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Intro: Speech processing
§ Large area includes: analysis/synthesis, coding, recognition.

• Some commonalities
• Also many particulaties à We will see some of them today!!
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Intro: LR vs SR

§ Speaker Recognition (SR) and Language Recognition (LR) are 
closely related topics that share some techniques/methods:
• Similar feature extraction.
• GMM short-term acoustics modeling.
• SVM modelling (instead of GMMs) methods.

...  but also have some particularities, ie:
• LR: Phonotactic approaches, many samples for training, etc.
• SR: Inter-session variability, 1-few samples for training, etc.

§ SR and LR have seen great recent improvements (partially) 
motivated by NIST SRE and LRE competitive evalauation
workshops.
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Outline

§ LR application and approaches
• Acoustic approaches
• Phonotactic approaches

§ Evaluation and performance
§ Other topics: 

• Variety identification
• Native language (L1) identification
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§ Language Recognition has the potential of being of great utility in the 
Broadcast News processing chain:
§ Select right ASR (and other language-dependent modules)

§ Reject segments for processing in case of not-covered (or unknown) languages

§ Enrich transcription of spoken documents

§ Select/purify material for unsupervised training

§ Variety or dialect recognition poses similar (more challenging) problems

§ Recent and current work at L2F:

§ LRE evaluation campaigns: ALBAYZIN-2008, NIST LRE 2009, ALBAYZIN-
2010 (CTS & BN), LRE 201, ALBAYZIN-2012,  ComParE2015 (Nativeness
degree), ComParE2016 (Native language detection)

§ Portuguese variety identification: EP, BP & AP

Language recognition applications
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What does people do for Language Verification (LV)?
• Different LV approaches classified according to the kind of source of 

information they rely on:
– Acoustic phonetics: 

– Short-term modelling with GMM, NN, SVM, i-vectors…

– Phonotactics: 
– Model rules that govern phoneme combinations.

– Others less common: 

– prosody, morphology, syntax…

Language recognition approaches
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• LR acoustic methods are very similar to the methods used for SR, including:

• Cepstral-based features 

• GMM-UBM

• Gaussian supervectors

• Factor analysis methods

• Feature normalization, channel compensation, etc…

• Some of the differences are:

• Features Use features that try to incorporate speech evolution information

• Models In LR we have large amounts of samples of the target classes in contrast 
to SR where we usually have few utterances

• Channel compensation is important, but it is not as dramatic as in SR

• Back-end Language scores are used as a kind features for a back-end

LR acoustic approaches
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LR acoustic approaches: SDC

§ Shifted-delta cepstrum (SDC) features are 
standard for acoustic based LR
• Concatenate delta frames
• Typical configuration 7-1-3-7

§ Example of front-end (used by us in our
systems):
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LR acoustic approaches: GSV

§ 1 LR Gaussian super-vector system (as used for 
NIST LRE 2011)
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LR acoustic approaches: i-vectors

§ The availability of large number of target
examples has an impact on techniques.

§ For instance in  the i-vectors approach:
• In SR, model and test i-vectors are extracted and

cosine score is used.
• In LR, i-vectors are used as features to train

Language Models (GMM, SVM, etc…)
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LR acoustic approaches: i-vectors

§ i-vector based LR system (as used for NIST 
LRE2011)
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• Use a phonetic tokenizer (of any language) to extract phonetic sequences of every 
speech segment:

Train For every target language, train an n-gram model with all the training 
sequences of this language

Test Tokenize test segment and compute likelihood for every target language n-
gram model

12

LR: Phonotactics basics (PRLM) 
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LR: PRLM improvements

§ PRLM methods work extremely well for LR
§ Some common approaches to improve PRLM 

methods include:
• Parallel systems (PPRLM)
• Model vector of counts with SVM (instead of n-

grams)
oUse expected n-gram counts
oHigher orders
oDimensionallity reduction
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LR: PRLM improvements

§ 4 Phone-
recognizers followed by SVM modelling (PRSV
M) as used for NIST LRE2011
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• Addressed to CTS and telephone BN data 

• 24 target highly-confusable languages à Language pair detection task

• Cost à Average of the 24 more confusable pairs (worse)

15

LR evaluation: NIST LRE2011
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• 30 seconds (all submitted systems)

16

LR evaluation: NIST LRE2011
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LR evaluation: NIST LRE2011

• Most confusable languages
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LR evaluation: NIST LRE2011
• Most confusable pairs
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§ Use automatic variety identification to get more 
material for unsupervised training (BN shows 
with mixed AP / EP)

§ Based on the combination (LLR fusion) of:
• Conventional PPRLM
• Conventional GSV
• NEW PRLM mono-phonemic approach 

o Phones that appear in a single variety

LR other topics: Variety identification



22Introduction to Language Recognition (IST, May, 2019)

Train Binary MLPs for each pair (AP+EP) of phones

... além de
descrever...

AP Training Corpus

EP Training Corpus

1. determine mono-phones 2. train phone recognizer 3. train prlm with new phone recognizer

... al6~j~ d@ 
d@Skr@v"er...
... al6~j~ d@AP
d@APSkr@APr...

... série de 
fenômenos...

AP Transcription

EP Transcription
... sEri@ d@ 
f@nOm@nuS...
... sEri@EP @EP
f@EPnO@EP    ...

LR other topics: Variety identification
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/L/ /O/ 
/l/ /e~/ 
/J/ /a/ 
/e/  /Z/

1. determine mono-phones 2. train phone recognizer 3. train prlm with new phone recognizer

Correct Separation of Development Data

LR other topics: Variety identification
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EP/AP

/L/ /O/ 
/l/ /e~/ 
/J/ /a/ 
/e/  /Z/

1. determine mono-phones 2. train phone recognizer 3. train prlm with new phone recognizer

EP/BP

/o~/ /j/ 
/R/ 
/u~/ 
/6~/  

AP/BP

/o~/ 
/u~/ 

/R/ /j/ 
/6~/

Mono-Phonetic 
Alignment of

AP + EP

Outputs:

30 poly-phones+

2*8 mono-phones

+silence

AP +EP 

Training Corpus

(450 min each)

LR other topics: Variety identification
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AP segments

1. determine mono-phones 2. train phone recognizer 3. train prlm with new phone recognizer

EP segments

3-gram, Witten-Bell discounting
SRILM Toolkit [Stolcke, 2002]

1-best filtered sequence

LR other topics: Variety identification



26Introduction to Language Recognition (IST, May, 2019)

• AP & EP varieties are the 
most difficult to distinguish 
(BP is more different)

• Nice improvements thanks 
to mono-phonemes

• Our experience it helps 
a lot in highly confusable 
pairs

LR other topics: Variety identification
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LR other topics: Multi-variety ASR

§ Best in the diagonal (matched variety)
• Average WER 21.1% for oracle system
• Best individual in the complete set à AP with WER 32.4%

§ Cross-variety observations
• AP and EP closer among them than BP (in terms of ASR)

o ASR systems are more similar
• AP set is more challenging
• BP most distant, but seems closer to AP?
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LR other topics: Multi-variety ASR

§ MV ASR results

oAP and BP almost equivalent to oracle
o Significant (but not dramatic) drop in EP



29Introduction to Language Recognition (IST, May, 2019)

LR other topics: Native Language (L1) identification

§ The ComParE 2016 Native Language task aims at identifying L1 of non-native 
English speakers:
• Similar to language, accent, and dialect ID in Spoken Language Recognition (SLR)

o Most successful systems are based on acoustic or phonotactic information
o Combination tends to provide increased performance
o Phone Log-Likelihood Ratio (PLLR) features convey frame-by-frame acoustic-phonetic 

information:
– Can be used in conventional Total Variability Factor Analysis (i-vector)
– One of the best individual system results on relevant benchmarks

§ The main objective is to explore PLLR features in the L1 detection task, and also:
• Comparison of PLLR with acoustic and phonotactic approaches
• Use of (as much as possible) in-house already available technology 
• Explore NN strategies on the top of features and i-vectors
• Develop a (hopefully) good performing system and have fun!!
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INESC-ID approaches for L1 identification

Features
Acoustic features

Phonotactic 
features

Acoustic-phonetic 
(PLLR) features

Calibration 
& Fusion 
Back-end

FoCal

Front-end 
models 

i-vector
PRLM

d 11

Training data Dev data
External 

data
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Features for L1 identification
Acoustic, phonotactic & acoustic-phonetic features

• Considering a phone decoder that provides frame-by-frame phone posteriors 
pi, the PLLR features are computed as follows:

1. Acoustic features

2. Phonotactic features

3. Acoustic-phonetic features (PLLR)
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Features for L1 identification
Phonetic Classifiers

§ Phonetic classifiers based in in-house MLP networks are used for:
1. Posterior probability extraction for PLLR feature computation
2. Phoneme tokenization used for phonotactic systems

• Feature extraction Multi-stream 26 PLP, 26 logRASTA-PLP, 28 MSG and 39 ETSI
• MLP Several context input frames (13-15), 2 hidden-layers (500 units) and 1 output layer

• Output layer size 39 for pt, 40 for br, 30 for es, 41 for en
• Data pt 115 hours (57 BN+58 tel);  br 13 hours of BN data; es 57hours (36 BN+21 tel); en 142 hours 

(HUB4 96 & 97)

Posteriors
Phonemes
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INESC-ID approaches for L1 identification

Features
Acoustic features

Phonotactic 
features

Acoustic-phonetic 
(PLLR) features

Calibration 
& Fusion 
Back-end

FoCal

Front-end 
models 

i-vector
PRLM

d 11

Training data Dev data
External 

data
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Front-end models for L1 identification
i-vector sub-systems

§ TV modelling and i-vector extraction:
• GMM-UBM of 1024 mixtures
• T-matrix sub-space of 400 

dimensions
• Centering + whitening + unit length 

norm.

§ Language modelling and scoring
• Single Gaussian with shared full-

covariance
• Log-likelihood scoring

§ All the challenge training data used 
for UBM, T-matrix, and Gaussian 
modeling (no partitions on data)

5 i-vector systems: 1 acoustic (MFCC) & 4 acoustic-phonetic (PLLR-{en,es,pt,br})
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Front-end models for L1 identification
Phonotactic sub-systems

4 PRLM systems: PRLM-{en,es,pt,br}

• 3-gram phonotactic models trained for each L1 target language
• The 11 likelihoods of the  L1 target languages form the vector of scores



36Introduction to Language Recognition (IST, May, 2019)

INESC-ID approaches for L1 identification

Features
Acoustic features
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Calibration & Fusion Back-end

§ Linear Gaussian Back-End for each sub-system

§ Fusion of sub-systems linear logistic regression fusion

• During development, the back-end parameters were trained and evaluated on the 
development set (kind of 2-fold cross-validation)

• For the submissions, all the DEV data was used for fusion and calibration:
o Possible over-fitting to DEV set

• Calibration was carried out using the FoCal Multi-class Toolkit
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Comparison of systems and fusion experiments
Results in the DEV set

UAR [%] Acc [%]
Baseline 45.1 44.9
Phonotactic (BR) 46.4 46.2
Phonotactic (EN) 51.4 51.4
Phonotactic (ES) 50.0 49.8
Phonotactic (PT) 53.1 53.1
Phonotactic (ALL) (I) 63.3 63.2

i-vectors (MFCC) (II) 76.2 76.3
i-vectors (BR-PLLR) 76.9 76.9
i-vectors (EN-PLLR) 79.2 79.2
i-vectors (ES-PLLR) 77.6 77.4
i-vectors (PT-PLLR) 80.6 80.5
i-vectors (ALL PLLR) (III) 83.0 82.9

(I) + (II) 78.6 78.7

(II) + (III) 84.6 84.6
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Comparison with the baseline
Results in the DEV set

A
R

A

C
H

I

FR
E

G
ER H
IN IT
A

JP
N

K
O

R

SP
A

TE
L

TU
R

ARA 29 3 5 7 5 5 6 6 7 6 7

CHI 4 38 5 4 5 2 5 10 6 4 1

FRE 11 7 29 8 0 4 3 1 11 0 6

GER 5 3 5 55 1 7 1 2 5 1 0

HIN 4 1 1 0 47 2 2 2 2 21 1

ITA 6 2 9 6 6 46 0 4 10 1 4

JPN 4 13 4 2 2 1 36 11 10 1 1

KOR 4 19 1 2 2 3 14 32 5 3 5

SPA 6 11 15 6 2 4 9 9 32 1 5

TEL 2 0 2 2 24 2 2 2 2 43 2

TUR 6 5 5 5 2 6 7 8 5 0 46
A

R
A

C
H

I

FR
E

G
ER H
IN IT
A

JP
N

K
O

R

SP
A

TE
L

TU
R

ARA 77 0 3 1 0 1 1 0 1 0 2

CHI 0 78 0 1 0 1 2 0 1 1 0

FRE 3 0 64 2 0 2 2 0 5 0 2

GER 2 1 2 78 0 0 0 1 0 0 1

HIN 0 0 0 0 67 0 0 0 0 16 0

ITA 1 0 5 2 0 79 1 1 3 0 2

JPN 1 1 1 0 0 0 70 8 4 0 0

KOR 2 4 1 1 0 0 5 77 1 0 0

SPA 2 1 2 1 0 5 4 5 77 1 2

TEL 0 0 0 0 18 0 0 0 0 65 0

TUR 0 1 1 3 1 2 0 2 1 0 84

INESC-ID ComPaRe 2016 systemComPaRe 2016 Official Baseline
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Final results in the TEST set

DEV
[UAR %]

TEST 
[UAR %]

ComPaRe 2016 Official Baseline 45.1% 47.5%

INESC-ID ComPaRe 2016 system 84.6% 81.3%
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COMPARE 2016 - Quiz

GER
1

ARA
2

JPN
3

FRE
4

CHI
5

ITA
6

SPA
7

41
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Conclusions

§ Language recognition is a very active research field in the area of speech 
processing:
• Some overlap in techniques (and community) with speaker recognition

§ Recent advances (fostered by International evaluations) have led the 
technology to: 
• High performances for certain tasks.

o In some cases, better than humans
• Exploring more challenging tasks: 

o similar language pairs, variety/accent, L1, etc.

§ Most common approaches are based on modelling of short term acoustics:
• Current leading methods are based on factor analysis (JFA, i-vectors…).
• Recent: Short-time feature extraction based on NN (posteriors, bottle-neck, etc.)
• However, best systems are based on the combination of several sub-systems.
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