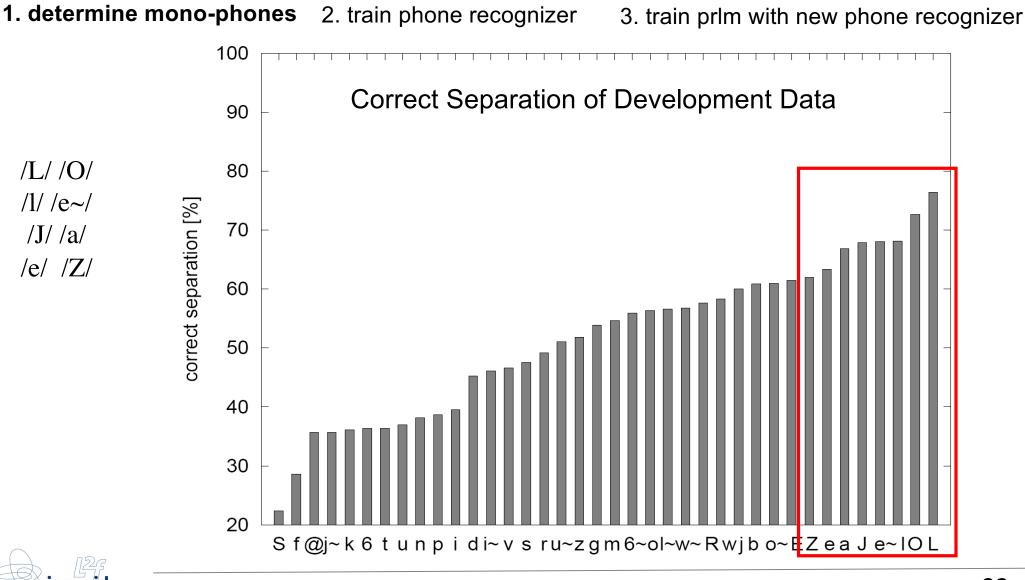
1. determine mono-phones 2. train phone recognizer 3. train prlm with new phone recognizer

Train Binary MLPs for each pair (AP+EP) of phones

AP Training Corpus

EP Training Corpus

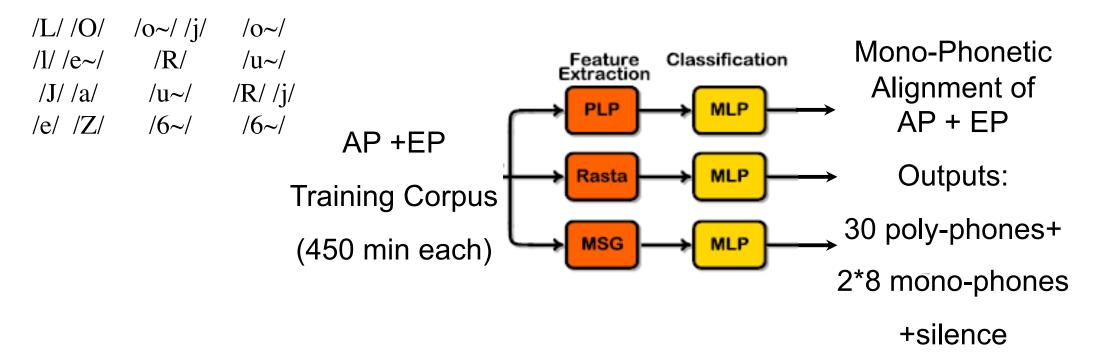




1. determine mono-phones

2. train phone recognizer 3. train prlm with new phone recognizer

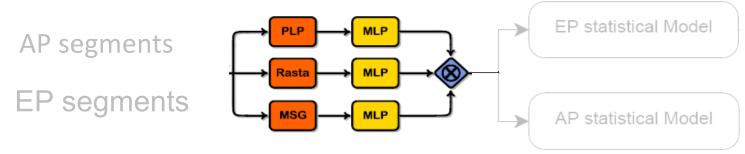
EP/AP EP/BP AP/BP

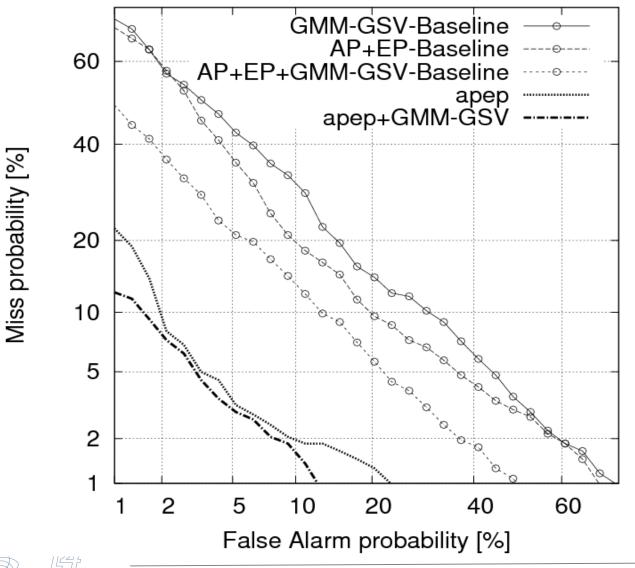


1. determine mono-phones 2. train phone recognizer **3. train prIm with new phone recognizer**

Train Data	AP	EP
duration [min.]	238.8	279.1
segments	1424	1283
Ø dur./segm. [s]	10.1	13.1
<3s [%]	16.9	0.1
3-10s [%]	42.3	49.6
10-30s [%]	38.7	44.1
>30s [%]	2.2	6.3

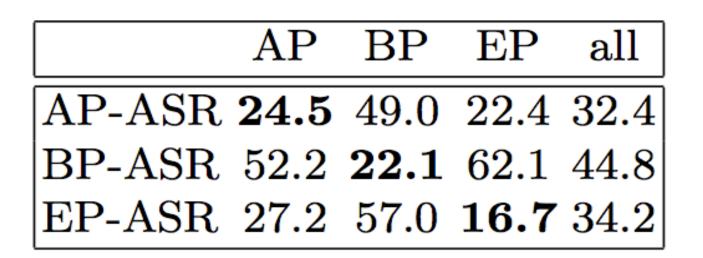
3-gram, Witten-Bell discounting SRILM Toolkit [Stolcke, 2002]





- AP & EP varieties are the most difficult to distinguish (BP is more different)
- Nice improvements thanks to mono-phonemes
- Our experience it helps a lot in highly confusable pairs

LR other topics: Multi-variety ASR



- Best in the diagonal (matched variety)
 - Average WER 21.1% for oracle system
 - Best individual in the complete set \rightarrow AP with WER 32.4%
- Cross-variety observations
 - AP and EP closer among them than BP (in terms of ASR)
 - ASR systems are more similar
 - AP set is more challenging
 - BP most distant, but seems closer to AP?

LR other topics: Multi-variety ASR

MV ASR results

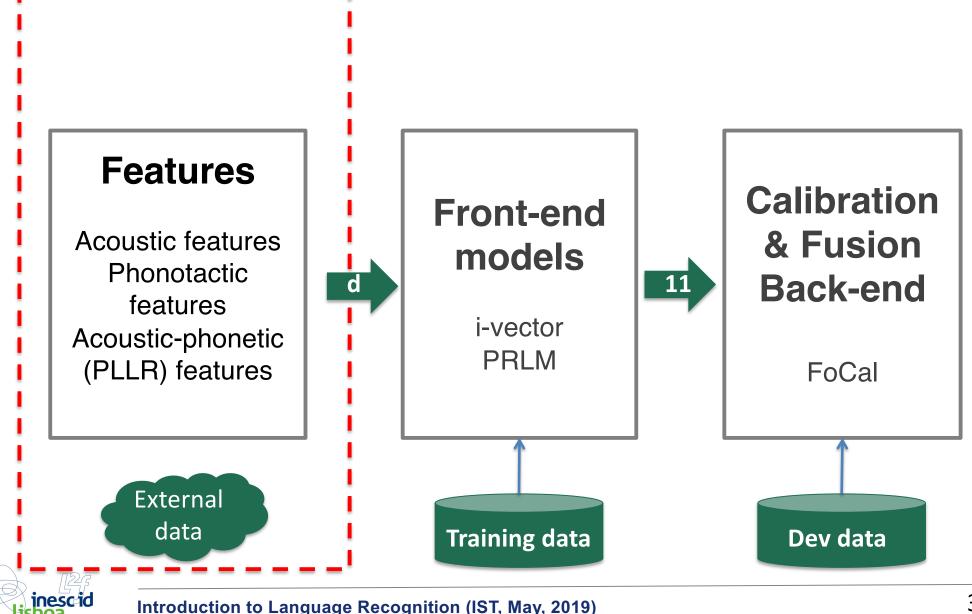
	AP	BP	\mathbf{EP}	all
oracle ASR	24.5	22.1	16.7	21.1
multi-variety ASR	24.5	22.6	21.0	22.7

AP and BP almost equivalent to oracle Significant (but not dramatic) drop in EP

LR other topics: Native Language (L1) identification

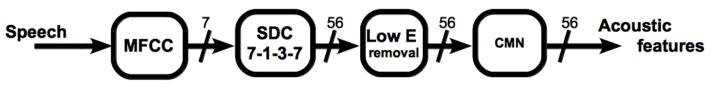
- The ComParE 2016 Native Language task aims at identifying L1 of non-native English speakers:
 - Similar to language, accent, and dialect ID in Spoken Language Recognition (SLR)
 - Most successful systems are based on acoustic or phonotactic information
 - Combination tends to provide increased performance
 - Phone Log-Likelihood Ratio (PLLR) features convey frame-by-frame acoustic-phonetic information:
 - Can be used in conventional Total Variability Factor Analysis (i-vector)
 - One of the best individual system results on relevant benchmarks
- The main **objective** is to explore PLLR features in the L1 detection task, and also:
 - Comparison of PLLR with acoustic and phonotactic approaches
 - Use of (as much as possible) in-house already available technology
 - Explore NN strategies on the top of features and i-vectors
 - Develop a (hopefully) good performing system and have fun!!

INESC-ID approaches for L1 identification



Features for L1 identification Acoustic, phonotactic & acoustic-phonetic features

1. Acoustic features



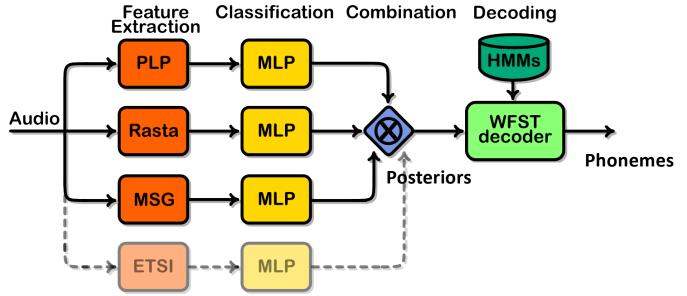
- 2. Phonotactic features Speech Posterior Extraction Phone Decode Posterior
- 3. Acoustic-phonetic features (PLLR)

• Considering a phone decoder that provides frame-by-frame phone posteriors p_i, the PLLR features are computed as follows:

$$r_i = \operatorname{logit}(p_i) = \log \frac{p_i}{(1-p_i)}$$
 $i = 1, \dots, N.$

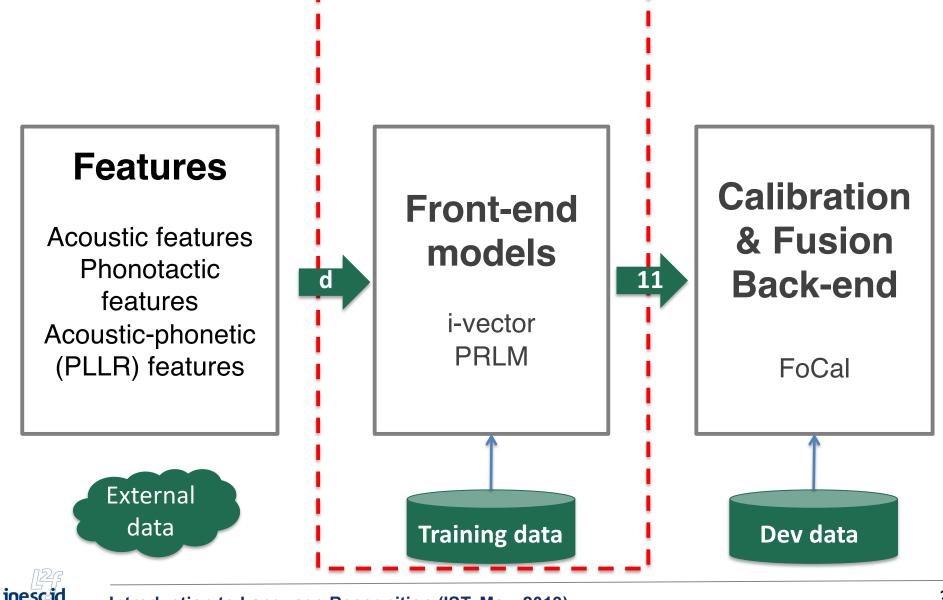
Features for L1 identification Phonetic Classifiers

- Phonetic classifiers based in in-house MLP networks are used for:
 - 1. Posterior probability extraction for **PLLR** feature computation
 - 2. Phoneme tokenization used for **phonotactic** systems



- Feature extraction Multi-stream 26 PLP, 26 logRASTA-PLP, 28 MSG and 39 ETSI
- MLP Several context input frames (13-15), 2 hidden-layers (500 units) and 1 output layer
 - Output layer size 39 for pt, 40 for br, 30 for es, 41 for en
- Data pt 115 hours (57 BN+58 tel); br 13 hours of BN data; es 57hours (36 BN+21 tel); en 142 hours (HUB4 96 & 97)

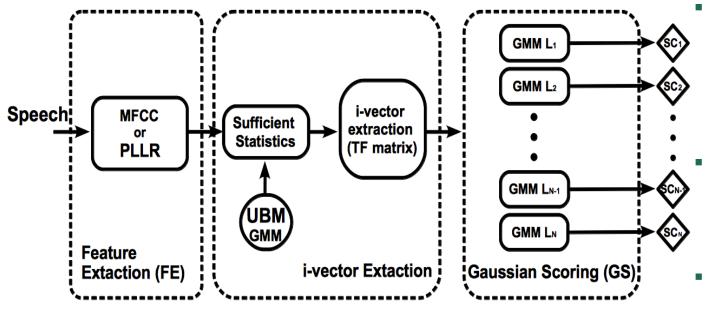
INESC-ID approaches for L1 identification



Introduction to Language Recognition (IST, May, 2019)

Front-end models for L1 identification i-vector sub-systems

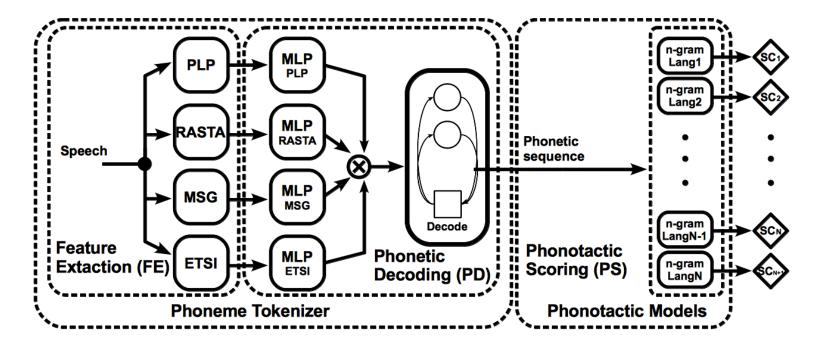
5 i-vector systems: 1 acoustic (MFCC) & 4 acoustic-phonetic (PLLR-{*en,es,pt,br*})



- TV modelling and i-vector extraction:
 - GMM-UBM of 1024 mixtures
 - T-matrix sub-space of 400 dimensions
 - Centering + whitening + unit length norm.
- Language modelling and scoring
 - Single Gaussian with shared fullcovariance
 - Log-likelihood scoring
- All the challenge training data used for UBM, T-matrix, and Gaussian modeling (no partitions on data)

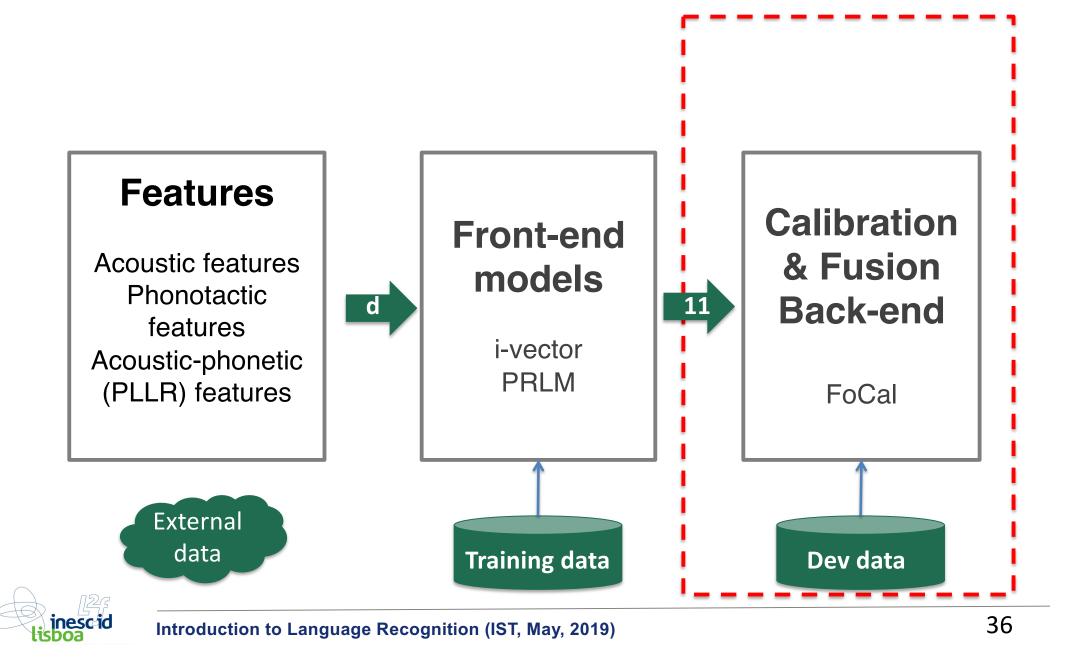
Front-end models for L1 identification Phonotactic sub-systems

4 PRLM systems: PRLM-{*en,es,pt,br*}



- 3-gram phonotactic models trained for each L1 target language
- The 11 likelihoods of the L1 target languages form the vector of scores

INESC-ID approaches for L1 identification



Calibration & Fusion Back-end

Linear Gaussian Back-End for each sub-system

$$\mathbf{s}_i = \mathbf{A}_i \mathbf{x}_i + \mathbf{o}_i$$

Fusion of sub-systems linear logistic regression fusion

$$\mathbf{l} = \sum_{i} \alpha_i \mathbf{s}_i + \mathbf{b}$$

- During development, the back-end parameters were trained and evaluated on the development set (kind of 2-fold cross-validation)
- For the submissions, all the DEV data was used for fusion and calibration:
 - $\circ~$ Possible over-fitting to DEV set
- Calibration was carried out using the FoCal Multi-class Toolkit

Comparison of systems and fusion experiments Results in the DEV set

	UAR [%]	Acc [%]
Baseline	45.1	44.9
Phonotactic (BR)	46.4	46.2
Phonotactic (EN)	51.4	51.4
Phonotactic (ES)	50.0	49.8
Phonotactic (PT)	53.1	53.1
Phonotactic (ALL) (I)	63.3	63.2
i-vectors (MFCC) (II)	76.2	76.3
i-vectors (BR-PLLR)	76.9	76.9
i-vectors (EN-PLLR)	79.2	79.2
i-vectors (ES-PLLR)	77.6	77.4
i-vectors (PT-PLLR)	80.6	80.5
i-vectors (ALL PLLR) (III)	83.0	82.9
(I) + (II)	78.6	78.7
(II) + (III)	84.6	84.6

Comparison with the baseline Results in the DEV set

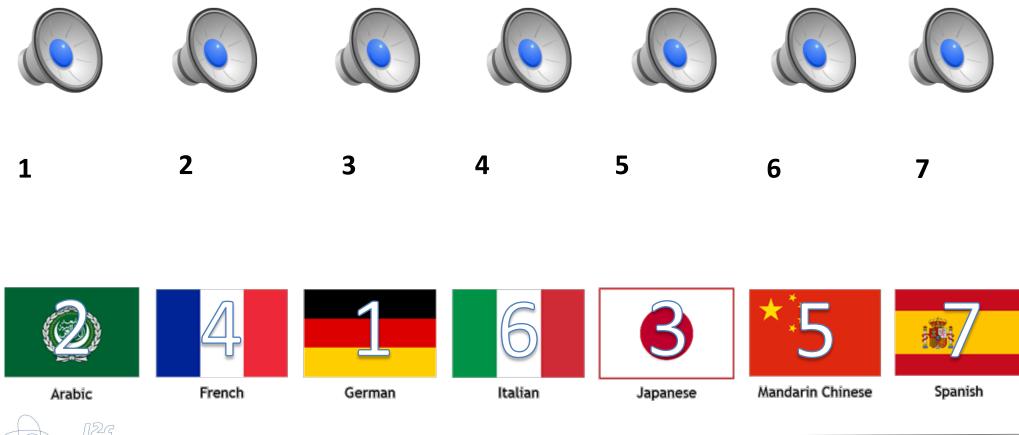
ComPaRe 2016 Official Baseline INESC-ID ComPaRe 2016 system

	ARA	CHI	FRE	GER	NH	ITA	NdL	KOR	SPA	TEL	TUR		ARA	CHI	FRE	GER	NH	ITA	NdL	KOR	SPA	TEL	TUR
ARA	29	3	5	7	5	5	6	6	7	6	7	ARA	77	0	3	1	0	1	1	0	1	0	2
СНІ	4	38	5	4	5	2	5	10	6	4	1	СНІ	0	78	0	1	0	1	2	0	1	1	0
FRE	11	7	29	8	0	4	3	1	11	0	6	FRE	3	0	64	2	0	2	2	0	5	0	2
GER	5	3	5	55	1	7	1	2	5	1	0	GER	2	1	2	78	0	0	0	1	0	0	1
HIN	4	1	1	0	47	2	2	2	2	21	1	HIN	0	0	0	0	67	0	0	0	0	16	0
ITA	6	2	9	6	6	46	0	4	10	1	4	ΙΤΑ	1	0	5	2	0	79	1	1	3	0	2
JPN	4	13	4	2	2	1	36	11	10	1	1	JPN	1	1	1	0	0	0	70	8	4	0	0
KOR	4	19	1	2	2	3	14	32	5	3	5	KOR	2	4	1	1	0	0	5	77	1	0	0
SPA	6	11	15	6	2	4	9	9	32	1	5	SPA	2	1	2	1	0	5	4	5	77	1	2
TEL	2	0	2	2	24	2	2	2	2	43	2	TEL	0	0	0	0	18	0	0	0	0	65	0
TUR	6	5	5	5	2	6	7	8	5	0	46	TUR	0	1	1	3	1	2	0	2	1	0	84

Final results in the TEST set

	DEV [UAR %]	TEST [UAR %]
ComPaRe 2016 Official Baseline	45.1%	47.5%
INESC-ID ComPaRe 2016 system	84.6%	81.3%

COMPARE 2016 - Quiz



Introduction to Language Recognition (IST, May, 2019)

inesc id

boa

Conclusions

- Language recognition is a very active research field in the area of speech processing:
 - Some overlap in techniques (and community) with speaker recognition
- Recent advances (fostered by International evaluations) have led the technology to:
 - High performances for certain tasks.
 - In some cases, better than humans
 - Exploring more challenging tasks:
 - similar language pairs, variety/accent, L1, etc.
- Most common approaches are based on modelling of short term acoustics:
 - Current leading methods are based on factor analysis (JFA, i-vectors...).
 - Recent: Short-time feature extraction based on NN (posteriors, bottle-neck, etc.)
 - However, best systems are based on the combination of several sub-systems.

technology from seed

L² F - Spoken Language Systems Laboratory