
Introduction to Stochastic Processes
MMA, LMAC

2nd. Semester – 2018/2019
2019/05/04 – 8AM, Room P12

Duration: 90 minutes Test 1

• Please justify all your answers.

• This test has TWO PAGES and THREE GROUPS. The total of points is 20.0.

Group 0 — Introduction to Stochastic Processes 2.5 points

Let Xn represent the quarterly growth rate of the U.S. GNP at the end of the nth quarter.
{Xn : n 2 Z} has been frequently modelled as a second order moving average (MA(2)) process, that is,
Xn =µ+≤n +µ1≤n°1 +µ2≤n°2, where: µ, µ1, and µ2 are real constants; and ≤m , m 2Z, are uncorrelated r.v.
with zero mean and variance æ2

≤ .

(a) Obtain the mean and variance function of {Xn : n 2Z}. (1.0)

• Stochastic process
{Xn : n 2Z}

Xn =µ+≤n +µ1≤n°1 +µ2≤n°2

µ, µ1, µ2 2R

≤m :

8

>

>

<

>

>

:

E(≤m) = 0, m 2Z
V (≤m) = cov(≤m , ≤m) =æ2

≤ , m 2Z
cov(≤ j , ≤m) = 0, j 6= m, j ,m 2Z (uncorrelated r.v.)

• Mean function

E(Xn) = E
°

µ+≤n +µ1≤n°1 +µ2≤n°2
¢

= µ+E(≤n)+µ1E(≤n°1)+µ2E(≤n°2)
E(≤m )=0,m2Z= µ

• Variance function

V (Xn) = V
°

µ+≤n +µ1≤n°1 +µ2≤n°2
¢

cov(≤ j ,≤m )=0, j 6=m
= V (≤n)+µ2

1V (≤n°1)+µ2
2V (≤n°2)

V (≤m )=æ2
≤ ,m2Z=

°

1+µ2
1 +µ2

2
¢

£æ2
≤ .

(b) Is {Xn : n 2Z} a second order weakly stationary process ? (1.5)

Hint: Take advantage of the properties of the covariance operator.

• Autocovariance function
Taking advantage of the properties of the covariance operator (it is symmetric, bilinear, etc.)
and of the fact that {≤m : m 2Z} is a family of uncorrelated r.v. with variance æ2

≤ , we can derive
the autocovariance function of {Xn : n 2Z}.

• For k = 0,

cov (Xn , Xn) = V (Xn)
(a)=

°

1+µ2
1 +µ2

2
¢

£æ2
≤ .

• For k = 1 (or k =°1),

cov (Xn , Xn+1) = cov
°

µ+≤n +µ1≤n°1 +µ2≤n°2, µ+≤n+1 +µ1≤n +µ2≤n°1
¢

cov(≤ j ,≤m )=0, j 6=m
= cov (≤n , µ1≤n)+ cov (µ1≤n°1, µ2≤n°1)

= µ1V (≤n)+µ1µ2V (≤n°1)

= µ1(1+µ2)£æ2
≤ .
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• For k = 2 (or k =°2),

cov (Xn , Xn+2) = cov
°

µ+≤n +µ1≤n°1 +µ2≤n°2, µ+≤n+2 +µ1≤n+1 +µ2≤n
¢

= cov (≤n , µ2≤n)

= µ2V (≤n)

= µ2 £æ2
≤ .

• For k > 2 (or k <°2),

cov (Xn , Xn+k ) = cov
°

µ+≤n +µ1≤n°1 +µ2≤n°2, µ+≤n+k +µ1≤n+k°1 +µ2≤n+k°2
¢

= 0.

Consequently,

cov (Xn , Xn+k ) =

8

>

>

>

>

>

<

>

>

>

>

>

:

°

1+µ2
1 +µ2

2

¢

£æ2
≤ , k = 0

µ1(1+µ2)£æ2
≤ , |k| = 1

µ2 £æ2
≤ , |k| = 2

0, |k| > 2.

[Alternatively, consider µ0 = 1 and obtain cov(Xn , Xm) =P2
i=0

P2
j=0µiµ j cov(≤n°i ,≤m° j ) = . . . ]

• Checking whether the process is (second order weakly) stationary
E(Xn) does not depend on n and cov (Xn , Xn+k ) only depends on the time lag k, hence
{Xn : n 2Z} is a second order weakly stationary process.

Group 1 — Poisson Processes 9.0 points

1. Patients arrive at the doctor’s office according to a Poisson process with rate ∏= 6 (patients per hour).

(a) Find the probability that exactly 3 patients arrive in the first hour, given that at least one patient (1.5)

arrived in the first 30 minutes.

• Stochastic process
{N (t ) : t ∏ 0} ª PP (∏)
N (t ) = number of arrivals of patients by time t (time in hours)
∏= 0.5

• Relevant distributions
N (t ) ª Poisson(∏ t )
(N (s) | N (t ) = n) ª Binomial(n, s/t ), 0 < s < t (see formulae)

• Requested probability

P [N (1) = 3 | N (0.5) > 0]
B ayes0 theo.= P [N (0.5) > 0 | N (1) = 3]£P [N (1) = 3]

P [N (0.5) > 0]

= {1°P [N (0.5) = 0 | N (1) = 3]}£P [N (1) = 3]
1°P [N (0.5) = 0]

=

h

1°
°3

0

¢

0.50 (1°0.5)3°0
i

£ e°6£1 (6£1)3

3!

1° e°6£0.5 (6£0.5)0

0!

=
°

1°0.53¢£ e°6 63

3!

1°e°3

' 0.082172.

[Alternatively,

P [N (1) = 3 | N (0.5) > 0] = P [N (0.5) > 0, N (1) = 3]
P [N (0.5) > 0]

= P [N (1) = 3]°P [N (0.5) = 0, N (1) = 3]
1°P [N (0.5) = 0]
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P [N (1) = 3 | N (0.5) > 0]
i ndep. i ncr.= P [N (1) = 3]°P [N (0.5) = 0]£P [N (1)°N (0.5) = 3]

1°P [N (0.5) = 0]
st ati on. i ncr.= P [N (1) = 3]°P [N (0.5) = 0]£P [N (1°0.5) = 3]

1°P [N (0.5) = 0]

N (t )ªPoi (6t )=
e°6£1 (6£1)3

3! ° e°6£0.5 (6£0.5)0

0! £ e°6£0.5 (6£0.5)3

3!

1° e°6£0.5 (6£0.5)0

0!

=
e°6

3! £
°

63 °33¢

1°e°3

' 0.082172.

Or P [N (1) = 3 | N (0.5) > 0] = P [N (0.5)>0, N (1)=3]
P [N (0.5)>0] = ·· · =

P3
i=1 P [N (0.5)=i ,N (1)°N (0.5)=3°i ]

1°P [N (0.5)=0] = . . . ]

(b) Suppose that each patient is a man (resp. woman) with probability 2
3 (resp. 1

3 ) . Now suppose that (1.0)

10 men arrived in the first 2 hours. How many women would you expect to have arrived in the first
2 hours?

• Split processes
The original PP with rate ∏= 6, {N (t ) : t ∏ 0}, is now split in two other processes, {Ni (t ) : t ∏ 0}
(i = M ,W ), referring to the counts of men (M) and women (W).

• Distributions
These two split processes are INDEPENDENT and also POISSON with rates

∏M = ∏£pM = 6£ 2
3
= 4,

∏W = ∏£pW = 6£ 1
3
= 2,

respectively. Consequently,

Ni (t ) ªi ndep. Poisson(∏i t ), i = M ,W. (1)

• Requested expected value

E [NW (2) | NM (2) = 10]
(1)= E [NW (2)]

= 2£2

= 4.

2. Short-term power outages occur in a electrical grid according to a Poisson process with rate∏= 1 (outage (2.0)

per month). The time (in months) it takes to report each short-term power outage to the authorities is a
r.v. with a uniform distribution in the interval (0,1).

Find the probability there are at most 5 reported power outages in a year.

• Stochastic process

{N (t ) : t ∏ 0} ª PP (∏= 2)

N (t ) = number of short-term power outages in t months

• Non-homogenous Bernoulli splitting

Let R be the time it takes to report a short-term power outage to the authorities. A power outage,
which occurred at time s (0 < s < t ), is reported by time t (t > s) with probability

p(s) = P (R ∑ t ° s)

= FU (0,1)(t ° s) =
(

t ° s, 0 < t ° s < 1

1, t ° s ∏ 1
=

(

1, 0 < s ∑ t °1

t ° s, t °1 < s < t .

Then the number of reported short-term power outages by month t , NR (t ), results from a non-
homogenous Bernoulli splitting of {N (t ) : t ∏ 0} and
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NR (t )
f or m.ª Poisson

µ

∏

Zt

0
p(s)d s

∂

,

where
Zt

0
p(s)d s =

Zt

0
FU (0,1)(t ° s)d s =

Zt

0
FU (0,1)(s)d s

t=12=
Z11

0
d s +

Z12

11
(12° s)d s =

Z1

0
s d s +

Z12

1
d s

= 11+
µ

12s ° s2

2

∂

Ø

Ø

Ø

Ø

12

11
= s2

2

Ø

Ø

Ø

Ø

12

11
+11

= 11.5.

• Requested probability

P [NR (12) ∑ 5] = FPoi sson(1£11.5)(5)
t abl es' 0.0277.

3. A factory produces items one at a time according to a non-homogeneous Poisson process, {N (t ) : t ∏ 0} (2.0)

with intensity function ∏(t ) = 1
t 2+1 , t > 0.

Derive the associated mean value function and compute P [N (
p

2°1) = 2, N (1) ∑ 3].

Hint: Note that d arctan(t )
d t = 1

t 2+1 and tan(º8 ) =
p

2°1.

• Stochastic process

{N (t ) : t > 0} ª N HPP

N (t ) = number of items produced until time t

• Intensity function

∏(t ) = 1
t 2+1 , t > 0

• Requested mean value function

Capitalizing on the hint, we get

m(t ) =
Zt

0

1
s2 +1

d s

= arctan(s)|t0
= arctan(t ), t > 0.

• Relevant distribution

N (t + s)°N (s) ª Poisson(m(t + s)°m(s)), t , s > 0

• Requested probability

We are dealing with a counting process, thus N (
p

2°1) ∑st N (1) and

P [N (
p

2°1) = 2, N (1) ∑ 3] =
3

X

i=2
P [N (

p
2°1) = 2, N (1) = i ]

=
3

X

i=2
P [N (

p
2°1) = 2, N (1)°N (

p
2°1) = i °2]

i ndep. i ncr.=
3

X

i=2
P [N (

p
2°1) = 2]£P [N (1)°N (

p
2°1) = i °2]

N (t )ªPoi (m(t ))...= PPoi (m(
p

2°1))(2)£
3

X

i=2
PPoi (m(1)°m(

p
2°1))(i °2)
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P [N (
p

2°1) = 2, N (1) ∑ 3] = PPoi (arctan(
p

2°1))(2)£
3

X

i=2
PPoi (arctan(1)°arctan(

p
2°1))(i °2)

= PPoi ( º8 )(2)£FPoi ( º4 °
º
8 )(1)

=
e°

º
8 (º8 )2

2!
£

1
X

i=0

e°
º
8 (º8 )i

i !
' 0.048961.

4. A customer (only) makes deposits in a bank according to a Poisson process with rate ∏D per week. The
sizes of successive deposits are i.i.d. r.v. with mean µD and variance æ2

D .

Unknown to the customer, the customer’s life partner (only) makes withdrawals from the same account
according to a Poisson process with rate ∏W per week. The sizes of successive withdrawals are i.i.d. r.v.
with mean µW and variance æ2

W . Assume that the deposit and withdrawal processes are independent of
each other and that the customer has an unlimited credit line.

(a) Obtain the mean and variance of the account balance at time t , B(t ). (1.0)

• Stochastic processes
{ND (t ) : t ∏ 0} ª PP (∏D )
ND (t ) = number of deposits over [0, t ]
ND (t ) ª Poisson(∏D t )

{NW (t ) : t ∏ 0} ª PP (∏W ) (independent of {ND (t ) : t ∏ 0})
NW (t ) = number of withdrawals over [0, t ]
NW (t ) ª Poisson(∏W t )

• R.v. et al.
Di = amount of the i th deposit

Di
i .i .d .ª D

E(D) =µD , V (D) =æ2
D

Wi = amount of the i th withdrawal
Wi

i .i .d .ª W (independent of Di )
E(W ) =µW , V (W ) =æ2

W

• Relevant stochastic process
n

B(t ) =PND (t )
i=1 Di °

PNW (t )
i=1 Wi : t ∏ 0

o

B(t ) = account balance at time t

• Requested mean and variance
Since
(

ND (t )
X

i=1
Di : t ∏ 0

)

ª Compound PP (∏D ,D) ??
(

NW (t )
X

i=1
Wi : t ∏ 0

)

ª Compound PP (∏W ,W )

we can write

E [B(t )] = E
h

PND (t )
i=1 Di

i

°E
h

PNW (t )
i=1 Wi

i

f or m.= ∏D t £E(D)°∏W t £E(W )

=
°

∏D µD °∏W µW
¢

£ t

V [B(t )] = V
h

PND (t )
i=1 Di

i

+V
h

PNW (t )
i=1 Wi

i

f or m.= ∏D t £E(D2)+∏W t £E(W 2)

= ∏D t £ [V (D)+E 2(D)]+∏W t £ [V (W )+E 2(W )]

=
£

∏D
°

æ2
D +µ2

D

¢

+∏W
°

æ2
W +µ2

W

¢§

£ t .
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(b) What sort of stochastic process is {B(t ) : t ∏ 0} ? Justify. (1.5)

• Describing {B(t ) : t ∏ 0}
{B(t ) : t ∏ 0} is also a compound PP.

Indeed B(t ) =PN (t )
i=1 Yi where:

– {N (t ) : t ∏ 0} results from the merging of two independent PP, {ND (t ) : t ∏ 0} ª PP (∏D )
and {NW (t ) : t ∏ 0} ª PP (∏W ), hence{N (t ) : t ∏ 0} ª PP (∏=∏D +∏W );

– Yi
i .i .d .ª Y , where Y is a r.v. that results from a mixture of D and (°W ) with weights

pD = P (deposit before withdrawal) = ∏D
∏D+∏W

and pW = P (withdrawal before deposit) =
∏W

∏D+∏W
, respectively.

[To obtain these probabilities, we capitalize on the lack of memory and on the well-know
result regarding the probability of first failure when we are comparing to independent r.v.
with exponential distributions.]

[Note
Let fY (y) be the p.d.f. of Y . Then

fY (y) = pD £ fD (y)+pW £ fW (y)

E(Y ) =
Z+1

°1
y £ [pD £ fD (y)+pW £ fW (y)]d y

= pD £E(D)+pW £E(W )

E(Y 2) =
Z+1

°1
y2 £ [pD £ fD (y)+pW £ fW (y)]d y

= pD £E(D2)+pW £E(W 2)

E [B(t )] = E
£

PN (t )
i=1 Yi

§

f or m.= ∏ t £E(Y )

= (∏D +∏W ) t £ [pD £E(D)+pW £E(W )]

=
°

∏D µD °∏W µW
¢

£ t

V [B(t )] = V
£

PN (t )
i=1 Yi

§

f or m.= ∏ t £E(Y 2)

= (∏D +∏W ) t £ [pD £E(D2)+pW £E(W ")]

=
£

∏D
°

æ2
D +µ2

D

¢

+∏W
°

æ2
W +µ2

W

¢§

£ t .

These two last results check with the ones we obtained in (a).]

Group 2 — Renewal Processes 8.5 points

1. Consider a renewal process, {N (t ) : t ∏ 0}, consisting of all even arrivals of a Poisson process with rate ∏.

(a) What is the long-run rate at which events occur in the renewal process {N (t ) : t ∏ 0} ? (1.0)

• Renewal process
{N (t ) : t ∏ 0}
N (t ) = number of even arrivals until time t

• Inter-renewal times
Xi

i .i .d .ª X , i 2N
X ª Gamma(2,∏) because the time between consecutive even arrivals is a sum of two
independent exponentially distributed r.v. with mean ∏°1.

• Expected inter-renewal time

µ = E(X )

= 2
∏

.
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• Requested long-run rate
According to the SLLN for renewal processes (see formulae!),

lim
t!+1

N (t )
t

w.p.1= 1
µ

= ∏

2
.

(b) Derive the renewal function m(t ) of {N (t ) : t ∏ 0}. (2.5)

• Deriving the renewal function
The LST of the inter-renewal d.f. of X is given by

F̃ (s) =
Z+1

0°
e°sx dF (x)

= E
°

e°sX ¢

= MX (°s)

f or m.=
µ

∏

∏+ s

∂2

Moreover, the LST of the renewal function can be obtained in terms of the one of F :

m̃(s)
f or m.= F̃ (s)

1° F̃ (s)

=

≥

∏
∏+s

¥2

1°
≥

∏
∏+s

¥2

= ∏2

(s +0)(s +2∏)
.

Taking advantage of the LT in the formulae, we successively get:
dm(t )

d t
= LT °1 [m̃(s), t ]

= LT °1
∑

∏2

(s +0)(s +2∏)
, t

∏

= ∏2 £ e°0£t °e°2∏£t

2∏°0

= ∏

2

≥

1°e°2∏ t
¥

m(t ) =
Zt

0

∏

2

≥

1°e°2∏x
¥

d x

= ∏ t

2
° ∏

2
1°e°2∏ t

2∏

= ∏ t

2
° 1°e°2∏ t

4
, t ∏ 0.

(c) Show that the renewal function obtained in (b) verifies the elementary renewal theorem. (1.0)

• Verification of the elementary renewal theorem (ERT)

lim
t!+1

m(t )
t

= lim
t!+1

∏ t
2 ° 1°e°2∏ t

4

t
= lim

t!+1

√

∏

2
° 1°e°2∏ t

4t

!

= ∏

2

= 1
µ

,

hence verifying the ERT.
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2. Let {N (t ) : t ∏ 0} be a renewal process with inter-renewal time distribution F . Using the (2.0)

renewal argument derive the following renewal type equation for the kth factorial moment of N (t ),
mk (t ) = E {N (t )£ [N (t )°1]£ · · ·£ [N (t )°k +1]}, with k 2N, m0(t ) = 1 and m1(t ) = m(t ):

mk (t ) = k
Zt

0
mk°1(t °x)dF (x)+

Zt

0
mk (t °x)dF (x).

Hint: For n 2N0 and k 2N, (n)k = n(n °1) . . . (n °k +1) and (n +1)k = k(n)k°1 + (n)k .

• Renewal process

{N (t ) : t ∏ 0}

• Inter-renewal times

Xi
i .i .d .ª X1 ª F

F (x) = P (X1 ∑ x)

• kth factorial moment of N (t )

Let (N (t ))k = N (t )£ [N (t )°1]£ · · ·£ [N (t )°k +1]. Then

mk (t ) = E {N (t )£ [N (t )°1]£ · · ·£ [N (t )°k +1]}

= E [(N (t ))k ]

• Renewal-type equation

Applying the renewal argument, i.e., conditioning on the time of the first renewal, X1 = x, we have:

– for 0 < x ∑ t , there is the renewal at x plus N (t °x) renewals in the interval (x, t ], thus

E [(N (t ))k | X1 = x] = E [(1+N (t °x))k ];

– for x > t , there are no renewals in the interval [0, t ], therefore

E {(N (t ))k | X1 = x} = 0.

Consequently,

mk (t ) = E [(N (t ))k ]

= E {E [(N (t ))k | X1]}

=
Z+1

0
E [(N (t ))k | X1 = x]dF (x)

=
Zt

0
E [(1+N (t °x))k ]dF (x)+

Z+1

t
0dF (x)

(n+1)k=k(n)k°1+(n)k=
Zt

0
E [k(N (t °x))k°1 + (N (t °x))k ]dF (x)

= k
Zt

0
mk°1(t °x)dF (x)+

Zt

0
mk (t °x)dF (x). X

3. Consider the age replacement policy, where we replace a machine upon failure or upon reaching age T , (2.0)

and suppose the machine lifetimes are i.i.d. r.v. with exponential distribution with unit mean. Admit that
a new machine costs C1 monetary units and also that an additional cost of C2 monetary units is incurred
whenever a machine breaks down.

Compute the optimal age replacement parameter T that minimizes the long run expected total cost per
time unit.

• Renewal process

{N (t ) : t ∏ 0}

N (t ) = number of replacements by time t
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• Inter-renewal times

Xi
i .i .d .ª X

st= min{T,Y }, i 2N0, where

T = age replacement parameter

FY (y) =
(

0, y ∑ 0
1°e°y , y > 0

• Expected inter-renewal time

E(X ) = E [min{T,Y }]

=
Z+1

0
min{T,Y }dFY (y)

=
ZT

0
y dFY (y)+

ZT

0
T dFY (y)

=
ZT

0
y e°y d y +T P (Y > T )

=
£

°Te°T +
°

1°e°T ¢§

+T e°T

= 1°e°T

• Reward renewal process

{R(t ) =PN (t )
n=1 Rn : t ∏ 0}

R(t ) = total cost incurred until time t

(Xn ,Rn) i .i .d .ª (X ,R), n 2N

R =
(

C1, Y = T (machine replaced before it breaks down, i.e., X ∏ T )

C1 +C2, Y < T (machine replaced because it broke down before T, i.e., X < T )

• Expected cost per replacement

E(R) =C1 £P (Y = T )+ (C1 +C2)£P (Y < T ) =C1 £e°T + (C1 +C2)£ (1°e°T ) =C1 +C2 £ (1°e°T )

• Long run expected total cost per time unit

Since E(X ),E(R) <+1, we can apply the ERT for renewal reward processes and get

q(T ) = lim
t!+1

E [R(t )]
t

= E(R)
E(X )

= C1 +C2 £ (1°e°T )
1°e°T

= C1

1°e°T
+C2.

• Requested optimal age replacement parameter T

q(T ) is a decreasing function of T , hence

T? > 0 : q(T?) = inf
T>0

q(T ) , T? =+1.

• [Comment — The machines should only be replaced when they break down.]
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