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Departamento de Matemática
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0. Introduction

These are lecture notes for a graduate course on Lie Groups and Lie Algebras taught at
IST Lisbon in the Fall semester of 2017/2018 and again in 2018/2019. It is assumed that
the reader is familiar with basic Differential Geometry (vector fields, differential forms,
immersions and the Frobenius theorem in particular), basic point set topology including
the fundamental group and covering spaces as well as basic algebra (linear algebra, tensor
product, exact sequences). Basic algebraic and differential topology will also be invoked
at very isolated instances.

Date: January 25, 2019.
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1. Basic definitions

Definition 1.1. A Lie group is a smooth manifold1 G together with an element e ∈ G
and a multiplication map µ : G × G → G which has e as a unit, is associative and has
inverses. Moreover the map µ and the inverse map ι : G→ G are required to be smooth.

These objects are used to describe continuous symmetries. They were first studied (in a
local form) by Sophus Lie c. 1870 with a view to exploiting symmetries for the solution of
differential equations. For more on this see [Ol].

Exercise 1.2. Show that the requirement that ι be smooth can be omitted from the def-
inition. That is, if µ is smooth and gives G a group structure then the inverse map is
automatically smooth.

Example 1.3. (i) Any countable (discrete) group is a Lie group.
(ii) (Rn,+) is an abelian Lie group.

(iii) The general linear groups GL(n;R) (resp. GL(n;C)) of invertible n×n matrices with
real (resp. complex) coefficients are Lie groups. Note that these sets of matrices are
open sets in the Euclidean spaces of all square matrices and hence have natural man-
ifold structures. Moreover the usual formulas for matrix multiplication and inversion
show that these operations are smooth. These groups are not abelian unless n = 1.

(iv) The connected (or path) component of the identity in a Lie Group is again a Lie
group (since the components are open sets). Applying this to the previous example we
obtain the Lie group GL(n;R)+ = {A ∈ GL(n;R) : detA > 0}.

(v) The orthogonal groups

O(n) = {A ∈ GL(n;R) : AtA = Id}

are Lie groups. To check that O(n) is a submanifold of GL(n;R) ⊂ Rn2
, let Symn(R)

denote the vector space of symmetric n× n matrices and consider the quadratic map

Φ: Mn×n(R)→ Symn(R) ∼= R
n(n+1)

2

defined by the expression Φ(A) = AtA, so that O(n) = Φ−1(Id). In order to check

that O(n) is a submanifold of GL(n;R) (or equivalently of Rn2
) we must check that

Id is a regular value of Φ. Since

Φ(A+H) = (A+H)t(A+H) = Φ(A) + AtH +H tA+H tH

we see that
DΦ(A)H = AtH +H tA

Since A ∈ GL(n;R) is invertible, the matrix AH is arbitrary and hence so is its sym-
metrization DΦ(A)H. We conclude that DΦ(A) is surjective for each A ∈ GL(n;R)

and hence O(n) is a submanifold of dimension n(n−1)
2

. Since the multiplication and
inverse maps on O(n) are restrictions of smooth maps they are smooth and so O(n)
is a Lie group.

1Manifolds are assumed to be Hausdorff and second countable.
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One can check that O(n) has exactly two components. The connected component
of the identity consists of the rotations and is called the special orthogonal group
SO(n) = O(n) ∩GL+(n). When n = 2 we also write S1 instead of SO(2) since

SO(2) =
{[

cos θ − sin θ
sin θ cos θ

]
: θ ∈ R

}
is homeomorphic to the circle.

(vi) The unitary groups

U(n) = {A ∈ GL(n;C) : A∗A = Id}

are again Lie groups of dimension n2. The special unitary groups

SU(n) = {A ∈ U(n) : det(A) = 1}

are also Lie groups. Note that SO(2) ∼= U(1).
(vii) Cartesian products of Lie groups are again Lie groups. In particular the n-fold product

S1 × · · · × S1 is a Lie group called the n-torus.

The groups of symmetries of many types of mathematical objects turn out to be Lie
groups. For instance this is the case for the symmetries of any kind of algebraic structure
on a real vector space (as we will soon see) and also for the groups of symmetries of
Riemannian and complex manifolds [Ko].

Exercise 1.4. (i) Check that GL+(n;R) and SO(n) are connected. Hint: Use Gauss
elimination and polar decomposition.

(ii) Prove the statements about U(n) and SU(n) in the example above.

The other basic object of study in this course is of a purely algebraic nature.

Definition 1.5. A Lie algebra over a field K is a vector space V over K together with a
bilinear map [ , ] : V × V → V (called the Lie bracket) satisfying

• Anti-symmetry: [v, w] = −[w, v] for all v, w ∈ V
• Jacobi identity: [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 for all u, v, w ∈ V .

Example 1.6. (i) If V is any vector space we can set the bracket to be the 0 map. This
Lie algebras are called abelian.

(ii) If A is an associative algebra over the field K and we set [ , ] to be the commutator
bracket

[a, b] = ab− ba
then it is immediate to check that [ , ] gives A the structure of a Lie algebra. When
A = Mn(K) (or, more invariantly, End(V ) the algebra of endomorphisms of V ) this
lie algebra is denoted gl(n,K) (or gl(V )).

(iii) Suppose A is an algebra over K, not necessarily associative or even unital (so A just
has a bilinear product A × A → A denoted by juxtaposition). A derivation of A is a
linear map d : A→ A satisfying the Leibniz rule

d(ab) = (da)b+ a(db)
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The set Der(A) of derivations is clearly a linear subspace of End(A). It is closed
under the commutator bracket in End(A):

[d1, d2](ab) = d1(d2(a)b+ ad2(b))− d2(d1(a)b+ ad1(b))

= (d1d2)(a)b+ d2(a)d1(b) + d1(a)d2(b) + a(d1d2)(b)−
(d2d1)(a)b− d1(a)d2(b)− d2(a)d1(b)− a(d2d1)(b)

= [d1, d2](a)b+ a[d1, d2](b)

so the commutator bracket gives Der(A) the structure of a Lie algebra
(iv) If M is a manifold, the vector space X (M) of vector fields on M together with the

Lie bracket of vector fields is a Lie algebra.

Exercise 1.7. Show that X (M) is the algebra of derivations of the R-algebra C∞(M) so
example (iv) above is actually a special case of (iii).

Remark 1.8. The Jacobi identity may be interpreted as saying that a Lie algebra L acts on
itself via derivations. Namely a vector space L together with an anti-symmetric (bilinear)
product is a Lie algebra iff for each x in L, the endomorphism of L given by y 7→ [x, y] is
a derivation.

We will now explain the basic connection between the concepts of Lie group and Lie
algebra. Given a Lie group G and an element g ∈ G we write

Lg : G→ G Rg : G→ G

for the maps given by left and right multiplication by g respectively. So Lg(h) = gh and
Rg(h) = hg. Clearly Lg is a diffeomorphism (with inverse Lg−1) and g 7→ Lg gives a left,
simply transitive, action of G on itself by diffeomorphisms. Similarly g → Rg gives a right
action.

Definition 1.9. Let G be a Lie group. A vector field X ∈ X (G) is left invariant (resp.
right invariant) if dLg(Xh) = Xgh (resp. dRg(Xh) = Xhg) for all g, h ∈ G.

In order to check whether a vector field is left invariant, it is sufficient to check the
special case Xg = dLg(Xe) as the general case then follows from the chain rule. From now
on we will stick to left invariant vector fields and stop pointing out the analogous results
for right invariant vector fields.

Lemma 1.10. Let G be a Lie group.

(a) A (not necessarily continuous) left invariant vector field on G is smooth and complete.
(b) If X, Y ∈ X (G) are left invariant so is [X, Y ].
(c) The left invariant vector fields on G are closed under the Lie bracket of vector fields.
(d) The left invariant vector fields form a vector subspace of X (G) canonically isomorphic

to TeG (and hence of dimension dimG).
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Proof. (a) Let X be a (not necessarily continuous) left invariant vector field and consider
the diagram

G TG× TG TG

G×G G

s

r

dµ

where s(g) = (0, Xe) and r(g) = (g, e) (and the vertical maps are the canonical pro-
jections). Left invariance implies that X = dµ ◦ s and it follows that X is smooth, as
it is the composite of smooth maps.

(b) Let γ : ]a, b[→ G be an integral curve for the left invariant vector field X, so that

dγ

dt
= Xγ(t)

Then Lg ◦ γ is also an integral curve for X. Thus, if γ : ] − 2ε, 2ε[→ G is an integral
curve for X with γ(0) = e, we may extend it to ]− 2ε, 3ε[ by setting

γ(t) = Lγ(ε)γ(t− ε), for 2ε ≤ t < 3ε

The expression on the right of the equality is defined and smooth for −ε < t < 3ε and
it is an integral curve taking the value γ(ε) at time ε. Therefore it agrees with γ(t)
in the common domain of definition ] − ε, 2ε[. We thus have a smooth integral curve
defined on ]− 2ε, 3ε[. Continuing in this way we can extend γ to the whole of R. The
remainder of the proof is left as an exercise.

(c) A vector field is left invariant iff it is Lg related to itself for each g ∈ G (i.e. X = dLgX).
By the properties of the Lie bracket of vector fields, if X, Y are Lg-related to themselves,
so is their Lie bracket.

(d) The evaluation at e map X (G)→ TeG is linear. It is surjective because given v ∈ TeG
we can define a left invariant vector field on G by the formula Xg = dLg(v) as we saw
in (a). Evaluation is clearly injective because the value of a left invariant field at g is
determined by its value at e.

�

Definition 1.11. The space of left invariant vector fields on a Lie group G with the Lie
bracket is denoted Lie(G) or g and called the Lie algebra associated to G.

Remark 1.12. Traditionally the Lie algebra of a Lie group is denoted by the same letter
with a german script, i.e. h for the Lie algebra of the Lie group H, etc. It is also customary
to use german letters from Lie algebras even when they are not being derived from any Lie
group.

Example 1.13. (1) Let G = Rn. Then left multiplication by v is translation by v,
so the diffeomorphism Lv induces the canonical isomorphism between the tangent
spaces at different points. With respect to these standard identifications, the left
invariant vector fields are therefore the constant vector fields. It follows that the
Lie bracket vanishes identically, i.e. g is the abelian Lie algebra of dimension n.
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(2) Consider the standard coordinates a, b, c, d : GL(2,R) → R given by the matrix
entries. Identifying the tangent spaces at all points with M2×2(R) in the usual way,
let us write down the expression for the left invariant vector field X determined by

the element ∂
∂a

=

[
1 0
0 0

]
∈ Te GL(2,R).

We have

X a b
c d

 = dL a b
c d


∂

∂a
= a

∂

∂a
+ c

∂

∂c
=

[
a 0
c 0

]

(3) Let G = GL(n;R). Then TeG can be identified in the usual way with Mn×n(R) =
gl(n;R). Let’s check that evaluation at the identity matrix e takes the Lie bracket
of vector fields to the commutator bracket of matrices and thus identifies the left
invariant vector fields in X (GL(n;R)) with gl(n;R).

Given left invariant vector fields X and Y on G, we need to check that [X, Y ]e =
[Xe, Ye]. Consider the usual coordinates xij : GL(n,R) → R which compute the
various entries of the matrix. We can obtain the ij-th component of a vector field
X at e by computing the value of the function X · xij at the point e. Now

([X, Y ] · xij)e = Xe · (Y · xij)− Ye · (X · xij)
Given g ∈ G we have

(Y · xij)(g) = Yg · xij = dLg(Ye) · xij = Ye · (xij ◦ Lg)
and

(xij ◦ Lg)(h) = (gh)ij =
n∑
k=1

gikhkj =
n∑
k=1

xik(g)xkj(h)

hence

(Y · xij)(g) =
n∑
k=1

xik(g)(Ye · xkj)

and

Xe · (Y · xij) =
n∑
k=1

(Xe · xik)(Ye · xkj)

Subtracting the above expression with X and Y switched we obtain that ([X, Y ]·xij)e
is given by the ij-th entry of the commutator of the matrices Xe and Ye as required.

Definition 1.14. Let G,H be Lie groups. A map φ : G→ H is a Lie group homomorphism
if it is a group homomorphism and a smooth map. Given Lie algebras g, h, a linear map
f : g → h is a Lie algebra homomorphism if for all v, w ∈ g we have [f(v), f(w)] =
f([v, w]). Given a Lie group homomorphism φ : G→ H we define

φ∗ : g→ h

by stipulating that φ∗(X) is the unique left invariant vector field on H whose value at e ∈ H
is dφe(Xe).
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Note that under the identification of the Lie algebras associated with Lie groups with
their tangent spaces at the identity, φ∗ is just the derivative of φ at the identity, dφe.

Proposition 1.15. If φ is a Lie group homomorphism then φ∗ is a Lie algebra homomor-
phism (meaning a map of vector spaces which preserves the Lie bracket).

Proof. Let’s first check that φ∗(X) is φ-related to X:

dφg(Xg) = dφg(dLg)e(Xe) = (dLφ(g))e(dφe)Xe = (dLφ(g))e(φ∗(X))e = (φ∗(X))φ(g)

where in the second equality we used φ ◦Lg = Lφ(g) ◦ φ (which holds because φ is a homo-
morphism). Since the property of being φ-related is closed under the Lie bracket, it follows
that [φ∗(X), φ∗(Y )] is φ-related to [X, Y ]. In particular [φ∗(X), φ∗(Y )]e = dφ([X, Y ]e). As
[φ∗(X), φ∗(Y )] is left invariant, we conclude that [φ∗(X), φ∗(Y )] = φ∗([X, Y ]). �

Example 1.16. (1) The map φ : Rn → (S1)n defined by

φ(x1, . . . , xn) = (e2πix1 , . . . , e2πixn)

is clearly a Lie group homomorphism and φ∗ is an isomorphism between the two
(abelian) Lie algebras.

(2) Given A ∈Mn×n(R) the map φ : R→ GL(n;R) defined by

A 7→ etA

is a Lie group homomorphism. In general, Lie group homomorphisms R → G
are called 1-parameter subgroups (even if they are not injective and hence not
necessarily subgroups). The map induced on the level of Lie algebras is determined
by φ∗(1) = A.

(3) det : GL(n;R) → GL(1;R) is a Lie group homomorphism. The map induced on
the level of Lie algebras is the trace map tr : Mn×n(R) → R. The kernel of det is
also a Lie group (exercise) called the special linear group SL(n,R).

Definition 1.17. Lie group homomorphisms φ : G→ GL(n;R) are called (real) represen-
tations of G. They correspond to linear actions G × Rn → Rn. Similarly a Lie algebra
homomorphism φ : g → gl(n;R) is called a real representation of g. Replacing R with C
we obtain the notion of complex representations.

If a representation is injective one says that the representation is faithful. In that case
we can think of the elements of G (or g) as matrices by identifying the elements of G (or
g) with their images under φ. We’ll soon see this is not always possible for Lie groups.

At this point we have constructed a functor

D : Lie groups → Lie algebras

which sends a Lie group to its associated Lie algebra and a Lie group homomorphism φ to
φ∗. Under the identification of the Lie algebra with the tangent space at the identity, D is
nothing other than the functor ”tangent at e” which justifies the notation - D for derivative.
One of Lie’s great achievements was his understanding that the functor D comes pretty
close to being an equivalence, so that the theory of Lie groups, which are fairly complicated
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objects, can to a large extent be reduced to the linear algebraic problem of understanding
Lie algebras and maps between them. In particular, the infinitesimal information encoded
in the Lie algebra (we’ll see later how the Lie bracket is related to the product of the Lie
group) determines the Lie group G to a large extent. Of course, it doesn’t completely
determine G as D is clearly blind to the existence of non-trivial connected components
and, for instance, the homomorphism φ in Example 1.16(1) is not an isomorphism even
though φ∗ is. Still it comes pretty close as we will see. Our next objective is to understand
the basic properties of this correspondence between Lie groups and Lie algebras.

2. Lie’s Theorems

Definition 2.1. A Lie subalgebra of a Lie algebra g is a vector subspace h ⊂ g which
is closed under the Lie bracket of g. A Lie subgroup of a Lie group G is a Lie group
homomorphism φ : H → G which is an injective immersion.

Example 2.2. (1) φ : R→ S1 × S1 defined by φ(t) = (eit, ei
√

2t) is a Lie subgroup but
not an embedding.

(2) Since tr(XY ) = tr(Y X) we see that

sl(n;R) = {X ∈ gl(n;R) : trX = 0}

is a Lie subalgebra of gl(n;R) (and similarly for complex, or indeed any other field,
coefficients). These Lie algebras are called the special linear Lie algebras. They are
the Lie algebras of the Lie groups appearing in Exameplo

Clearly if φ : G→ H is a Lie subgroup, then φ∗ : g→ h identifies g with the subalgebra
φ∗(g) ⊂ h. Conversely we have the following basic result that gives a one-to-one corre-
spondence between connected Lie subgroups of a Lie group and Lie subalgebras of its Lie
algebra.

Theorem 2.3. Let G be a Lie group and k ⊂ g be a Lie subalgebra. Then there exists a
unique connected Lie subgroup φ : H → G such that φ∗(h) = k.

Uniqueness in the previous statement means that if φ′ : H ′ → G is another connected Lie
subgroup satisfying φ∗(h

′) = k, then there exists a Lie group homomorphism ψ : H → H,
which is also a diffeomorphism (i.e. an isomorphism of Lie groups) such that the following
diagram commutes

H G

H ′

φ

ψ
φ′

In order to prove the uniqueness part of the Theorem we will use the following result.

Lemma 2.4. Let G be a connected topological group and U a neighborhood of e. Then
U generates G, i.e. ∪∞n=1U

n = G (where Un denotes the set of n-fold products in G of
elements in U).
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Proof. Let V = U ∩ U−1 ⊂ U . This is still a neighborhood of e because the inverse map
is a homeomorphism from G to itself. The subset S = ∪∞n=1V

n ⊂ G is clearly a subgroup
because V = V −1. It is also an open subset of G because it can be written as a union of
copies of V (for instance V 2 = ∪g∈V gV ). G can be decomposed into left cosets of S as

G =
∐

[h]∈G/S

hS

Since the left cosets hS are open, the complement of S = eS in G is a union of open subsets
of G and hence is open. Therefore S ⊂ G is both open and closed. As G is connected, it
follows that S = G. �

Proof of Theorem 2.3: Consider the distribution D ⊂ TG defined by Dg = dLg(k). This
distribution is globally generated by a basis of k therefore it is smooth. Since k is closed
under the Lie bracket, by the Frobenius Theorem the distribution D is integrable and
defines a regular foliation of G (i.e. a partition of G into leaves = maximal connected
integral submanifolds of D, all of dimension dim k).

Let φ : H → G be the leaf through e. Given any g ∈ φ(H), Lg−1 ◦ φ also contains e in
its image, and by left invariance of D, is also an integral submanifold. By maximality of φ
we have Lg−1(φ(H)) ⊂ φ(H). Thus, given g, g′ ∈ φ(H) we have g−1g′ ∈ φ(H) and φ(H) is
a subgroup of G.

Since leaves of foliations are initial submanifolds the product map on φ(H) factors
through φ as a smooth map ν : H ×H → H

H ×H G×G

H G

φ×φ

ν µ

φ

Since φ is injective, it is clear that φ−1(e) is a unit for the multiplication ν, ν is associative
and has inverses. One can also see that the inverse map is smooth in the same way that we
saw that ν is smooth (although this is in fact not necessary by Exercise 1.2). We conclude
that with the Lie group structure on H determined by ν, φ is a Lie subgroup of G. By
construction we have φ∗(h) = k. This concludes the proof of existence.

Suppose now that φ′ : H ′ → G is another connected Lie subgroup with dφ′(TeH
′) =

ke. Then φ′ is also an integral submanifold through e of the distribution D ⊂ TG. By
maximality we must have φ′(H ′) ⊂ φ(H) and since φ is an initial submanifold, there is a
smooth map ψ : H ′ → H such that the diagram

H G

H ′

φ

φ′
ψ

commutes. As φ′ is injective, ψ is an injective group homomorphism. As dφe and dφ′e
are both isomorphisms onto ke, it follows that dψe is a bijection. By the inverse function
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theorem this implies that ψ is a local diffeomorphism at e and hence the image of ψ contains
a neighborhood of e in H. By Lemma 2.4, ψ is surjective and hence bijective. Since ψ
is a Lie group homomorphism, the fact that is a local diffeomorphism at e implies it is a
local diffeomorphism at each h ∈ H ′. It is therefore a diffeomorphism, which completes
the proof. �

We can now see that the functor D is injective on morphisms from connected Lie groups:

Corollary 2.5. Let G be a connected Lie group and φ, ψ : G → H be such that φ∗ = ψ∗.
Then φ = ψ.

Proof. Consider the Lie subgroups id×φ, id×ψ : G→ G×H given by

g 7→ (g, φ(g)), g 7→ (g, ψ(g))

Both these subgroups correspond to the same Lie subalgebra graph(φ∗) = graph(ψ∗) ⊂
g × h. Since G is connected, by Theorem 2.3 there exists a Lie group automorphism
ϕ : G → G such that id×φ = (id×ψ) ◦ ϕ. Composing the homomorphisms id×φ, id×ψ
with π1 : G×H → G, we see that ϕ must be the identity Hence φ(g) = ψ(g) for all g ∈ G
as required. �

The correspondence between maps and graphs used in the previous proof suggests a
method for integrating maps of Lie algebras. Suppose G,H are Lie groups and f : g → h
is a map of Lie algebras. Then f determines a Lie subalgebra of the product Lie algebra
g× h

graph(f) = {(v, f(v)) ∈ g× h : v ∈ g}
which by Theorem 2.3 corresponds to a connected Lie subgroup of G × H. Can this be
used to integrate f , i.e. to find ψ : G→ H such that ψ∗ = f? Let

φ : K → G×H
be the connected Lie group integrating graph(f). It’s easy to check that if the integrating
map ψ exists, its graph in G × H gives the subgroup φ. The subgroup φ is a graph iff
π1 ◦ φ : K → G is a diffeomorphism (and hence a Lie group isomorphism). In that case

π2 ◦ φ ◦ (π1 ◦ φ)−1

is the required Lie group homomorphism integrating f . Although we do know that π1 ◦ φ
is a local diffeomorphism, because it induces an isomorphism

k
∼=−→ graph(f)

π1∗−−→ g

it need not be a diffeomorphism as the following example shows.

Example 2.6. Identify in the usual way the Lie algebras of G = S1 and H = R with R
and consider the map of Lie algebras f = idR. Then graph(f) = ∆(R) ⊂ R2 ∼= g× h is a
diagonal copy of R inside R2. The corresponding Lie subgroup is R ↪→ S1 × R defined by

t 7→ (eit, t)

and we see that π1 ◦ φ is not injective.



LECTURE NOTES ON LIE GROUPS AND LIE ALGEBRAS 11

Proposition 2.7. Let φ : G → H be a Lie group homomorphism. Then φ∗ : g → h is an
isomorphism iff φ is a covering map.

Proof. ⇐: Suppose that φ∗ = dφe is not surjective. By left invariance, the rank of dφg is
independent of g ∈ G. The constant rank theorem then guarantees that the image of φ
is contained in the image in H of a smooth map from a manifold of dimension less than
dimH, and hence has measure zero. Since a covering map is an open map, φ can not be
a covering map. On the other hand, If dφe is not injective then there is a non-trivial one
parameter subgroup ψ : R→ G such that dφe ◦dψ0 = 0. From Corollary 2.5 it follows that
φψ is constant, so ψ(R) is contained in the kernel of φ. Since ψ is an immersion we see
that ker(φ) is not a discrete subspace of G and hence φ is not a covering map.
⇒: By the inverse function theorem and left invariance, φ is a local diffeomorphism at

all g ∈ G. The result now follows from point set topology: A homomorphism φ : G → H
of topological groups which is a local homeomorphism is a covering map. In order to see
this, first note that D = kerφ is a discrete normal subgroup of G. Consider the map
d : G×G→ G defined by d(x, y) = xy−1 and pick a neighborhood V of e in G such that

• d(V × V ) ∩D = {e} (i.e.( x, y ∈ V and xy−1 ∈ D)⇒ x = y)
• φ|V is a homeomorphism.

We’ll check that

(1) φ−1(φ(V )) =
∐
x∈D

xV

so that V is a trivialising neighborhood of e for φ. Left invariance then guarantees that φ
is a covering map.

Clearly φ(xV ) = φ(V ) and φ|xV is a local homeomorphism. Suppose that xV ∩x′V 6= ∅.
Then xv = x′w for some v, w ∈ V and therefore wv−1 ∈ D. But in that case v = w and
hence x = x′. We conclude that the open sets {xV : x ∈ D} are pairwise disjoint. Finally,
if φ(g) ∈ φ(V ) then φ(g) = φ(v) for some v ∈ V . Therefore gv−1 = x for some x ∈ D and
hence g ∈ xV . �

Corollary 2.8 (Lie’s second theorem). Let G be a simply connected Lie group, H a Lie
group and f : g → h a Lie algebra homomorphism. Then there exists a unique Lie group
homomorphism φ : G→ H such that φ∗ = f .

Proof. Let ψ : K → G × H be the Lie subgroup corresponding to the Lie subalgebra
graph(f) ⊂ g× h. The map π1ψ : K → G is a covering space by Proposition 2.7. Since G
is simply connected, π1ψ is a homeomorphism and hence a diffeomorphism. The required
Lie group homomorphism is φ = π2ψ(π1ψ)−1. Uniqueness is guaranteed by Corollary
2.5. �

The previous result says that the Lie correspondence D is a bijection on morphisms from
a simply connected source. It is important to note that every Lie group has a ”simply
connected version”:
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Proposition 2.9. Let G be a connected Lie group. Then the universal covering space G̃

admits the structure of a Lie group in such a way that π : G̃ → G a Lie group homomor-
phism.

Proof. Let π : G̃ → G be a universal covering map and ẽ be an arbitrary point in π−1(e).
Writing µ : G×G→ G for the multiplication on G, the lifting theorem gives a unique map
µ̃ sending (ẽ, ẽ) to ẽ.

G̃× G̃ G̃

G×G G

µ̃

π×π π

µ

and one easily checks (using the uniqueness of lifts) that this gives G̃ the structure of a Lie
group with unit ẽ (Exercise). �

Example 2.10. (1) The map π : Rn → (S1)n defined by π(x1, . . . , xn) = (e2πix1 , . . . , e2πixn)
is the universal covering map.

(2) Let S3 denote the Lie group of unit quaternions. Then π : S3 → SO(3) defined by

π(q)(v) = qvq

(where v ∈ R3 is regarded as a purely imaginary quaternion) is the universal cov-
ering map. The kernel consists of {±1} from which we see that π1(SO(3)) ∼= Z/2.

(3) The map π : S3 × S3 → SO(4) defined by

π(q1, q2)(v) = q1vq2

is the universal (double) covering with kernel {±(1, 1)}.

Remark 2.11. For n ≥ 3, the fundamental group of SO(n) is Z/2. The universal double
covers are called the Spin groups Spin(n). We will see an algebraic construction later (see
[BtD] for instance).

Example 2.12 (A non-linear Lie group). Let ˜SL(2;R) be the universal cover of the Lie
group SL(2;R) = {A ∈ GL(2;R) : detA = 1}.

You will see in the exercises that SL(2,R) is diffeomorphic to S1 × R2 so that, in par-
ticular, π1(SL(2,R)) ∼= Z. You will also see that any representation f : sl(2;R)→ gl(n;R)
can be integrated to a representation SL(2;R)→ GL(n;R) (even though Corollary 2.8 does
not apply).

Now suppose we have a representation

˜SL(2;R)
φ−→ GL(n;R)

for some n. Since π : ˜SL(2;R) → SL(2;R) determines an isomorphism of Lie algebras,
we can consider the Lie algebra homomorphism dφ ◦ (dπ)−1 : sl(2;R) → gl(n;R). By the
exercise mentioned above, this Lie algebra homomorphism gives rise to a Lie group homo-
morphism ψ : SL(2;R)→ GL(n,R). But ψπ induces the same Lie algebra homomorphism
as φ. Therefore, by Corollary 2.5 we have ψπ = φ. But kerπ = π1(SL(2;R)) is non-trivial
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and we have φ(kerπ) = e so φ is not faithful. We conclude that ˜SL(2;R) does not have
any faithful representations, i.e. it can not be realized as a group of matrices.

To complete our initial discussion of the Lie correspondence we will now state a funda-
mental theorem.

Theorem 2.13 (Lie’s third theorem, or Cartan-Lie Theorem). Let g be a finite dimensional
Lie algebra over R. There exists a unique (up to isomorphism) simply connected Lie group
with Lie algebra isomorphic to g.

The proof of this Theorem will be given later, when we have sufficiently developed the
structure theory of Lie groups and algebras. You can also see [DK] for a direct proof. For
now we will just point out that this follows from the following (difficult) algebraic result.

Theorem 2.14 (Ado). Every finite dimensional real Lie algebra g has a faithful represen-
tation.

Proof. See for instance [Kn]. �

Proof of Theorem 2.13. Let f : g→ gl(n;R) be a faithful representation. By Theorem 2.3,
there exists a Lie subgroup φ : G → GL(n;R) with Lie(G) ∼= f(g). The universal cover
of G provides the required Lie group. If G′ is another simply connected Lie group and
h : g′ → g is a Lie algebra isomorphism, Theorem 2.8 will give us a map ψ : G′ → G with
ψ∗ = f . By Proposition 2.7 ψ is a covering space, but since G is simply connected, ψ must
be an isomorphism. �

Theorem 2.13 states that the Lie correspondence D is essentially surjective, even when
restricted to the category of simply connected Lie groups while Corollary 2.8 implies that
D is fully faithful on this subcategory. This implies the following basic result.

Corollary 2.15. The Lie correspondence D is an equivalence between the categories of
simply connected Lie groups and finite dimensional real Lie algebras.

Let G be a connected topological group and π : G→ H be a homomorphism of topolog-
ical groups which is a covering map. Then kerπ is a discrete, central subgroup of G (it is
central because for any g ∈ kerπ the conjugation map cg : G→ G given by cg(x) = gxg−1

satisfies cg(e) = e and covers the identity morphism of H hence, by the lifting theorem,
must be the identity map of G). Thus all connected Lie groups with Lie algebra g can be
expressed as the quotient of the unique simply connected Lie group with Lie algebra g by
a discrete central subgroup. Conversely it is easy to check that a quotient by a discrete
central subgroup will give a covering map and there is a natural group structure on the
quotient. Theorem 2.13 therefore implies that the classification of connected Lie groups
up to isomorphism amounts to

• the classification of finite dimensional real Lie algebras.
• For each such Lie algebra, understanding the discrete subgroups of the center of

the simply connected model2.

2But note that different central subgroups may correspond to isomorphic quotient groups. For instance
there are uncountably many discrete subgroups of R but only two possible quotients up to isomorphism.
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If one is interested in the classification of all Lie groups one would further need to under-
stand extensions of connected Lie groups by arbitrary countable discrete subgroups.

3. The exponential map

Definition 3.1. Let G be a Lie group and X ∈ g. We will write

expX : R→ G

for the unique Lie group homomorphism such that d expX( d
dt |0) = Xe. The exponential

map exp: g→ G is defined by the formula

exp(X) = expX(1)

Example 3.2. If X ∈ gl(n;R) then the map R→ GL(n;R) given by

t 7→ etX

(where eA denotes the matrix exponential of A) is a Lie group homomorphism and

d

dt

(
etX
)
|t=0

= X

so we conclude that expX(t) = etX and hence

exp(X) = eX

(which justifies the name of the exponential map).

Note that, since expX is a group homomorphism we have

d

dt
(expX(t)) = d expX

(
d

dt |t

)
= d expX

(
dLt

d

dt |0

)
= dLexpX(t)

(
d expX

(
d

dt |0

))
= dLexpX(t)(X) = XexpX(t)

hence t 7→ expX(t) is nothing other than the integral curve of the left invariant vector field
X which takes the value e at t = 0. By left invariance,

t 7→ g · expX(t)

is the integral curve of X which passes through g at t = 0 and hence

(g, t) 7→ g · expX(t)

is the flow of the vector field X. Namely we have

(2) φtX(g) = g expX(t) exp(X) = φ1
X(e)

Proposition 3.3. (i) exp(tX) = expX(t)
(ii) exp(−tX) = exp(tX)−1
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(iii) exp((t1 + t2)X) = exp(t1X) exp(t2X)
(iv) exp: g → G is smooth and (d expX)0 = Id (under the canonical identification of g

with TeG)
(v) exp is natural, i.e, given φ : G → H a Lie group homomorphism then the following

diagram commutes:

g h

G H

exp

dφe

exp

φ

(vi) Let φ : A ↪→ G be a Lie subgroup. Then X ∈ dφe(a) iff exp(tX) ∈ A for all t ∈ R (or
even for all t in some interval with non-empty interior).

Proof. (i) We’ll check more generally that exptX(s) = expX(st) for all s and t. The
statement we want is the case when s = 1. On the one hand we have

d

ds
(exptX(s)) = (tX)| exptX(s)

on the other, by the chain rule,

d

ds
(expX(st)) = tXexpX(st)

so both expressions give integral curves for the vector field tX. SInce they agree at
s = 0 they must be equal.

(ii) Applying (i) we have exp(−tX) = expX(−t) = (expX(t))−1 (as expX is a group
homomorphism).

(iii) This is just the statement that expX is a group homomorphism.
(iv) exp is smooth by (2) (smooth dependence of differential equations on parameters).

Alternatively, we can deduce smoothness from smooth dependence on initial condi-
tions of an auxiliary vector field: consider the vector field Z ∈ X (G × g) given by
Z(g,X) = (Xg, 0), which is smooth by an argument analogous to that in Lemma
1.10(i) (Exercise). Since

t 7→ (g exp(tX), X)

is an integral curve of Z which takes the value (g,X) at time 0, the expression for
the flow of Z is

φtZ(g,X) = (g exp(tX), X)

and this is smooth in t, g,X (by smooth dependence on initial conditions). Since
exp(X) = π1(φ1

X(e,X)) we see that exp is smooth.
Finally

d exp(Xe) =
d

dt
(exp(tX))|t=0 = Xe.

(v) This follows from Corollary 2.5 since t 7→ exp(tdφ(Xe)) and φ(exp(tXe)) are both
1-parameter subgroups of H (meaning Lie group homomorphism R → H) with the
same derivative at t = 0.
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(vi) ⇒ follows immediately from (v). For the converse note that

d

dt
(exp(tX)) = dLexp(tX)(X)

If exp(tX) ∈ φ(A) for t ∈]a, b[ then, for such t we have dLexp(tX)(X) ∈ Texp(tX)(φ(A)) =
dLexp(tX)(dφe(a)) hence X ∈ dφe(a).

�

Statement (iv) above implies that exp is a diffeomorphism between a neighborhood of 0
in g and a neighborhood of e in G. It therefore provides canonical coordinates3 for G near
the identity

log : G→ g

(and by translation, near any point g ∈ G). There is a famous universal formula expressing
the product of the Lie group in these canonical coordinates. This formula makes explicit
the way in which the product on the Lie group is determined in a neighborhood of e by
the Lie bracket on its Lie algebra.

Theorem 3.4 (Baker-Campbell-Hausdorff formula).

log(exp(X) exp(Y )) = X + Y +
1

2
[X, Y ] +

1

12
([X, [X, Y ]] + [Y, [Y,X]]) + . . .

where . . . are higher order terms4 which can be expressed in terms of linear combinations
of iterated Lie brackets of X and Y .

Proof. See [H] or [DK]. �

Note that a map of Lie groups p : G → H induces an isomorphism of Lie algebras iff
it is a covering map and then p induces a diffeomorphism between neighborhoods of the
identity, preserving the products defined on those neighborhoods, which is consistent with
the statement above.

Let us just check the validity of the second order term in the case of a matrix group. In
this case, exp, log are the usual exp and log of matrices. We can write

eXeY = eA0(X,Y )+A1(X,Y )+A2(X,Y )+...,

where An(X, Y ) are the homogeneous terms of degree n in the power series expansion of
the product in exponential coordinates. Since exp(0) = e and d(exp)0 = Id we must have
A0(X, Y ) = 0 and A1(X, Y ) = X + Y . Then

(I+X+
1

2!
X2+. . . )(I+Y +

1

2!
Y 2+. . . ) = I+X+Y +A2(X, Y )+

1

2
(X+Y +A2(X, Y ))2+. . .

and equating the second order terms we get

1

2
X2 +XY +

1

2
Y 2 = A2(X, Y ) +

1

2
(X2 +XY + Y X + Y 2)

3One can check that these are the same as the canonical coordinates of Riemannian geometry if G can
be given a bi-invariant metric. For instance, if G is compact.

4There is an explicit formula due to Dynkin. See [DK].
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and hence
A2(X, Y ) = 1

2
(XY − Y X) = 1

2
[X, Y ]

The computation becomes more and more difficult as we proceed. Even in degree 3, it is
not immediately obvious that the expression for A3(X, Y ) we obtain by expanding on both
sides can be expressed in terms of iterated brackets. It is a good exercise to check that it
does agree with the formula given above.

We will now use the exponential map to prove a very useful theorem concerning Lie
subgroups.

Theorem 3.5 (Cartan’s closed subgroup theorem). Let G be a Lie group and A ⊂ G a
subset which is a subgroup and a closed subset. Then A is an embedded Lie subgroup.

Before we look at the proof, let’s see some applications.

Example 3.6. (i) Let G be a Lie group. Then its center

Z(G) = {g ∈ G : gh = hg ∀h ∈ G}
is a Lie group. Indeed, it is a subgroup and clearly a closed subset as the equalities in
the definition are closed relations.

(ii) Let V be a vector space over R and B : V × V → R be a bilinear form. Then,

AutB(V ) = {ϕ ∈ GL(V ) : B(ϕ(v), ϕ(w)) = B(v, w)}
is a Lie group as it is clearly a closed subgroup of GL(V ). The same is true if we
replace R by C or H.

When B is the standard inner product on Rn, we obtain the orthogonal group O(n),
when B is the standard Hermitian inner product on Cn we obtain the unitary group
U(n). Another important example is the case when B is a non-degenerate skew sym-
metric bilinear form on R2n. In a suitable basis B can be written as

B(v, w) = vTJw with J =

[
0 −In×n

In×n 0

]
The group of linear isomorphisms preserving this bilinear form is called the symplectic
linear group

Sp(2n,R) = {A ∈ GL(R2n) : ATJA = J}
When B is the non-degenerate symmetric bilinear form on Rn with signature (k, n−k),
so that

B((x1, . . . , xn), (x1, . . . , xn)) = x2
1 + . . . x2

k − x2
k+1 − · · · − x2

n

the resulting Lie group is denoted O(k, n− k). Of special importance is the group of
symmetries of Minkowski space O(3, 1).

(iii) Let φ : G → H be a Lie group homomorphism. Then kerφ is a Lie subggroup of
G. Using the exponential map one checks that its Lie algebra is kerφ∗ : g → h: by
Proposition 3.3 (vi) we have

X ∈ Lie(kerφ)⇔ exp(tX) ∈ kerφ for all t ∈ R⇔ φ(exp(tX)) = e for all t ∈ R
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By naturality of exp the last condition is equivalent to

exp(tdφe(X)) ∈ {e} for all t ∈ R
and again by Proposition 3.3 (vi) this is equivalent to

dφe(X) ∈ {0} ⇔ X ∈ kerφ∗

(iv) If B : V ×V → V is a bilinear map (i.e. a product, not necessarily unital, associative
or commutative) then

AutB(V ) = {ϕ ∈ GL(V ) : B(ϕ(v), ϕ(w)) = ϕ(B(v, w))}
is a Lie subgroup of GL(V ). In particular, if V = g and B = [ , ] we have that
the group of automorphisms of a Lie algebra Aut(g) is a Lie group. Corollary 2.15
then gives us a canonical Lie group structure on the automorphism group of a simply
connected Lie group. Using the exponential map it is not hard to see that the resulting
topology on the group of automorphisms of the Lie group is induced by the compact-
open topology on the space of continuous maps from the Lie group to itself. Using this
and Cartan’s closed subgroup theorem, it then follows that the group of automorphisms
of an arbitrary Lie group is a Lie group (Exercise).

The following result identifies the Lie algebra of the Lie groups of automorphisms of a
product and explains the reason for the ubiquity of derivations: they are the infinitesimal
automorphisms.

Proposition 3.7. Let V be a vector space and B : V × V → V a bilinear map. The Lie
algebra of AutB(V ) is the Lie algebra of B-derivations.

DerB(V ) = {δ ∈ gl(V ) : δ(B(v, w)) = B(δv, w) +B(v, δw)}

Proof. Let’s first check that a tangent vector to AutB(V ) at e is a derivation. Let ϕ :
(−ε, ε) → AutB(V ) be a smooth curve with ϕ(0) = e and let X = ϕ′(0) ∈ gl(V ). By
assumption we have ϕ(t)(B(v, w)) = B(ϕ(t)v, ϕ(t)w). Differentiating with respect to t we
obtain(

d

dt
ϕ(t)(B(v, w))

)
|t=0

= B

(
d

dt
(ϕ(t))|t=0v, ϕ(0)w

)
+B

(
ϕ(0)v,

d

dt
(ϕ(t))|t=0w

)
and hence X(B(v, w)) = B(X(v), w) +B(v,X(w)) so that X is a derivation.

Now suppose δ : V → V is a B-derivation and let us check that

etδ = id +tδ +
1

2!
(tδ)2 + . . .

is an isomorphism of B. That will show δ ∈ Lie(AutB(V )) as d
dt

(etδ)|t=0 = δ. We can
regard B as a linear map B : V ⊗ V → V and, in this terms, we need to check whether
B ◦ (etδ ⊗ etδ) equals etδ ◦B.

We have

etδ ◦B =
∞∑
n=0

tn

n!
δn ◦B
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Since δ is a derivation we have δ ◦ B = B ◦ (δ ⊗ id + id⊗δ) and therefore the expression
above is equal to

∞∑
n=0

tn

n!
B ◦ (δ ⊗ id + id⊗δ)n = B ◦

∞∑
n=0

tn

n!
(δ ⊗ id + id⊗δ)n = B ◦ et(δ⊗id + id⊗δ)

Since the endomorphisms δ ⊗ id and id⊗δ of V ⊗ V commute, we see that this equals

B ◦ (et(δ⊗id) ◦ et(id⊗δ)) = B ◦ (etδ ⊗ id) ◦ (id⊗etδ) = B ◦ (etδ ⊗ etδ)
as required. �

We can repeat the computation in the proof of the previous proposition replacing B
with a bilinear form b : V × V → R (or some other field of scalars). The derivations of the
scalar product b are now the linear maps

Derb(V ) = {δ ∈ End(V ) : b(δv, w) + b(v, δw) = 0 for all v, w ∈ V }
and just as above we see this is the Lie algebra of Autb(V ) (exercise). When b is the
skew-symmetric non-degenerate bilinear form on R2n we obtain the real symplectic Lie
algebra

sp(2n;R) = {A ∈ gl(R2n) : ATJ + JA = 0}
Having seen some applications we will now prove Theorem 3.5. We will use the following

Lemma.

Lemma 3.8. Let G be a Lie group with Lie algebra g. Let A be an abstract subgroup.
Suppose that there is a subspace a ⊂ g and a neighbourhood U of 0 in g such that

• exp : U → V = exp(U) ⊂ G is a diffeomorphism.
• A ∩ V = exp(a ∩ U).

Then A is an embedded Lie group and a is its Lie algebra.

Proof. The open sets {La(W ∩ A) : a ∈ A,W ⊂ V } are a basis for the subspace topology
on A (because {Lg(W ) : W ⊂ V } is a basis for the topology on G). On each of this basis
elements, we have a chart

La(W ∩ A)
(exp|U )−1◦La−1−−−−−−−−−−→ U ∩ a.

whose image is some open subset of U ∩ a. The changes of coordinates for these charts are
of the form

La′ ◦ exp|U ◦(exp|U)−1 ◦ La−1

for a, a′ ∈ A, defined on some open subset of U ∩ a.
These are restrictions to a of diffeomorphisms between open subsets of g and hence

they are diffeomorphisms between open subsets of a. These charts give us an atlas for A
with respect to the induced topology so A ↪→ G is an embedded submanifold (in the local
coordinates described above, the inclusion is a linear map - the inclusion of an open subset
of a into g). The restriction of the product and the inverse to A are smooth, hence A is
an embedded Lie group.

Since d exp0 = Id we see that TeA = a and therefore a is a Lie subalgebra of g. �
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Proof of Theorem 3.5. Given a closed subgroup A define

a = {X ∈ g : exp(tX) ∈ A for all t ∈ R}.
Clearly a is a cone in g. Let’s see that it is actually a subspace. For X, Y ∈ g and t ∈ R

(3) exp(tX) exp(tY ) = exp(t(X + Y ) +O(t2))

This follows from the fact that the maps

g× g
exp× exp−−−−−→ G×G µ−→ G

g× g
+−→ g

exp−−→ G

both have [I|I] as a derivative at (0, 0) and hence have contact of order ≥ 1. This implies
equation (3) withO(t2) outside exp but since exp is a diffeomorphism at 0, that is equivalent
to (3).

Given X, Y ∈ a(
exp

(
X

n

)
exp

(
Y

n

))n
= exp

(
X

n
+
Y

n
+O

(
1

n2

))n
= exp

(
1

n

(
X + Y +O

(
1

n

)))n
= exp

(
X + Y +O

(
1

n

))
∈ A.

Since A is closed,

lim
n→∞

exp

(
X + Y +O

(
1

n

))
= exp(X + Y ) ∈ A.

Now if X, Y ∈ a then, by definition tX, tY ∈ a and hence, from the above, exp(t(X+Y )) ∈
A for all t ∈ R. It follows that a is closed under sum and multiplication by scalar so it is
a subspace of g.

We now need to check the hypotheses of Lemma 3.8 for A and the subspace a above.
Assume they do not hold. Then, we can pick a sequence Zk ∈ G so that

• Zk → e (and Zk 6= e)
• Zk ∈ A.
• exp−1(Zk) 6∈ a.

Pick a complement b to a in g (so that a⊕ b = g) and consider the map

φ : (a⊕ b) ∩ U → G

defined by

φ(X, Y ) = exp(X) exp(Y ).

Its derivative at (0, 0) is the isomorphism a× b
+−→ g. Since φ is a local diffeomorphism we

can write for k large enough Zk = exp(Xk) exp(Yk) with Xk ∈ a, Yk ∈ b and Xk, Yk → 0.
Since exp(Xk) ∈ A and Zk = exp(Xk) exp(Yk) ∈ A we must have exp(Yk) ∈ A. Moreover
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Yk 6= 0, otherwise we would have exp−1(Zk) = Xk ∈ a. Pick some norm on b and a
subsequence so that Yk

‖Yk‖
→ Y ∈ b. Then⌊

1
‖Yk‖

⌋
︸ ︷︷ ︸

nk

Yk → Y

(the distance to Y is bounded by the sum of ‖Yk‖ and the angle between Yk
‖Yk‖

and Y which

both tend to 0). Since exp is continuous

exp(nkYk) = exp(Yk)
nk → exp(Y )

and since A is closed, it follows that exp(Y ) ∈ A. Fixing t 6= 0 and running the same
argument with nk = b t

nk
c ∈ Z we see that exp(tY ) ∈ A for all t ∈ R and hence Y ∈ a,

which is a contradiction. �

4. The adjoint actions

Definition 4.1. Let M be a smooth manifold and G be a Lie group. A left action of G on
M is a smooth map φ : G×M →M satisfying:

(i) φ(e,m) = m, ∀m ∈M .
(ii) φ(g, φ(h,m)) = φ(gh,m), ∀g, h ∈ G, ∀m ∈M .

The action of g ∈ G on m ∈ is usually denoted by g ·m or even gm. We also have the
notion of a right action. This is a smooth map M × G → M sending (m, g) to m · g and
satisfying

m · e = m (m · g) · h = m · (gh) for all g, h ∈ G, m ∈M
For instance a Lie group G acts smoothly on itself on the left by left multiplication and

on the right by right multiplication:

g · x = gx x · g = xg for g, x ∈ G

We need to set some terminology regarding actions. An action is effective if g ·m = m
for all m implies g = e (i.e. all non-identity elements of G move some point of M). The
orbit of a point m is the subset of M

G ·m = {g ·m : g ∈ G}

An action is transitive if there is only one orbit, i.e. if any point is accessible to any
other via the action of G. Given a point m ∈ M , the isotropy subgroup or stabilizer
subgroup of m is the subgroup

Gm = {g ∈ G : g ·m = m}

An action is free if Gm = {e} for all m ∈ M (i.e. all non-identity elements of G move
every point of M). This is often confused with the notion of an effective action, but it is
stronger as the following example shows.
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Example 4.2. The action

Z/2× R→ R
(±1, x)→ ±x

is effective but not free as the isotropy group of 0 is Z/2.

A fixed point of an action is an element m ∈ M such that g ·m = m for all g ∈ G,
equivalently it is an element of M whose isotropy group is G.

Note that for each g ∈ G, the map

ag : M →M

m→ g ·m
is a diffeomorphism with inverse ag−1 . The axioms (i), (ii) in the definition of an action
precisely say that

G→ Diff(M)

g 7→ ag

is a group homomorphism. So an action is a kind of “nonlinear representation”, a way
of regarding elements in G as diffeomorphisms of a manifold. The parallel is even closer
since Diff(M) can be given the structure of an infinite dimensional Lie group for which the
map g 7→ ag is smooth. We will not get into this, but it is easy to see that the map is at
least a homomorphism of topological groups when we give Diff(M) the standard Whitney
topology where convergence means uniform convergence of a map and all its derivatives
on compact subsets of M .

Example 4.3. (i) A smooth action of the additive group R, a : R ×M → M , is called
a flow on M . It is exactly the same as a complete vector field on M . Indeed, given
such an action we can define X ∈ X (M) by the formula

Xm =
d

dt
(t ·m)|t=0.

It is easy to check that X is smooth (exercise). We have

d

dt
(a(t,m)) =

d

ds
(a(t+ s,m))|s=0

=
d

ds
(s · (t ·m))s=0

= Xt·m

so t → t ·m is an integral curve for X. It follows that X is complete. Conversely,
if X is a complete vector field, we can define a smooth action of R by the formula
t ·m := φtX(m).

(ii) A representation ρ : G→ GL(V ) gives an action

G× V → V

(g, v)→ ρ(g)v.
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Conversely, given such an action with the property that for each g

v → g · v

is linear, then the mapping defined by

ρ : G→ GL(V )

g → (v → g · v)

is a representation (it is an exercise to check that the resulting map G → GL(V ) is
smooth).

(iii) The conjugation action of a Lie group on itself is

G×G→ G

(g, h)→ cg(h) = ghg−1

Note that this is an action by automorphisms of the Lie group G, since

cg(e) = e

cg(h1h2) = cg(h1)cg(h2)

The conjugation action is effective iff ghg−1 = h for all h implies that g = e. Since

ghg−1 = h⇔ gh = hg

we see that this happens if and only if the center of G is trivial, i.e. Z(G) = {e}.
The orbits of the conjugation action are, by definition, the conjugation classes of G.
The set {e} is always a conjugation class therefore the action is transitive if and only
if the group G is the trivial group. Similarly the action is free only if G is the trivial
group, as e is a fixed point. The isotropy group of an element h ∈ G is

Gh = {g ∈ G : cg(h) = h⇔ gh = hg} = ZG(h)

the centralizer of the element h in G.
(iv) Given a smooth representation G×M →M , the isotropy representation at m is

defined by

Gm → GL(TmM)

g → d(g·)m,

This is a “linearization of the action of the isotropy group near m” as we will make
precise later. It is easy to check that the isotropy group acts smoothly on the tangent
space (exercise).

Definition 4.4. The adjoint representation of G is the isotropy representation of the
conjugation action of G on itself at e.

G
Ad−→ Aut(g) ⊂ GL(g)

g 7→ (X 7→ dcg(X)).
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Ad is a Lie group homomorphism and so its derivative gives a representation of the Lie
algebra which is denoted by

ad: g→ Der(g) ⊂ End(g)

and is also called the adjoint representation of the Lie algebra g.

Note that when G is connected, Ad(g) = id ⇔ cg = id ⇔ g ∈ Z(G). Therefore,
when G has trivial center, Ad is a faithful representation and G is canonically a matrix
group. The naturality property of exp (Proposition 3.3 (v)) implies the following very
useful commutation relations:

g g g Der(g)

G G G Aut(g)

exp

Ad(g)

exp exp

ad

exp

cg Ad

Example 4.5. Let G = GL(n,R) so that we have

cg(A) = gAg−1

Since conjugation by g is a linear map from Mn×n(R) to Mn×n(R), the automorphism of G
given by cg is the restriction of a linear map to an open set. With the usual identifications,
the derivative of cg at any point is itself, hence Ad(g)A = gAg−1, for A ∈ gl(n,R) =
Mn×n(R). In order to compute ad we can compute

ad(X)(A) =
d

dt
(Ad(exp tX)A)|t=0

=
d

dt
(exp(tX)A exp(−tX))|t=0

= XA exp(0X) + exp(0X)A(−X)

= XA− AX
= [X,A]

The formula we obtained for ad in the previous example is actually completely general.

Proposition 4.6. Let G be a Lie group with Lie algebra g and let X ∈ g. Then,
ad(X)(Y ) = [X, Y ].

Proof. Since cg = Rg−1Lg, applying the chain rule we have

ad(X)Y =
d

dt
(Ad(exp tX)Y )|t=0 =

d

dt

(
dRexp(−tX)dLexp(tX)Y

)
|t=0

=
d

dt

(
dRexp(−tX)Yexp(−tX)

)
|t=0

Recalling formula (2) for the flow of the vector field X the last expression is, by definition,
the Lie derivative of Y along X hence

ad(X)(Y ) = (LXY )e = [X, Y ].

�
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Motivated by the previous Proposition we make the following definition.

Definition 4.7. Let g be a Lie algebra over an arbitrary field.

ad : g→ Der(g)

by the formula ad(X)(Y ) = [X, Y ] (recall that the Jacobi identity guarantees that ad(X)
is a derivation, and also that ad is a map of Lie algebras for the standard commutator
bracket on derivations). This map ad is still called the adjoint representation of g. The
derivations of the form ad(X) are called inner derivations.

The center of a Lie algebra is

Z(g) = {X ∈ g : [X, Y ] = 0 for all Y ∈ g}

Note that the kernel of the adjoint representation of g is exactly the center of g. Thus,
if Z(g) = {0} then the adjoint representation is faithful and g is (isomorphic to) a matrix
Lie algebra.

Proposition 4.8. Let G be a connected Lie group.

(i) Lie(Z(G)) = Z(g) and in particular G is abelian iff g is abelian.
(ii) Let A ↪→ G be a connected Lie subgroup. Then, A is normal (i. e., gAg−1 = A for all

g ∈ G) iff a is an ideal of g (i. e., a is a subspace of g such that for all X ∈ g, Y ∈ a,
[X, Y ] ∈ a).

Proof. (i) Since G is connected, Z(G) = ker Ad, so this is a special case of Example
3.6(iii). We have Lie(Z(G)) = Lie(ker Ad) = ker ad = Z(g).

(ii) A is normal if and only if cg(A) = A for all g ∈ G. Since A is connected this is
equivalent to Ad(g)(a) = a for all g ∈ G. In particular, for all X ∈ g and t ∈ R we
have Ad(exp(tX))a = a Differentiating at t = 0 we obtain

ad(X)(a) ⊂ a for all X ∈ g

which precisely means that a is an ideal.
Conversely, suppose a is an ideal. Then ad(X)a ⊂ a for all X ∈ g. Hence

exp(ad(tX))a ⊂ a for all t ∈ R, X ∈ g. Since G is connected and therefore the
image of exp generates G, the last condition is equivalent to Ad(g)a ⊂ a for all
g ∈ G. Since A is connected this amounts to saying that cg(A) ⊂ A for all g, which
precisely means that A is a normal subgroup.

�

5. Smooth actions

We start by giving a condition on actions which make the orbit spaces “reasonable”.

Definition 5.1. Let M,N be smooth manifolds. A continuous map f : M → N is proper
if for all compact K ⊂ N , the set f−1(K) is compact.

Although the definition above makes sense for general topological spaces, the definition
of proper map for topological spaces is usually different (it agrees with the above for locally
compact Hausdorff spaces). See [tD, 3.13, p.27] for a thorough discussion of this point. In
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practice the way this property of maps is used is via the following characterization, the
proof of which is a simple point set topology exercise.

Exercise 5.2. A map f : M → N is proper if and only if any sequence xk ∈M such that
f(xk) converges, has a convergent subsequence (in M).

It is useful to keep in mind the following immediate consequences of properness.

Remark 5.3. Let f : M → N be a proper map between manifolds

(i) For all y ∈ N , the fiber over y, f−1(y) ⊂M is compact.
(ii) f is closed, i. e., if F ⊂M is closed, then f(F ) is closed in N .

In fact the above two conditions characterize properness. This is again a simple point
set topology exercise.

Exercise 5.4. Check that if conditions (i) + (ii) above hold then f proper.

Definition 5.5. A smooth action φ : G×M →M is proper if the map

Φ : G×M →M ×M
(g,m)→ (g ·m,m)

is proper.

Note the following immediate consequences of properness of an action(cf. Remark 5.3):

• Isotropy groups are compact (as Gm × {m} = Φ−1(m,m)).
• Orbits are closed because G ·m = Φ(G× {m}).

Example 5.6. (i) If G is compact, then any smooth action of G is proper. Indeed given
(gk,mk) ∈ G × M such that (gk · mk,mk) converges in M × M , we have that mk

converges and, since G is compact, gk has a convergent siubsequence.
(ii) The standard action of GL(n,R) on Rn is not proper. Indeed, there are only two

orbits of this action: {0} and R \ {0} and the latter is not closed.
(iii) The R-action on R2 given by

t · (x, y) = (x+ ty, y)

(corresponding to the vector field y ∂
∂x

) is not proper because the isotropy of the points
(x, 0) is R, which is not compact.

(iv) Let H ⊂ G be a closed subgroup. The action of H on G by left (or right) translation is
proper. Indeed let (hk, gk) ∈ H×G be such that (hkgk, gk) converges to (a, b) ∈ G×G.
Then gk → b. Since hkgk → a it follows that hk → ab−1 ∈ G. Since H is closed, the
limit ab−1 belongs to H and hence (hk, gk) converges in H ×G. In this case we don’t
even need to take a subsequence.

Here is the first manifestation of the “reasonableness” of proper actions.

Proposition 5.7. If G acts properly on M , then the orbit space G\M is Hausdorff.



LECTURE NOTES ON LIE GROUPS AND LIE ALGEBRAS 27

Proof. Let G · x and G · y be distinct orbits. We need to find neighbourhoods U of G · x
and V of G · y so that U ∩ V = ∅. Note that a small neighborhood of G · x in the quotient
topology is obtained by saturating an arbitrary small neighborhood W of x in M with
respect to the action, i.e. by considering a small neighborhood W of x ∈ M and taking
the open set ∪g∈G gW with g ∈ G.

Suppose that we can not find neighborhoods U and V as above. Then we can find
convergent sequences xk → x and yk → y in M and gk, hk in G such that gkxk = hkyk.
Therefore h−1

k gkxk = yk converges and we have

Φ(h−1
k gkxk, yk)→ (y, y)

By properness h−1
k gk has a convergent subsequence to some element ` ∈ G. Continuity of

the action implies that `x = y and therefore G ·x = G ·y which contradicts the assumption
that G · x and G · y are distinct. �

Given a smooth action G×M →M , an element X ∈ g defines a section a(X) : M → TM
by the expression

a(X)m =
d

dt
(exp(tX)m)|t=0

Exercise 5.8. (i) Show that a(X) is a smooth vector field whose integral curves going
through m at t = 0 are t 7→ exp(tX) ·m

(ii) Show that [a(X), a(Y )] = −a([X, Y ]), i.e. a : g→ X (M) is an anti-homomorphism.

The previous exercises suggest the notion of infinitesimal action of a Lie algebra which
we now define, and which will be used in the proof of the next theorem.

Definition 5.9. An infinitesimal action of a real Lie algebra g on a manifold M is a Lie
algebra anti-homomorphism g→ X (M)

It will be an exercise in the next problem set to show that any infinitesimal action of g
with the property that a(X) is complete for every X can be integrated to a smooth action
of the simply connected Lie group corresponding to the Lie algebra g.

Theorem 5.10. Let G×M →M be a smooth, proper and free action. Then, G\M has a
unique smooth structure with the property that the quotient map π : M → G\M has local
sections, i.e. for all G · x ∈ G\M , there exists a neighborhood U of G · x in G\M and a
smooth map s : U →M such that π ◦ s = idU

Note that a smooth map has local sections if and only if it is a submersion. This allows
for an alternative statement of the previous theorem.

Proof. Let us first see that for each m ∈M the map

g→ TmM

X → a(X)m

is injective. If a(X)m = 0 then m is a zero of the vector field a(X) and hence the integral
curve through m is constant. This means that exp(tX) ·m = m for all t. Since the action
is free, exp(tX) = e for all t ∈ R and therefore X = 0.
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From this is follows that the orbit maps G → M given by g 7→ g · m are immersions.
Indeed, writing Lg also for the diffeomorphism of M given by the action of g, the diagram

h G G h

h ·m M M h ·m

Lg

Lg

shows that the differential of this map at g ∈ G sends dLg(X) to dLg(a(X)m) and is
therefore an inclusion5.

Now let S ↪→M be a submanifold containing x such that

TxS ⊕ a(g)x = TxM

and consider the action map

φ : G× S →M

defined by the expression φ(g, s) = g · s. Since

dφ|(e,x)(X, Y ) = a(X)x + Y,

by the inverse function theorem φ is a local diffeomorphism at (e, x) and hence also at (e, y)
for y in some open set W ⊂ S containing x. By homogeneity, φ is a local diffeomorphism
for all (g, y) ∈ G×W .

Let us see that there is a neighbourhood V ⊂ W of x in S such that φ|G×V is injective
and hence a diffeomorphism. If not, we can pick sequences xk, yk ∈ S with xk 6= yk such
that xk, yk converge to x and elements gk, hk ∈ G such that

φ(gk, xk) = φ(hk, yk)

and hence h−1
k gkxk = yk. Since the action is proper, h−1

k gk must have a convergent subse-
quence. Without loss of generality let’s assume that h−1

k gk converges to an element ` ∈ G.
Taking the limit on both sides of the equality h−1

k gkxk = yk we obtain `x = x. As the
action is free, it follows that ` = e. However the equality

φ(h−1
k gk, xk) = φ(e, yk)

would (for large k) contradict the local injectivity of φ at (e, x). We conclude that φ :
G×V →M is a diffeomorphism onto its image, which is an open G-invariant subset of M
containing the orbit of x. Since φ takes the obvious G-action (given by left multiplication
on the first factor) to the G-action on M , this diffeomorphism provides an equivalence
between the standard G-action on G × S and the action of G on a neighborhood of the
orbit G · x.

5This way of deriving a property at all points of an orbit from the validity at a single point is called an
homogeneity argument. It will be used often in the sequel and we will not be repeating this argument of
conjugating by diffeomorphisms over and over again.
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In particular, since G\(G× V ) = V , we have that the composite

V
φ|{e}×V−−−−→M

π−→ G\M

is a homeomorphism onto its image, which is an open neigborhood of the orbit G ·x in the
orbit space.

We will use the inverses of these homeomorphisms for local charts on G\M (assuming
without loss of generality that the open sets V ⊂ S are diffeomorphic to open subsets in
some euclidean space). Let ψ : G × W → M be an action map giving an equivariant

diffeomorphism onto a neighborhood of an orbit G · y, and W
ψ|{e}×W−−−−−→→ M → G\M be

the associated local parametrization. Then the change of coordinates determined by the
charts associated to φ and ψ is the composite

V ∩ ψ(G×W ) ↪→ ψ(G×W )
ψ←− G×W π2−→ W

which is a composition of smooth maps and hence smooth. The projection map π : M →
G\M is smooth as, on the open set φ(G×V ) it is given, in the local coordinates determined
by V , by the smooth map by π2 ◦ φ−1. Moreover π has local sections determined by the
inclusions of the submanifolds V in M

M

V G\M

πs

∼=

To see that the smooth structure constructed above is unique, consider the diagram

M

U G\M G\M

π
πs

id

where the two copies of the orbit space G\M are given smooth structures for which π has
sections. The identity maps between the two copies of G\M are smooth because their
restriction to the domains of local sections can be written as the composite of two smooth
maps (the sections followed by the projections). It follows that the identity map is a
diffeomorphism and hence the two smooth structures are equivalent. �

Example 5.11. An important example of the previous Theorem is the case of the quotient
of a Lie group G by a closed subgroup H. The orbit space H\G is called a homogeneous
space since it has a transitive action of G and so “all points in the space look the same”.

Note that

dπ|e : g→ TH(H\G)
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has kernel h. Indeed dπe is nothing other than the infinitesimal action map of the (right)
action of G on H\G, which clearly has kernel h ⊂ G. It follows that there is a canonical
isomorphism

TH(H\G) = g/h.

Note however that there is no canonical identification of THg(H\G) with g/h for g 6= e as
there is no canonical way of identifying this space with TH(H\G).

Remark 5.12. (a) Of course there is nothing special about left vs right actions. If G
acts properly, smoothly and freely on M on the right then we have likewise a smooth
structure on M/G.

(b) Suppose H is a closed subgroup of G. Then the inverse map ι : G → G induces a
bijection H\G→ G/H and it is easy to see that with respect to the smooth structures
on the quotients provided by Theorem 5.10, this map is a diffeomorphism. One just
needs to consider the following diagram

G G

V H\G G/H

π

ι

π

ῑ

where ῑ(Hg) = g−1H.
When H is a normal subgroup, the multiplication µ : G×G→ G also induces a map

on the quotients, and consideration of local sections again shows this is smooth:

G×G G

V ×W G/H ×G/H G/H

µ

π×π π

µ̄

giving G/H a canonical Lie group structure.

We can now use Example 5.11 to give the orbits of any smooth action a differential
structure.

Proposition 5.13. Let G×M → M be a smooth (not necessarily proper) action. Given
x ∈M , the canonical map

G/Gx
φ−→M

gGx 7→ g · x

is an injective immersion and an initial submanifold.

Proof. The map φ is injective as

g · x = g′ · x⇔ g′−1g ∈ Gx ⇔ g ∈ g′Gx ⇔ gGx = g′Gx
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It is smooth by the usual argument: the composition of φ with the projection from G is
smooth by assumption and this is sufficient. In order to check that φ is an immersion it is
enough, by homogeneity, to see that dφ is injective at the point Gx.

According to Example 5.11 we just need to check that the kernel of the infinitesimal
action map of G on M is the Lie algebra gx of the isotropy group Gx. Given X ∈ g we
have

dφ(X + gx) =
d

dt
(exp(tX) · x)

and hence

dφ(X + gx) = 0⇔ a(X)x = 0⇔ exp(tX) · x = x for all t⇔ X ∈ gx

We leave the proof that φ is an initial submanifold for the hoework as a (not very easy)
exercise. �

It is worth pointing out that the smooth structure we just gave to the orbits of a smooth
action does not depend on the choice of a point in the orbit. If x and y = gx are points in
the same orbit then their isotropy subgroups are conjugate in G:

h(gx) = gx⇔ g−1hgx = x⇔ g−1hg ∈ Gx ⇔ h ∈ gGxg
−1

so

Ggx = gGxg
−1

Moreover, clearly all the conjugate subgroups of Gx will occur as isotropy groups of some
point in the orbit. For that reason one refers to a conjugacy class of closed subgroups of
a Lie group G as an orbit type. There is a canonical bijection ϕ relating the submanifolds
determined by the actions of G on x and y

G/Gx M

G/Gy

ϕ

defined by the expression

ϕ(hGx) = hg−1Gx

To see this, write down the equation for when points in the homogeneous spaces map to
the same point in M :

hx = kgx⇔ hGx = kgGx ⇔ h−1kg ∈ Gx ⇔ k ∈ hg−1Gy

(where in the last equality we used that Gy = gGxg
−1). The map ϕ is smooth because

G/Gy is an initial submanifold and then ϕ−1 is also smooth for the same reason, so that
ϕ is a diffeomorphism. The map ϕ is also clearly G-equivariant. Alternatively, note that
ϕ is the map induced on the quotients by the diffeomorphism Rg−1 of G.
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Remark 5.14. If G acts transitively on M , then the canonical map G/Gx → M is a
diffeomorphism. Indeed, the inclusion of an orbit is always an immersion. If it were not
also a submersion that would mean that dimG/Gx < dimM which would preclude the
surjectivity of the smooth map G/Gx →M .

Example 5.11 allows us to give many sets a canonical smooth structure: we just need to
provide a transitive action of a Lie group on the set and check that the isotropy group is
closed. Often these sets will have natural manifold structures, but then the action we give
will almost certainly be smooth in which case Remark 5.14 says that the smooth structure
on the set agrees with the smooth structure on the corresponding homogeneous space.

Example 5.15. (i) The group SO(n+ 1) acts on Sn ⊂ Rn+1 smoothly (it is the restric-
tion to a submanifold of the action of GL(n + 1;R) on Rn+1) and transitively. The
isotropy subgroup of (1, 0, . . . , 0) is the subgroup SO(n) ⊂ SO(n + 1) rotating the
0× Rn ⊂ Rn+1. From Remark 5.14 it follows that

Sn ∼= SO(n+ 1)/SO(n)

(ii) The Stiefel manifolds of k-frames in Rn (or Cn, or Hn) are

Ṽk,n = {A ∈Mn×k : rankA = k}.

GL(n) acts smoothly and transitively on Ṽn,k by matrix multiplication. The isotropy
group of the standard k-frame 

1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 0 . . . 1
0 0 0 0
...

...
...

...
0 0 0 0


is the semi-direct product

GL(n− k) nMk×(n−k) =





1 . . . 0
... . . .

... B
0 . . . 1
0 0 0
...

...
... A

0 0 0


: A ∈ GL(n− k), B ∈Mk×(n−k)


Remark 5.14 again gives us a diffeomorphism

Ṽk,n = GL(n)/(GL(n− k) nMk×(n−k))

We can also consider the Stiefel manifolds of orthonormal k-frames

Vk,n = {A ∈Mn×k : ATA = I}
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These are submanifolds of the Euclidean space Mn×k by the argument in Example
1.3(v). The orthogonal group O(n) acts transitively on Vk,n with isotropy group(

GL(n− k) nMk×(n−k)

)
∩O(n) = O(n− k)

where O(n−k) is the subgroup of O(n) rotating 0×Rn−k ⊂ Rn. Indeed, an orthogonal
matrix in GL(n − k) nMk×(n−k) must have B = 0 and then A must be orthogonal.
We conclude from Remark 5.14 that

Vk,n ∼= O(n)/O(n− k)

If we don’t want to bother proving that Vk,n is a smooth manifold, as Vk,n has a
transitive action of O(n) with isotropy group a closed subgroup, Example 5.11 gives
Vk,n a canonical smooth manifold structure as a homogeneous space.

(iii) The Grassmann manifolds of k-planes in Rn can be described as sets

Grk,n = Ṽk,n/GL(k) ∼= Vk,n/O(k)

where the groups by which we are quotienting act on the (orthonormal) frames by
matrix multiplication. Note that the two quotient sets in the formula above are indeed
identical, since any plane has an orthonormal frame and two such yield the same
plane if and only if they differ by an orthogonal transformation. The set Grk,n has a
natural smooth structure coming from the fact that it is a homogeneous space.

Indeed, the group GL(n) acts transitively on the set of k-planes and the isotropy of
Rk × 0 ⊂ Rn is the subgroup

(GL(k)×GL(n−k))nMk×(n−k) =

{[
A B
0 D

]
: A ∈ GL(k), D ∈ GL(n− k), B ∈Mk×(n−k)

}
which is a closed subgroup of GL(n). Alternatively, the action of GL(k) on Ṽk,n is
smooth (it is given by matrix multiplication) and free and one can check that it is
also proper. Theorem 5.10 then gives Grk,n a smooth structure. Since the action of

GL(n) on Grk,n comes from a smooth action on Ṽk,n, the action is smooth with respect
to this smooth structure given by Theorem 5.10 and then Remark 5.14 implies that
the smooth structure given by Theorem 5.10 is equivalent to the homogeneous space
structure.

Alternatively we can regard Grk,n as the homogeneous space

Grk,n = O(n)/(O(k)×O(n− k))

or as the quotient by the smooth, proper, free action

Grk,n = Vk,n/O(k)

It is an exercise in the next homework to check (in a more general situation) that
these smooth structures agree with the ones discussed above.

Finally one can also give a smooth structure to Grk,n directly: any plane near a
given k-plane P ⊂ Rn is the graph of a unique linear map P → P⊥ and this gives
a chart around P taking values in Rk(n−k). It is a good exercise to write down the
changes of coordinates for these charts using linear algebra (see the homework). From
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Remark 5.14 it follows that this smooth structure is the same as those discussed above
as soon as we check that the action of GL(n) (or O(n)) on this manifold is smooth.

(iv) The set of complex structures on R2n is

J = {J : R2n → R2n : J2 = − Id}.

These endomorphisms J give R2n the structure of a complex vector space via

(a+ bi) · v = av + bJv

Conversely, multiplication by i for such a structure on R2n gives a (real) endomor-
phism of R2n squaring to − Id so J is precisely the set of complex vector space struc-
tures on R2n.

Since all n-dimensional complex vector spaces are isomorphic, given J1, J2 ∈ J
there exists an isomorphism A : R2n → R2n (of real vector spaces) such that

AJ1 = J2A⇔ J2 = AJ1A
−1.

This shows that the action of GL(2n,R) on J given by A · J = AJ1A
−1 is transitive.

The isotropy for this action on the standard complex structure[
0 − Id
Id 0

]
is precisely the subgroup of complex linear maps, which is isomorphic to GL(n;C).
For instance, when n = 1, the isotropy group is{[

a −b
b a

]
: a2 + b2 6= 0

}
∼= GL(1,C)

We conclude that the set of complex structures on a real vector space has a canonical
smooth structure as the homogeneous space

J = GL(2n,R)/GL(n,C).

Again we can show directly that the set J is a submanifold of M2n×2n(R) and then it
will follow from Remark 5.14 that this smooth structure will agree with the homoge-
neous one.

There are many more examples in the spirit of the ones aboves. Essentially any of
the familiar classification theorems of linear algebra (quadratic forms, hermitean inner
products, . . .) can be framed as a statement identifying a set of structures as a homogeneous
space (and then Example 5.11 provides these spaces with a canonical smooth structure).

6. Invariant integration

Definition 6.1. Let G be a Lie group. A k-form ω ∈ Ωk(G) is said to be left invariant
if L∗gω = ω for all g ∈ G. It is said to be right invariant if R∗gω = ω for all g ∈ G. The

vector space of left invariant k-forms on G is denoted by Ωk
l (G) and the vector space of

right invariant k-forms is denoted by Ωk
r(G).
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Just as for invariant vector fields we have the following result, the proof of which is left
as an exercise.

Proposition 6.2. Evaluation at e ∈ G gives vector space isomorphisms

Ωk
l (G)→ Λk(g∗) Ωk

r(G)→ Λk(g∗)

where Λk(g∗) denotes the vector space of k-multilinear alternating maps g× · · · × g→ R.

In particular, for k = dimG, a volume form on g gives a left invariant volume form
ω ∈ Ωk

l (G), which is unique up to a scalar. If we fix an orientation of G, a left invariant
form determining this orientation is unique up to a positive scalar.

Given a function f : G → R (or more generally given a function with values in some
finite dimensional vector space) we can define its integral with respect to the invariant
volume form by ˆ

G

f
def
=

ˆ
G

fω

where, on the right, G is given the orientation determined by ω. This integral is, by
construction, left invariant, in the sense that the integral of f and f ◦ Lh are the same for
all h ∈ G:ˆ

G

f ◦ Lh =

ˆ
G

f ◦ Lh ω =

ˆ
G

f ◦ Lh L∗hω =

ˆ
G

L∗h(fω) =

ˆ
G

fω =

ˆ
G

f

where in the second equality we used the left invariance of ω and, in the fourth, the fact
that L∗h is a diffeomorphism which preserves the orientation on G (by definition of the
orientation) together with the change of variables formula.

The usual notation for the integral
´
G
f isˆ
G

f(g)dg

With this notation, the previous computation would appear in the following way:

ˆ
G

f(hg)dg =

ˆ
G

f(k)

=dk︷ ︸︸ ︷
d(h−1k) =

ˆ
G

f(k)dk

where we have used the change of variable k = hg ⇔ g = h−1k and the equality over the
brace is true because ω = dk is left invariant.

Remark 6.3. If G is a locally compact (Hausdorff) topological group, there exists a unique
up to multiplicative constant left invariant measure on G (satisfying certain regularity prop-
erties) called the Haar measure.

We also need to understand the behaviour of the integral defined above under the dif-
feomorphisms given by right multiplication. Note that for any g ∈ G, the form R∗gω is still
left invariant because LhRg = RgLh;

L∗hR
∗
gω = R∗gL

∗
hω = R∗gω.



36 LECTURE NOTES ON LIE GROUPS AND LIE ALGEBRAS

Since left invariant forms are determined up to a scalar multiple this means that there
exists a function

λ : G→ R×

such that

R∗gω = λ(g)ω for all g ∈ G
One readily checks that λ is independent of the choice of the left invariant form ω appearing
in its definition.

Proposition 6.4. The function λ : G→ R× is a Lie group homomorphism.

Proof. We have

R∗(gh)ω = (Rh ◦Rg)
∗ω = R∗gR

∗
hω = R∗g(λ(h)ω) = λ(h)R∗gω = λ(h)λ(g)ω

therefore λ(gh) = λ(g)λ(h). The proof that λ is smooth is left as an exercise. Alternatively,

λ(g)ωe = R∗gωg = R∗g(L
∗
g−1ωe) = Ad(g−1)∗ωe

so that multiplication by λ(g) is the map induced on the volume elements Λn(g∗) by the
endomorphism Ad(g−1) of g. It follows that

λ(g) = det Ad(g−1)

�

The homomorphism λ can be seen as the obstruction to the existence of a bi-invariant
(i.e. both left and right invariant) volume form on a Lie group G. That is the content of
the following result.

Proposition 6.5. Let h ∈ G and f : G→ R be an integrable function. Thenˆ
G

f ◦Rh =
1

|λ(h)|

ˆ
G

f

Proof. We have ˆ
G

f ◦Rhω =

ˆ
G

f ◦Rh
R∗hω

λ(h)
=

1

λ(h)

ˆ
G

R∗h(fω)

There are now two possiblities: either the diffeomorphism Rh preserves the orientation on
G or it doesn’t. Whether this happens or not is controlled by the sign of λ(h), so applying
the change of variables formula we have that the integral above is equal to

1

λ(h)
sgn(λ(h))

ˆ
G

fω =
1

|λ(h)|

ˆ
G

f

�

Definition 6.6. The Lie group homomorphism G→ R+ defined by g 7→ 1
|λ(g)| = | det(Ad(g))|

is called modular function of the Lie group G.
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The only compact subgroup of the multiplicative group R+ is the trivial subgroup, so
if G is a compact Lie group, the modular function must be constant equal to 1, which
is to say that a left invariant volume form on a compact Lie group is automatically right
invariant. Thus a bi-invariant integral on a compact Lie group is completely determined
by the choice of an orientation for G together with the standard normalisationˆ

G

1 = 1

which we will always assume from now on.
The existence of a bi-invariant integral on a compact Lie group has many important

consequences as we will see throughout the course. We will point out a couple by way of
example.

Proposition 6.7. Let G be a compact Lie group and ρ : G→ GL(V ) be a representation.
Then, there exists a G-invariant inner product on V , i.e. a positive definite symmetric
bilinear form 〈 , 〉 : V × V → R such that

〈ρ(g)v, ρ(g)w〉 = 〈v, w〉 for all g ∈ G, v, w ∈ V.

Proof. Take any inner product b : V × V → R and define

〈v, w〉 =

ˆ
G

b(ρ(g)v, ρ(g)w)

Then,

〈ρ(h)v, ρ(h)w〉 =

ˆ
G

b(ρ(g)ρ(h)v, ρ(g)ρ(h)w)dg =

ˆ
G

b(ρ(gh)v, ρ(gh)w)dg

Writing gh = k, right invariance tells us that dg = dk and henceˆ
G

b(ρ(gh)v, ρ(gh)w)dg =

ˆ
G

b(ρ(k)v, ρ(k)w)dk = 〈v, w〉

�

The previous basic observation ensures that the representation theory of compact Lie
groups is “as simple as possible”.

Definition 6.8. A representation V of a Lie group G (or a Lie algebra g or anything
really) is irreducible if the only subspaces of V which are invariant under the action are V
and 0.

The irreducible representations can be thought of as the “atoms” out of which all repre-
sentations are built. The easiest case in representation theory is when any representation
can be written as a direct sum of irreducible representations. In that case one says that
the representations are completely reducible. Then representation theory boils down to un-
derstanding the irreducible representations as any representation factors (uniquely it turns
out) as a sum of such, similarly to how a natural number factors as a product of prime
numbers.

This does not always happen as the following simple example shows:
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Example 6.9. Let G be the group of invertible upper triangular 2× 2 real matrices.

G =

{[
a b
0 c

]
: ac 6= 0

}
The standard (defining) representation V = R2 is not completely reducible as the subspace

W = {(x, 0) : x ∈ R} ⊂ V

is invariant and non-trivial but V cannot be written as the sum of W and a complementary
invariant subspace.

However, Proposition 6.7 immediately implies that representations of compact Lie groups
are completely reducible.

Proposition 6.10. If G is a compact Lie group, then any representation ρ : G→ GL(V )
is a direct sum of irreducible representations.

Proof. Let 〈 , 〉 be an invariant inner product on V . Given an invariant subspace W ⊂ V ,
so that ρ(g)W ⊆ W for all g, then the orthogonal complement of W with respect to this
inner product is also invariant: given v ∈ W⊥ and w ∈ W we have

〈ρ(g)v, w〉 = 〈v, ρ(g−1)w〉 = 0

as ρ(g−1)w ∈ W . Hence V can be decomposed as the direct sum

V = W ⊕W⊥

of invariant subspaces and, inductively, we see that V can be written as a direct sum of
irreducible representations. �

Here is another important consequence of invariant integration.

Theorem 6.11 (Böchner Linearization Theorem). Let G be a compact Lie group acting
smoothly on M and x ∈ M be a fixed point. Given any neighborhood W of x, there exists
an open invariant neighborhood U of x contained in W and a diffeomorphism

Ψ : U → V ⊂ TxM

onto a neighborhood V of 0 in TxM such that

• Ψ(x) = 0;
• dΨx : TxM → TxM is the identity;
• Ψ(g · x) = g · Ψ(x) (where the action on the right is the isotropy action of G on
TxM).

Proof. Let W be a neighborhood of x. Since G is compact, the set U ′ =
⋂
g∈G g ·W is open.

This is clear in the case when G is finite and an easy point set topology exercise in general6.
Clearly U ′ contains x and is contained in W as one of the sets in the intersection is W
itself. Moreover, U ′ is G-invariant since hU ′ = ∩g∈GhgW = ∩k∈GkW = U ′ for any h ∈ G.

6This is a manifestation of the general principle in point set topology that compact sets behave like
finite sets.
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Thus any open set containing a fixed point contains a G-invariant open neighborhood of
the fixed point.

We may assume that W is contained in a coordinate chart centered at x and use that
to pick a diffeomorphism φ : W → TxM such that φ(x) = 0 and dφx = Id (in the local
coordinates on W and the corresponding coordinates on TxM we can set φ to be the
identity). This diffeomorphism satisfies all the required conditions except equivariance
which would be

φ(gy) = gφ(y)⇔ φ(y) = g−1φ(gy).

We can fix this problem by averaging over the group G: let U ′ =
⋂
g∈GW and define

ψ : U ′ → TxM

by

ψ(y) =

ˆ
G

g−1φ(gy)dg.

Let us check that all conditions in the statement are satisfied:

• ψ(x) =
´
G
g−1

0︷ ︸︸ ︷
φ(g · x︸︷︷︸

x

)dg =
´
G
g−10dg = 0

• dψx(v) = d
dt

(ψ(c(t)))|t=0 = d
dt

(´
G
g−1φ(g · c(t))dg

)
|t=0

, where c : ] − ε, ε[→ M is a

smooth curve with c(0) = x and dc
dt

(0) = v. By the Leibniz rule the latter expression
is equal to ˆ

G

d

dt

(
g−1φ(g · c(t))

)
|t=0

dg

Since G acts on TxM linearly this isˆ
G

g−1 d

dt
(φ(g · c(t)))|t=0 dg =

ˆ
G

g−1dφg·c(0)

(
d

dt
(g · c(t))|t=0

)
dg

But d
dt

(g · c(t))|t=0 = g · v by definition of the isotropy representation on TxM , and
since dφx = Id the above expression equalsˆ

G

g−1 Id(g · v)dg =

ˆ
G

v dg = v

Hence dψx = Id.
• Finally, since ψ was obtained by averaging, it is invariant: given h ∈ G,

ψ(hy) =

ˆ
G

g−1φ(ghy)dg =

ˆ
G

hk−1φ(ky)dk = h

ˆ
G

k−1φ(ky)dk = hψ(y)

Since dψx = Id, there is a neighborhood W ′ ⊂ U ′ of x such that ψ|W ′ is a diffeomorphism.
Let U =

⋂
g∈GW

′ and set Ψ = ψ|U . �

Remark 6.12. The Böchner linearization Theorem may also be proved by invoking Rie-
mannian geometry: averaging an arbitrary metric on M over G produces a G-invariant
metric on X and then the Riemannian exponential map from TxM to a neighborhood of x
will produce a G-equivariant diffeomorphism defined in some neighborhood of 0 in TxM .
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7. The slice theorem

Definition 7.1. Let a : G×M →M be a smooth action. A slice for the action at a point
x ∈M is an embedded submanifold S ⊂M satisfying

(i) x ∈ S;
(ii) S is Gx-invariant;

(iii) TxM = TxS ⊕ a(g)x;
(iv) TyM = TyS + a(g)y, for all y ∈ S;
(v) Given g ∈ G, y ∈ S such that g · y ∈ S, then g ∈ Gx.

Let us see what these conditions mean.

(i) + (iv) say that the action map ϕ : G×S →M , defined by φ(g, y) = gy is a G-equivariant
submersion onto an open invariant neighborhood of the orbit Gx. Indeed (for the
obvious action of G on G× S) we have

ϕ(h(g, y)) = ϕ(hg, y) = hgy = hϕ(g, y)

Condition (i) says that the orbit Gx is contained in the image of ϕ, while condition
(iv) says that

dϕ(e,y) : g× TyS → TyM,

which is given by the expression

(4) dϕ(e,y)(X, v) = a(X)y + v,

is surjective. Thus ϕ is submersive at the points of the form (e, y) with y ∈ S, but
then homogeneity implies it is submersive at all (g, y). Since ϕ is a submersion its
image is open and since ϕ is equivariant, its image is a G-invariant set.

(ii) + (v) identify the fibers of ϕ with the orbits of a free action of Gx on G× S: indeed

ϕ(g, y) = ϕ(g′, y′)⇔ g · y = g′ · y′ ⇔ g′
−1
gy = y′

and by (v) this means that g′−1g ∈ Gx. If we define an action of Gx on G × S by
the formula

h · (g, y) = (gh−1, h · y),

which makes sense by (ii), and is free because Gx is a subgroup of G, then

ϕ(g, y) = ϕ(g′, y′)⇔ (g, y) ∈ Gx(g
′, y′).

Now, Gx is a closed subgroup of G so the action is proper and therefore we have
a smooth structure on Gx\(G× S). The usual notation for this quotient (which is
analogous to a tensor product) is

G×Gx S

and this is the notation we will use from now on. Getting back to our story, we see
that the map ϕ passes to the quotient and induces a smooth bijection ϕ̄ : G×GxS →
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ϕ(G× S) ⊂M :

G× S

G×Gx S M

ϕ
π

ϕ̄

The manifold G×Gx S has a natural G-action given by the expression g · [(h, y)] =
[(gh, y)] for which the projection π and hence ϕ̄ are equivariant.

(iii) says that ϕ̄ is a local diffeomorphism at [(e, x)]: Indeed, the proof of Theorem 5.10
identifies the tangent space to the quotient by a free proper Lie group H\N at an
orbit Hz with the quotient (TzN)/(a(h)z) of the tangent space by the infinitesimal
action. In our situation we have

T[(e,x)]G×Gx S = (g⊕ TxS)/a(gx)(e,x)
∼= g/gx ⊕ TxS

The expression (4) for dϕ(e,x) then shows that dϕ̄[(e,x)] induces an isomorphism of
this space with

TxM = a(g)x ⊕ TxS
hence ϕ̄ is a local diffeomorphism at [(e, x)] = Gx(e, x).

Now by the inverse function theorem, ϕ̄ is also a local diffeomorphism at Gx(g, y) for y
sufficiently close to x, and then by homogeneity, ϕ̄ is a local diffeomorphism in a neighbor-
hood of the G-orbit of Gx(e, x). However we have already seen that ϕ̄ is a bijection hence
it will be a G-equivariant diffeomorphism from a neighborhood of Gx(e, x) in G×Gx S to
a neighborhood of the orbit Gx in M .

The upshot is that a slice gives a local model for the action near the orbit which is
completely determined by the isotropy action on the slice. If we can pick a small Gx-
invariant neighborhood W of x in S, for instance, if Gx is compact then we get a simple
model for the neighborhood

ϕ̄ : G×Gx W
∼=−→ U ⊂M,

In this case the neighborhood U is called a tube around the orbit. It is a G-equivariant
tubular neighbourhood of the orbit.

To see a sample consequence of this formula for the action near an orbit in terms of the
Gx action on a neighborhood W of x in the slice, note that ϕ̄ identifies a neighbourhood of
Gx in the topological space G\M (it may not be a manifold) with G\(G×GxW ) ∼= Gx\W
which is the orbit space of the action of the isotropy group on W .

Example 7.2. Consider the action S1 × S3 → S3 ⊂ C2 given by the expression

eiθ(z, w) = (eiθz, e3iθw)

and let x = (0, 1) ∈ S3. The isotropy group of x is

Gx = {eiθ ∈ S1 : eiθ(0, 1) = (0, e3iθ) = (0, 1)} = {1, ω, ω2} ⊂ S1, with ω = e2πi/3

Let us check that
S = {(z,

√
1− |z|2) : |z| < 1} ⊂ S3

is a slice:
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(i) (0, 1) ∈ S
(ii) S is Gx-invariant:

ω · (z,
√

1− |z|2) = (ωz, ω3
√

1− |z|2) = (ωz,
√

1− |z|2) ∈ S as |ω| = 1

(iii) T(0,1)S
3 = T(0,1)S⊕a(Lie(S1))(0,1): We have that T(0,1)S

3 = C⊕iR ⊂ C2 and T(0,1)S =

C⊕ 0. Considering the generator d
dθ

of Lie(S1) we have

a

(
d

dθ

)
(0,1)

=
d

dt

(
eit · (0, 1)

)
|t=0

=
d

dt
(0, e3it)|t=0 = (0, 3i)

so a(Lie(S1))(0,1) = 0⊕ iR ⊂ C⊕ iR and the condition above is satisfied.
(iv) T

(z,
√

1−|z|2)
S3 = T

(z,
√

1−|z|2)
S ⊕ a(Lie(S1))

(z,
√

1−|z|2)
: this is left as an exercise.

(v) Suppose eiθ · (z,
√

1− |z|2) = (w,
√

1− |w|2) for some z, w with |z| < 1, |w| < 1.

Then w = eiθz, so |w|2 = |z|2. Hence e3iθ
√

1− |z|2 =
√

1− |z|2 and therefore
e3iθ = 1⇔ eiθ ∈ Gx.

This gives us the following model for a neighborhood of the orbit. First note that the action
of Gx on the slice is equivariantly diffeomorphic (via the projection π1 : C2 → C) to the
linear action by rotations of Gx

∼= Z/3 on the unit disk D ⊂ C.
Then a neighborhood of the orbit S1 · (0, 1) ∼= S1/(Z/3) is S1 equivariantly diffeomorphic

to
S1 ×Z/3 D

Here we have over each point in the central orbit (S1)/(Z/3) a unit disk. All orbits other
than the central orbit intersect this disk at three distinct points at the same distance from
the center of the disk and spaced by 2π

3
angles. As these orbits approach the central orbit

they wrap around it three times.
This is in fact a model for any sufficiently small neighborhood of an S1 orbit with isotropy

Z/3 and isotropy representation Cstd ⊕ Rtriv on an arbitrary 3-manifold (see Remark 7.5
below.)

Theorem 7.3 (Slice Theorem). Let a : G×M → M be a smooth and proper action of a
Lie group on a manifold. Then there exists a slice through every point x ∈M .

Proof. Let x be a point in M . Since the action is proper, the isotropy group Gx is com-
pact and hence by the Böchner Linearization theorem 6.11 there exists a Gx-invariant
neighbourhood U of x and a Gx-equivariant diffeomorphism

ψ : U → V ⊂ TxM

with ψ(x) = 0, dψx = Id. Pick a Gx-invariant metric on TxM and let A be the orthogonal
complement to a(g)x ⊂ TxM (with respect to the chosen Gx-invariant metric).

Note that a(g)x ⊂ TxM is Gx-invariant (for the isotropy action) as

g · a(X)x =
d

dt
(g · exp(tX) · x)|t=0 =

d

dt
(g · exp(tX)g−1 · gx)|t=0

=
d

dt
(exp(tAd(g)X) · x)|t=0 = a(Ad(g)X)x
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therefore its orthogonal complement A is also Gx-invariant. Moreover, since dψx = Id, we
have that

a(g)x = dψx(Tx(G · x)).

Define a proto-slice

S̃ = ψ−1(A ∩ V )

This is a submanifold ofM (it’s the image under a diffeomorphism of an open set in a plane),
it is Gx-invariant (because A ∩ V is and ψ−1 is Gx-equivariant) and clearly x = ψ−1(0) is

in S̃. Since dψx = Id we have TxS̃ = A and therefore S̃ satisfies conditions (i) − (iii) in
Definition 7.1.

Condition (iv) says that the map G× S̃ →M is submersive at (e, y). We know that this
is true when y = x, as this is condition (iii). Since being submersive is an open condition,

we can find a Gx-invariant neighbourhood S ′ ⊂ S̃ of x in S̃ such that (i)− (iv) hold.
We are now going to show that S ′ contains a neighbourhood W of x such that condition

(v) holds, i. e., such that whenever g ∈ G, y ∈ W and g · y ∈ W we have g ∈ Gx. If this is
not true then we can find sequences gk ∈ G, yk ∈ S such that

• yk converges to x
• gk · yk converges to x and gk · yk ∈ S ′
• gk 6∈ Gx.

Since the action is proper there is a subsequence of gk converging to an element g ∈ G.
Let us assume for simplicity that gk itself converges. Then,

x = lim
k→∞

gkyk = g · x

so g ∈ Gx. Replacing gk with gkg
−1 and yk with gyk, we may assume gk → e ∈ G.

Let B be a complement to gx in g and consider the local diffeomorphism at 0

B × gx → G

defined by

(Z,H) 7→ exp(Z) exp(H).

For sufficiently large k we can write gk = exp(Zk) · exp(Hk) for unique Zk, Hk which are
moreover converging to 0. Replacing gk with gk exp(−Hk) and yk with exp(Hk)yk we may
further assume the Hk are 0.

Note that the map B → a(g)x ∼= g/(gx) ⊂ TxM given by Z 7→ a(Z)x is an isomorphism.
Now consider the map

f : B × S ′ →M

defined by

(Z, y) 7→ exp(Z) · y
On the one hand we have

(5) f(Zk, yk) = f(0, exp(Zk)yk)
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with Zk 6= 0. Note that (5) makes sense because by assumption exp(Zk)yk ∈ S ′. More-
over, since the action is continuous and Zk is converging to 0, the sequence exp(Zk)yk is
converging to x. On the other hand the derivative of f at (x, 0) is given by the formula

df(0,x)(Z, v) = df(0,x)((Z, 0) + (0, v)) = a(Z)x + v,

and is therefore an isomorphism by condition (iii). Hence f is a local diffeomorphism at
(0, x), which contradicts (5) for large k. �

Remark 7.4. In the case when G is compact, the slice Theorem can be proved using
Riemannian geometry (cf. Remark 6.12). Picking a G-invariant metric on M , the Rie-
mannian exponential in the orthogonal directions to an orbit provide a tube around the
orbit. However, this will not work if G is not compact.

Remark 7.5. The construction of the slice shows that it is equivariantly diffeomorphic to
a neighbourhood of 0 in the representation of Gx on (TxM)/a(g)x induced by the isotropy
representation of Gx on TxM . Therefore, a neighbourhood of G ·x in M is G-equivariantly
diffeomorphic to

G×Gx (TxM/gx)

which is a (G-equivariant) vector bundle over the orbit G/Gx.

An important consequence of the slice theorem is that if y is close to x in M then the
isotropy groupGy is subconjugate to Gx, meaning there exists g ∈ G such that gGyg

1 ⊂ Gx.
Indeed, if y is close enough to x, then there exists g ∈ G so that g ·y is in the slice S through
x. Then Gy = g−1Ggyg and Ggy is a subgroup of Gx by condition (v) in Definition 7.1. This
says that the isotropy group in a smooth proper action varies “upper semi-continuously”
with the point of the manifold: nearby isotropy groups are either the same or smaller.

Recall that two orbits are said to be of the same type if the conjugacy class formed
by the isotropy groups of points in the orbits are the same (equivalently, if the orbits are
G-equivariantly diffeomorphic to G/H for the same closed subgroup H). It can be shown
that the union of all the orbits of a given type in a manifold M form a submanifold. Thus
there is a canonical partition of M into submanifolds M(H), one for each conjugacy class
(H) of closed subgroups of G. Moreover this decomposition can be shown to have very
nice properties - it is a Whitney stratification of M . Amongst all the orbit types, there is
one whose isotropy groups are the smallest. The corresponding orbits are called principal
orbits for the action. They always form an open set in M . For instance in Example 7.2
the stratification is

S3 =
(
S3
)

({e})

∐(
S3
)

(Z/3)
= S3 \ {(0, 1)}

∐
{(0, 1)}

and the principal orbits are free. See [DK] for all this and much more. For more on actions
[Br] is highly recommended (but assumes the reader is familiar with Lie theory).

8. Review of linear algebra

We have already studied the correspondence between Lie groups and Lie algebras and
studied some applications, notably to group actions. It is time to delve into the structure
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of these objects. We will start by taking an algebraic approach and examining Lie algebras
as purely linear algebraic objects. Before we start we will review some needed Linear
Algebra. There is a basic dichotomy in Linear Algebra between nilpotent and semisimple
endomorphisms of a vector space which will play an important role in our study of the
structure of Lie Algebras.

Definition 8.1. Let V be a finite dimensional vector space and End(V ) = Hom(V, V ) be
the space of linear maps from V to itself.

An element x ∈ End(V ) is said to be nilpotent if xk = 0 for some k ∈ N. The least k
such that xk = 0 is called the degree of nilpotence of x.

An element x ∈ End(V ) is said to be semisimple if given a subspace W ⊂ V invariant
under x (i. e. such that xW ⊂ W ) there is a subspace W ′ ⊂ V with W ⊕W ′ = V which
is also invariant under x.

Proposition 8.2. An element x ∈ End(V ) is nilpotent iff V has a basis with respect to
which x is represented by a strictly upper triangular matrix.

Proof. The condition is certainly sufficient as an n× n strictly upper triangular matrix is
nilpotent of degree ≤ n.

Conversely, if x is nilpotent we have detx = 0 and so there is v ∈ kerx\{0}. Let W ⊂ V
be such that V = 〈v〉 ⊕W . Then the matrix representing x in a basis adapted to this
decomposition of V is of the form

x =

[
0 ∗
0 x̄

]
with x̄ : V/〈v〉 → V/〈v〉 the endomorphism induced by x on the quotient (which is canon-
ically isomorphic to W ). Since x̄ is again nilpotent with nilpotence degree less than or
equal to that of x and dimW < dimV we may inductively assume there is a basis for W
with respect to which x̄ is strictly upper triangular. �

Our next goal is to characterize semisimple endomorphisms of vector spaces over an
algebraically closed field K. First we need to review the Jordan normal form of such an
endomorphism x : V → V . Recall that V can be written as a direct sum V = W1⊕· · ·⊕Wn

of generalized eigenspaces

Wi = {v ∈ V : (x− λi)kv = 0 for some k}

where the λi are the eigenvalues of x and we are assuming that λi 6= λj.
Let πi : V → Wi denote the projections onto the generalized eigenspaces. The fact that

x is block diagonal with respect to the generalized eigenspace decomposition implies that
πix = xπi. But in fact, the projections πi are polynomials with zero constant term on x,
i. e. there exist pi(t) ∈ K[t] such that πi = pi(x). To see this let

qi(t) =
∏
j 6=i

(t− λj)kj
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with kj the size of the largest Jordan block corresponding to λj. Since the polynomials
q1, . . . , qn are coprime there exist polynomials hi(t) such that

h1(t)q1(t) + · · ·+ hn(t)qn(t) = 1

But then hi(x)qi(x) is the projection from V to Wi. Indeed, if v ∈ Wj, with j 6= i then
qi(x)v = 0, while, if v ∈ Wi, then since

h1(x)q1(x) + · · ·+ hn(x)qn(x) = IdV

and qj(x)v = 0 for j 6= i, we have

0 + · · ·+ 0 + hi(x)qi(x)v + 0 + · · ·+ 0 = v.

Proposition 8.3. Let V be a vector space over an algebraically closed field K. Then
x ∈ End(V ) is semisimple iff it is diagonalizable.

Proof. Assume that x is semisimple and let v ∈ V be an eigenvector for x (which exists
because K is algebraically closed). Since x is semisimple we may write V = Kv ⊕W with
xW ⊂ W . As x|W has an eigenvector we may continue in this way until we obtain a basis
of eigenvectors for V .

Conversely, suppose x is diagonalizable and let V = W1 ⊕ · · · ⊕ Wn be the spectral
decomposition of x. Suppose W ⊂ V is an invariant subspace of x. Then (W ∩W1) ⊕
· · · ⊕ (W ∩Wn) ⊂ W . But, in fact it is equal to W : given w ∈ W we saw that there is
a polynomial pi(x) with no constant term so that pi(x)w = wi the component of w along
wi. Since xW ⊂ W , pi(x)W ⊂ W , so wi = pi(x)w ∈ W ∩Wi. Writing, w = w1 + . . .+wn,
we see that

w ∈ W ∩W1 + · · ·+W ∩Wn.

Now, take for each i a complement W ′
i to W ∩Wi in Wi. Then,

W ′
1 ⊕ · · · ⊕W ′

n

is an invariant complement to W . �

Exercise 8.4. Let V be a finite dimensional real vector space. Show that x ∈ End(V ) is
semisimple iff x⊗ C is diagonalizable. One can show more generally that x is semisimple
if and only if the minimal polynomial of x has no repeated irreducible factors (see [HK]).

Theorem 8.5 (Jordan-Chevalley decomposition.). Let V be a vector space over an al-
gebraically closed field K and x ∈ End(V ). Then there are xs, xn ∈ End(V ) with xs
semisimple and xn nilpotent such that

(i) x = xs + xn
(ii) xs, xn are polynomials with no constant terms in x. In particular, if xW ⊂ W ′

with W ′ ⊂ W , then xsW,xnW ⊂ W ′. Moreover, xs and xn commute and they also
commute with any polynomial in x.

Given any other decomposition x = x′s + x′n with x′s semisimple and x′n nilpotent such that
x′s and x′n commute, then xs = x′s and xn = x′n.
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Proof. Let p(x) = (x−λ1)k1 . . . (x−λn)kn be the minimal polynomial of x. By the chinese
remainder theorem, there exists q(x) such that q(x) ≡ λi mod (x−λi)ki , and also q(x) ≡ 0
mod x if all the λi are different from 0. Letting V = W1 ⊕ · · · ⊕Wn be the decomposition
of x into generalized eigenspaces this means that given vi ∈ Wi, there exists a polynomial
ri(x) such that

q(x)vi = (λi + (x− λi)kiri(x))vi = λivi + 0 = λivi

Hence q(x) is diagonalized by the decomposition V = W1 ⊕ · · · ⊕Wn. Take xs = q(x),
xn = x− q(x) to obtain the required decomposition.

Now suppose x = x′s + x′n is another decomposition of x into a sum of a semisimple and
nilpotent elements such that x′s, x

′
n commute. Then, x′s, x

′
n commute with x and therefore

with xs and xn. The element

xs − x′s = xn − x′n
is both semisimple (because xs and x′s are simultaneously diagonalizable) and nilpotent (as
xn, x

′
n commute, if xln = 0 and x′jn = 0 then by the binomial theorem we have (xn−x′n)l+j =

0). Since the only diagonalizable element which is also nilpotent is 0 we have that x′s−xs = 0
and then if follows that xn − x′n = 0. �

9. Basic notions of Lie algebras

Definition 9.1. Let L be a Lie algebra over a field K. A subspace I ⊂ L is said to be an
ideal if [x, I] ⊂ I for all x ∈ L, i. e. if [x, y] ∈ I for all x ∈ L and y ∈ I.

For instance, the center of L,

Z(L) = {x ∈ L : [x, L] = 0}

is easily checked to be an ideal using the Jacobi identity: given y ∈ Z(L) and x, z ∈ L we
have

[[x, y], z] = [x, [y, z]]− [y, [x, z]] = [x, 0]− 0 = 0.z

Recall that Z(L) = ker(ad: L→ End(L)) and therefore, when Z(L) = 0, L is a linear Lie
algebra. In general there is a canonical short exact sequence of vector spaces

(6) 0→ Z(L)→ L
ad−→ ad(L)→ 0

where the maps are in fact maps of Lie algebras. This is called an extension of the Lie
algebra ad(L) by Z(L).

Definition 9.2. Let L be a Lie algebra. The subspace of L generated by all the brackets of
elements of L, [L,L] ⊂ L is called the derived Lie algebra of L.

Again it follows immediately from the Jacobi identity that [L,L] is an ideal of L.

Definition 9.3. A Lie algebra L is said to be simple if its only ideals are 0 and L and L
is not abelian.
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Note that an algebra is abelian iff Z(L) = L if and only if [L,L] = 0. In particular if L
is simple then Z(L) = 0 (hence L is linear) and [L,L] = L.

Let f : L1 → L2 be a Lie algebra homomorphism. Then ker(f) = f−1(0) is an ideal.
More generally, if I ⊂ L2 is an ideal then f−1(I) is an ideal. If I is an ideal, then the
bracket [ , ] is well defined on the quotient vector space

[ , ] : L/I × L/I → L/I

(x+ I, y + I) 7→ [x, y] + I,

so L/I becomes a Lie algebra called the quotient Lie algebra and

π : L→ L/I

x 7→ x+ I

is a Lie algebra homomorphism with kernel I. Thus ideals are exactly the kernels of Lie
algebra homomorphisms. As usual we have the following isomorphism theorems, whose
proofs are left as an exercise.

Theorem 9.4 (Isomorphism Theorems). (1) Given a Lie algebra homomorphism

f : L1 → L2

there exists a unique homomorphism f̄ : L1/ker f → L2 such that

L1 L2

L1/ker f

f

π
f̃ f̄(x+ ker f) := f(X)

(2) Given ideals I ⊂ J ⊂ L of the Lie algebra L, we have that J/I is an ideal of L/I
and

(L/I)/(J/I) = L/J

(where = means that the isomorphism between the two quotients is natural). The
isomorphism is defined by

(x+ I) + (J/I) 7→ x+ J

(3) Given ideals I ⊂ J ⊂ L of the Lie algebra L we have that I ∩J is an ideal of J and

J/(I ∩ J) = (I + J)/I

with the canonical isomorphism given by

x+ I ∩ J 7→ x+ I

If I is an ideal of L we have an extension of L/I by I

0→ I ↪→ L
π−→ L/I → 0



LECTURE NOTES ON LIE GROUPS AND LIE ALGEBRAS 49

and in particular we have, for any Lie algebra L two canonical extensions (6) and

0→ [L,L]→ L→ L/[L,L]→ 0

Note that L/[L,L] is abelian, and in fact the maximal abelian quotient of L, i.e. an abelian
quotient through which any map from L to an abelian Lie algebra factors.

Associated to any Lie algebra L we have the following two canonical descending sequences
of ideals:

• The derived series of L (obtained by iteratively taking the derived Lie algebra):

L = L(0) ⊃ L(1) = [L,L] ⊃ L(2) = [L(1), L(1)] ⊃ · · ·
• The descending or lower central series of L

L = L0 ⊃ L1 = [L,L] ⊃ L2 = [L,L1] ⊃ L3 = [L,L2] ⊃ . . .

Note that L(i) ⊂ Li. One immediately checks that all the Li and L(i) are ideals using the
Jacobi identity. We now come to two basic definitions concerning the structure of a Lie
algebra.

Definition 9.5. A Lie algebra L is solvable if L(i) = 0 for some i. A Lie algebra is
nilpotent if Li = 0 for some i.

Note that if L is nilpotent then it is also solvable. Concretly, a Lie algebra is nilpotent
if there exists n such that all brackets

[x1, [x2, [. . . , xn]]]

of length n vanish. The basic examples of solvable and nilpotent Lie algebras are the
following.

Example 9.6. Let K be a field and L = gl(n,K) = End(Kn). The subspace t(n) of
upper triangular matrices form a solvable subalgebra of L and the subspace n(n) of strictly
upper triangular matrices form a nilpotent subalgebra of L. Indeed the bracket two upper
triangular matrices which are zero below a certain diagonal has all entries zero below a
“higher diagonal”.

Remark 9.7. If L is nilpotent, the Campbell-Baker-Hausdorff formula gives the vector
space L the structure of an (algebraic) group. When the field in question is R or C, this is
a Lie group with Lie algebra L which is the simply connected Lie group corresponding to L.
The homogeneous spaces of the latter Lie groups are important examples in Riemannian
geometry called nilmanifolds.

Exercise 9.8. Let K be a field. The Lie algebra sl(2;K) of traceless 2 × 2 matrices over
K is nilpotent is the characteristic of K is two and simple otherwise.

Proposition 9.9. Let L be a Lie algebra, then

(i) If L is solvable (nilpotent) then any subalgebra and homomorphic image is solvable
(nilpotent).

(ii) If I ⊂ L is a solvable ideal and L/I is solvable, then L is solvable.
(iii) If I, J ⊂ L are solvable ideals, then I + J is solvable.
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(iv) If L/Z(L) is nilpotent, then L is nilpotent.
(v) If L is nilpotent and L 6= 0, then Z(L) 6= 0.

Proof. (1) This is clear from the definitions.
(2) Saying that (L/I)(k) = 0 means that L(k) ⊂ I. If I(`) = 0 it follows that (L(k))(`) =

L(k+`) ⊂ I(`) = 0 hence L is solvable.
(3) Consider the extension

0→ I → I + J → (I + J)/I ∼= J/(I ∩ J)→ 0,

where we have used one of the isomorphism theorems. By (i), we know that J/(I∩J)
is solvable as it is a homomorphic image of the solvable Lie algebra J . It follows
from (ii) that I + J is solvable.

(4) Note that the degree of nilpotence of L is n if and only if Ln−1 6= 0 and Ln−1 ⊂
Z(L). Therefore, if L/Z(L) is nilpotent, then (L/Z(L))k = 0 for some k and hence
Lk+1 = 0.

(5) if L is nilpotent and L 6= 0, then Z(L) 6= 0 as it contains the last nonzero term of
the lower central series of L.

�

Note that (i) and (ii) in the previous Proposition can be rephrased as saying that given
an extension

0→ I → L→ L/I → 0

then L is solvable if and only if both I and L/I are solvable.
Because of (iii) every finite dimensional Lie algebra contains a maximal solvable ideal

(the sum of all its solvable ideals)

Definition 9.10. The radical of L is the maximal solvable ideal of L and is denoted RadL.
A Lie algebra is said to be semisimple if RadL = 0.

Recall that a Lie algebra L is simple if its only ideals are 0 and L and L is not abelian.
If L is simple, then RadL must be 0 or L. If it were L then L would be solvable and hence
[L,L] ( L would necessarily be 0, which would mean that L is abelian. We conclude that
a simple Lie algebra is semisimple.

The radical of a Lie algebra gives us a new canonical realization of L as an extension

0→ RadL→ L→ L/RadL→ 0

It is a simple exercise to check that L/RadL is semisimple so this is expressing L canon-
ically as an extension of a semisimple Lie algebra by a solvable subalgebra. We will see
that this extension plays a fundamental role in the large scale structure of Lie algebras.

10. Engel’s and Lie’s Theorems

We now come to two of the basic Theorems about Lie algebras which characterize nilpo-
tent and solvable subalgebras. The first one - Engel’s Theorem - gives a simple linear
algebraic criterion to check nilpotence of a Lie algebra.
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Theorem 10.1 (Engel’s Theorem). Let L be a Lie algebra (over an arbitrary field K). If
for each x ∈ L, the endomorphism ad(x) ∈ End(L) is nilpotent, then L is nilpotent.

Recall that L being nilpotent means that for some n, all n-fold brackets vanish. In
particular we will have ad(x)n−1 = 0 so the condition in Engel’s Theorem is certainly
necessary for nilpotence. The proof of the Theorem will follow easily from the following
Linear algebraic statement.

Proposition 10.2. Let L ⊂ gl(V ) be a Lie algebra such that each x ∈ L is a nilpotent
endomorphism. Then there exists v ∈ V \ {0} such that

xv = 0 for all x ∈ L.

Proof. The proof will be by induction on the dimension of L. If dimL = 1, then L = K ·x.
Since xn = 0 for some n, det x = 0 and therefore x has a 0-eigenvector v.

Now assume dimL > 1 and that the proposition holds for lower dimensional Lie algebras.
Let K ⊂ L be a maximal proper subalgebra. By the induction hypothesis, there exists
v ∈ V \{0} such that xv = 0 for all x ∈ K. We start by proving that K must be an ideal
of L: Given x ∈ L, the endomorphism

ad(x) ∈ End(L) ⊂ End(End(V ))

is nilpotent as ad(x) = Lx − Rx with Lx and Rx the left and right multiplication by x on
End(L). Clearly Lx and Rx are nilpotent (because x is) and commute, so their difference
ad(x) is also nilpotent.

Given y ∈ K, the induced map

ad(y) : L/K → L/K

defined by z+K 7→ [y, z] +K is nilpotent so by induction hypothesis there exists x+K ∈
L/K not equal to 0 such that ad(y)(x + K) = 0 for all y ∈ K. But this exactly means
that [y, x] ∈ K for all y in K. Therefore the normalizer of K in L

NL(K) = {x ∈ L : [y, x] ∈ K for all y ∈ K},
(the largest subalgebra of L containing K as an ideal) strictly contains K. Since K is a
maximal proper subalgebra of L we conclude that NL(K) = L which is to say that K is
an ideal of L.

Let’s now see that the codimension of K in L must be one. Consider the extension

0→ K → L→ L/K → 0.

Given y ∈ L/K \{0}, then K+Ky is a subalgebra of L containing K. Since K is maximal,
we see that L = K + Ky. Now consider W = {v ∈ V : xv = 0 for all x ∈ K} and let us
prove that W is invariant under y. We need to see check that for anyv ∈ W

x(yv) = 0 for all x ∈ K
Since K is an ideal we have [x, y] ∈ K and it then follows that

x(yv) = [x, y]v + y(xv) = 0 + 0 = 0
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We conclude that yW ⊂ W . As y acts nilpotently on V , y|W is also nilpotent so there
exists w ∈ W \ {0} with yw = 0. This element w is the required common 0 eigenvector for
all the elements of L. �

Definition 10.3. Let V be a finite dimensional vector space. A complete flag in V is a
chain 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V of subspaces of V with dimVi = i.

Proposition 10.2 can equivalently be formulated as follows

Proposition 10.4. Let L ⊂ gl(V ) be a Lie subalgebra consisting of nilpotent endomor-
phisms of V . Then there exists a complete flag in V such that LVi ⊂ Vi−1 for all i.

Proof. We will show that this statement is equivalent to that of Proposition 10.2. If there
is a complete flag with LVi ⊂ Vi−1 then any vector v ∈ V1 \ {0} is a common 0 eigenvector
for all the elements of L.

Conversely, given a common 0-eigenvector v for all the elements of L let V1 = Kv.
Consider the action of L on V/V1 (which makes sense because V1 is invariant under L). By
the previous Proposition, the endomorphisms of V/V1 determined by the elements L have
a common 0 eigenvector v2 + Kv1. But

L(v2 + Kv1) = 0 ∈ V/V1 ⇔ Lv2 ⊂ V1 ⇔ L(V1 + Kv2) ⊂ V1

We can therefore set V2 = V1 + Kv2 and proceed in this way until we obtain a complete
flag as required. �

Note that if we pick a basis for V adapted to the flag (equivalently an isomorphism of
V with Kn taking the flag to the standard flag in Kn), we have that the elements of L
expressed in terms of the basis consist of strictly upper triangular matrices. In particular
L is nilpotent.

Remark 10.5. The Lie group GL(n,R) acts transitively on complete flags in Rn. The
isotropy group of the standard flag in Rn is the subgroup B of upper triangular matrices.
Hence the space of complete flags in Rn is the homogeneous space GL(n,R)/B.

Note that one can have a nilpotent subalgebra L of gl(V ) whose elements are not nilpo-
tent endomorphisms of V. Indeed, any endomorphism x ∈ End(V ) spans an abelian (hence
nilpotent) Lie subalgebra of gl(V ).

Proof of Engel’s theorem. Consider Consider the extension

0→ Z(L)→ L→ ad(L)→ 0

By assumption ad(x) is nilpotent for every x ∈ L. Hence, Proposition 10.2 tells us that
ad(L) ⊂ End(L) is a nilpotent Lie algebra. Since L/Z(L) is nilpotent, Proposition 9.9(iv)
tells us that L is nilpotent. �

The second basic recognition Theorem is Lie’s Theorem characterising solvable linear
Lie algebras. This has the same flavor as Engel’s Theorem but requires that the base field
be algebraically closed and characteristic zero.
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Theorem 10.6 (Lie’s theorem). Let K be an algebraically closed field of characteristic 0
and L ⊂ gl(V ) be a solvable Lie algebra. Then, there exists a complete flag in V

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V with LVi ⊂ Vi,

so L is isomorphic to a subalgebra of upper triangular matrices.

As before, the previous statement is clearly equivalent to the following seemingly weaker
statement which we will prove instead.

Proposition 10.7. Let K be an algebraically closed field of characteristic 0 and L ⊂ gl(V )
be a solvable Lie algebra. Then all the elements of L have a common eigenvector.

Note that the previous statement is a big generalization of the familiar statement from
Linear Algebra to the effect that a set of commuting endomorphisms over an algebraically
closed field have a common eigenvector. Before we prove Proposition 10.7 we point out
two important Corollaries of Lie’s Theorem.

Corollary 10.8. Let K be an algebraically closed field of characteristic 0. A Lie algebra
L over K is solvable if and only if [L,L] is nilpotent.

Proof. If [L,L] is nilpotent, it is also solvable. Since L/[L,L] is abelian, it follows from
Proposition 9.9(ii) that L is solvable.

Conversely, suppose L is solvable. Then ad(L) ⊂ End(L) is solvable by Proposition
9.9(i). By Lie’s theorem we have that ad(L) is isomorphic to a Lie algebra of upper
triangular matrices. But the [ad(L), ad(L)] = ad([L,L]) is isomorphic to a Lie algebra of
upper triangular matrices.

Hence ad[L,L] consists of nilpotent endomorphisms of L. Since [L,L] ⊂ L is a Lie
subalgebra, the subspace [L,L] is invariant under the elements of ad[L,L] and hence
ad[L,L] ⊂ End([L,L]) also consists of nilpotent endomorphisms. It follows from Engel’s
Theorem that [L,L] is nilpotent. �

Corollary 10.9. Let K be an algebraically closed field of characteristic zero and L a Lie
algebra over K. If L is solvable all irreducible finite dimensional representations of L are
one dimensional.

Proof. Let ρ : L → gl(V ) be a finite dimensional irreducible representation. Since ρ(L) is
solvable, Lie’s Theorem guarantees the existence of a common eigenvector v 6= 0 for all
the endomorphisms ρ(x). Hence Kv is a one dimensional subrepresentation of V . As V is
irreducible it must be all of V , so V is one-dimensional. �

Remark 10.10. Conversely if all irreducible representations are one dimensional L is
solvable as you will see in the homework.

Proof of Prop 10.7. The proof is by induction on the dimension of L. The case when
dimension is one is clear using the fact that K is algebraically closed. Assume that dimL >
1 and that the statement holds for all Lie algebras of dimension less than that of L. Since
L is solvable we know that [L,L] ) L. The canonical extension

0→ [L,L]→ L
π−→ L/[L,L]→ 0
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therefore implies that L contains a codimension one ideal K. Indeed an ideal of the
abelian Lie algebra L/[L,L] is the same as a subspace and the inverse image under π of a
codimension one subspace of L/[L,L] will therefore be a codimension one ideal of L.

By induction hypothesis, there is a common eigenvector v for all x ∈ K. If we write

xv = λ(x)v

then one immediately checks that λ : K → K is a linear functional. Let

Wλ = {w ∈ V : xw = λ(x)w for all x ∈ K}
Let y ∈ L be such that L = K + Ky. It is enough to check that Wλ is invariant under y,
because if this is true then any eigenvector of y|Wλ

will be a common eigenvector for all of
L. Now, given x ∈ K

x(yw) = [x, y]w + yxw = λ([x, y])w + λ(x)yw

where we have used that K is an ideal. Hence Wλ will be invariant under y if and only if
λ([x, y]) = 0. Given w ∈ Wλ \ {0}, consider the subspace

S = 〈w, yw, y2w, . . .〉 ⊂ V

and let n be the smallest integer such that ynw is a linear combination of 〈w, yw, . . . , yn−1w〉,
so that {w, yw, . . . , yn−1w} is a basis for S. Let’s check that S is invariant under the action
of K: given x ∈ K, we have

xw = λ(x)w

x(yw) = λ([x, y])w + λ(x)yw

x(y2w) = [x, y]yw + yxy(w) = [x, y]yw + y(λ[x, y]w + λ(x)yw)

Since [x, y] ∈ K, the first term in the sum on the left is in 〈w, yw〉 so we see that x(y2w) ∈
〈w, yw, y2w〉. Inductively the expansion above shows that the subspaces 〈w, yw, . . . , yiw〉
are invariant under K and, moreover, that, with respect to the given basis, an element
x ∈ K acts by an upper triangular matrix with λ(x) on the diagonal.

Now as [x, y] ∈ K, we see that the trace of its action on W is tr([x, y]) = nλ([x, y]). On
the other hand, the trace of a commutator of two endomorphisms is 0 so we conclude that

nλ([x, y]) = 0

As the characteristic of K is zero, it follows that λ([x, y]) = 0, which completes the proof.
�

Remark 10.11. The previous proof shows that in Proposition 10.7 it is enough that the
characteristic of K is large enough with respect to the dimension of V .

11. Cartan’s criteria for solvability and semisimplicity

The trace form played an important role in the proof of Lie’s Theorem and it will be
important from now on in our study of Lie algebras. We will therefore review some of its
properties.
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Let K be an arbitrary field. The trace form

tr : gl(n,K)× gl(n,K)→ K

is defined by the expression

tr(XY ) =
n∑

i,j=1

XijYji

If {eij : 1 ≤ i, j ≤ n} is the standard basis for gl(n,K) (eij has 1 as the ij-th entry and all
other entries 0), we have

tr(eijekl) = δilδjk

where δij =

{
1 if i = j

0 otherwise
is the Kronecker symbol.

With respect to this basis, the trace form is represented by the block diagonal symmetric
matrix which has 1 along the diagonal in the entry corresponding to the basis elements

eii and

[
0 1
1 0

]
along the pairs of entries corresponding to basis elements {eij, eji} with

i 6= j.

Over R, the signature of this symmetric form is therefore (n(n+1)
2

, n(n−1)
2

).

Proposition 11.1. Let K be a field and A,X, Y ∈ gl(n,K), g ∈ GL(n,K). Then

(i) tr is a non-degenerate symmetric bilinear form.
(ii) (Conjugation invariance) tr(gXg−1gY g−1) = tr(XY )

(iii) (Associativity with respect to the commutator bracket) tr([A,X]Y ) = tr(A[X, Y ]) = 0

Proof. ]

(i) The expression for the trace makes it clear that it a symmetric bilinear form. Since
the associated symmetric matrix computed above is clearly non-singular the trace
form is non-degenerate.

(ii) This follows from symmetry as tr(gXY g−1) = tr(g−1gXY ).
(iii) Over R or C this follows from (ii) via differentiation. In general, it follows from

symmetry since this implies the cyclic property of the trace tr(XAY ) = tr(AYX)
from which the required equality immediately follows.

�

We can now define a canonical symmetric bilinear form on a Lie algebra which will play
a fundamental role in the rest of the course.

Definition 11.2. Let L be a Lie algebra over the field K. The Killing form of L is the
symmetric bilinear form

κ : L× L→ K
defined by κ(x, y) = tr(ad(x) ad(y)).
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Example 11.3. Consider the Lie algebra sl(2,K) with basis given by

h =

[
1 0
0 −1

]
, x =

[
0 1
0 0

]
, y =

[
0 0
1 0

]
With respect to the ordered basis (h, x, y) we have that

ad(h) =

 0 0 0
0 2 0
0 0 −2

 , ad(x) =

 0 0 1
−2 0 0
0 0 0

 , ad(y) =

 0 −1 0
0 0 0
2 0 0


therefore the matrix representing the Killing form κ with respect to the basis (h, x, y) is 8 0 0

0 0 4
0 4 0


The following Proposition is a manifestation of how canonical the Killing form is. It

states that the Killing form is invariant under all automorphisms of the Lie algebra as well
as under all “infinitesimal automorphisms”.

Proposition 11.4. Let L be a Lie algebra with Killing form κ. Then, for all x, y ∈ L we
have

(i) If α ∈ Aut(L) then κ(α(x), α(y)) = κ(x, y).
(ii) If D ∈ Der(L) then κ(Dx, y) + κ(x,Dy) = 0.

Proof. (i) Since ad(α(x))(y) = [α(x), y] = α([x, α−1(y)]) = α◦ad(x)◦α−1, the statement
follows from the conjugation invariance of the trace.

(ii) First note that

(7) [D, ad(x)] = ad(Dx)

as D(ad(x)(y)) − ad(x)(Dy) = D([x, y]) − [x,Dy] = [Dx, y] + [x,Dy] − [x,Dy] =
[x,Dy]. Hence

κ(Dx, y) + κ(x,Dy) = tr(ad(Dx) ad(y)) + tr(ad(x) ad(Dy))

= tr(D ad(x) ad(y))− tr(ad(x)D ad(y)) + tr(ad(x)D ad(y))− tr(ad(x) ad(y)D)

= tr(D ad(x) ad(y))− tr(ad(x) ad(y)D) = 0

�

Remark 11.5. Note that (7) states that the space {ad(x) : x ∈ L} is an ideal of the Lie
algebra Der(L). Moreover, statement (ii) above implies that the Killing form is associative
with respect to the Lie bracket as

κ(ad(x)y, z) + κ(y, ad(x)z) = 0⇔ κ([y, x], z) = κ(y, [x, z])

Definition 11.6. The radical (or kernel) of a symmetric bilinear form b : V × V → K is
the set

Rad b = {v ∈ V : b(v, ·) = 0}
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When the symmetric bilinear form is understood, given a subset S ⊂ V , we write

S⊥ = {v ∈ V : b(v, s) = 0 for all s ∈ S}
and then Rad b = V ⊥.

Proposition 11.7. Let L be a Lie algebra with Killing form κ.

(1) Radκ is an ideal of L. More generally, if I ⊂ L is an ideal, then I⊥ is an ideal7.
(2) If I ⊂ L is an ideal, the Killing form of I is κI = κ|I×I .

Proof. (1) Suppose x ∈ L, y ∈ I⊥. Then given z ∈ I we have κ(z, [x, y]) = κ([z, x], y) =
0, hence I⊥ is an ideal.

(2) Let W ⊂ L be a subspace with I⊕W = L. Then with respect to a basis adapted to
this direct sum decomposition, ad(x) for x ∈ I is a block upper triangular matrix
with 0 as its second diagonal block, i.e. ad(x) is of the form

ad(x) =

[
∗ ∗
0 0

]
Therefore tr(adI(x) adI(x

′)) = tr(ad(x) ad(x′)) for all x, x′ ∈ I, as required.
�

We can now state Cartan’s basic criteria for solvability and semisimplicity which once
again affirm this basic dichotomy in the study of Lie algebras.

Theorem 11.8 (Cartan’s criteria). Let L be a finite dimensional Lie algebra over a field
K of characteristic zero, and κ be the Killing form of L. Then

(1) L is solvable if and only if Radκ ⊃ [L,L].
(2) L is semisimple if and only if κ is non-degenerate (i.e. Radκ = {0}).

Proof that (1)⇒(2). Assume first that L is semisimple and let S = Radκ. Then S is an
ideal and by Proposition11.7(ii) we have that κS = 0. Cartan’s criterion (1) implies that
S is solvable. Since 0 is the only solvable ideal of L we conclude that S = 0, hence κ is
nondegenerate.

Now assume that κ is nondegenerate. In order to show that L is semisimple, it is
sufficient to show that L contains no nontrivial abelian ideals (as a nontrivial solvable
ideal necessarily contains a nontrivial abelian ideal, namely the last nonzero term in its
derived series). Suppose that I ⊂ L is an abelian ideal and let x ∈ I, y ∈ L. Then the
composite

L
ad(x)−−−→ L

ad(y)−−−→ L
ad(x)−−−→ L

ad(y)−−−→ L

is the 0 map. Indeed, the image of the first map is contained in I (as x ∈ I) and hence
the composition of the first two maps also has image contained in I. Since I is abelian it
follows that the composition of the first three maps is already 0. This means in particular
that ad(y) ad(x) is nilpotent and hence

κ(y, x) = tr(ad(y) ad(x)) = 0 for all y ∈ L
7But beware that I ∩ I⊥ may be different from {0}.
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Since κ is nondegenerate we see that I = {0}, as required. �

The proof of Cartan’s criterion for solvability depends on a Linear Algebra lemma.
Before stating it we will make a remark concerning the Jordan-Chevalley decomposition of
an endomorphism x ∈ End(V ) (with V a vector space over an algebraically closed field K)

x = xs + xn

Let {v1, . . . , vn} be a basis of eigenvectors for xs with xsvi = λivi, and let eij be the
standard basis for End(V ) defined by eij(vk) = δjkvi. Then

(ad(xs)eij)(vk) = xseijvk − eijxsvk = xsδjkvi − eijλkvk = (λi − λk)δjkvi = (λi − λk)eij(vk)

Therefore the eij are eigenvectors for ad(xs) and hence ad(xs) is a semisimple endomor-
phism of L. Now, since ad(xn) = Lxn − Rxn is the difference of commuting, nilpotent
endomorphisms of L, we have that ad(xn) is nilpotent. Moreover, [ad(xn), ad(xs)] =
ad([xn, xs]) = ad(0) = 0 so that ad(xs) and ad(xn) commute. It follows from unique-
ness that

ad(x) = ad(xs) + ad(xn)

is the Jordan-Chevalley decomposition of ad(x) ∈ End(End(V )).

Lemma 11.9. Let V be a vector space over an algebraically closed field of characteristic
zero and L ⊂ End(V ) be a Lie subalgebra such that tr(xy) = 0 for all x, y ∈ L. Then [L,L]
is nilpotent.

Proof. By Engel’s Theorem, it is enough to show that ad(x) is nilpotent for every x ∈ [L,L],
and since [L,L] is an ideal, it is enough to show that ad(x) are nilpotent as endomor-
phisms of L. Consider the Jordan-Chevalley decomposition x = xs + xn, and write
xs = diag(λ1, . . . , λn). Since the Jordan-Chevalley decomposition of ad(x) is

ad(x) = ad(xs) + ad(xn)

it is enough to show that xs = 0, or equivalently that all the eigenvalues of xs are zero. We
will do this by testing xs against suitable endomorphisms y using the trace form. Given a
linear functional f : Q〈λ1, . . . , λn〉 → Q we can define y = diag(f(λ1), . . . , f(λn)) (so that
y =“f(xs)”). Then

ad(y)(eij) = (f(λi)− f(λj))eij = f(λi − λj)eij
Fix a polynomial p(x) ∈ Q[x] such that p(λi − λj) = f(λi − λj) for all i, j (this exists by
Lagrange interpolation and note that in particular p(0) = 0). Then

ad(y) = p(ad(xs))

Since ad(xs) = r(ad(x)) for some r(x) with zero constant term, we see that ad(y) =
q(ad(x)) for some polynomial q(x) with zero constant term. It follows that the action of
ad(y) on End(V ) preserves L even thought y itself need not belong to L. Now

tr(xy) = tr(xsy) + tr(xny)
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Since xn commutes with the projections onto the eigenspaces of xs, it also commutes with
y, therefore tr(xny) = 0. We can compute the other term explicitly to get

tr(xy) = tr(xsy) =
n∑
i=1

λif(λi)

On the other hand, writing x =
∑

j[aj, bj] we have

tr(xy) =
∑
j

tr([aj, bj]y) =
∑
j

tr(aj[bj, y])

Since [bj, y] = − ad(y)(bj) ∈ L, our assumption on the trace form yields tr(xy) = 0.
Therefore

∑n
j=1 λjf(λj) = 0 for any linear functional on the rational vector space spanned

by the eigenvalues. This can only happen if all the λi are 0, which concludes the proof. �

Proof of Theorem 11.8 (1). Consider first the case when the base field K is algebraically
closed. If L is solvable then, by Lie’s Theorem, ad(L) may be regarded as a Lie algebra
of upper triangular matrices. Hence ad[L,L] = [ad(L), ad(L)] will consist of strictly upper
triangular matrices. Therefore, if x ∈ [L,L] and y ∈ L, we will have

κ(x, y) = tr(ad(x) ad(y)) = 0

which means that [L,L] ⊂ Radκ.
Conversely, suppose [L,L] ⊂ Radκ and apply Lemma 11.9 to the Lie algebra M =

[ad(L), ad(L)] = ad[L,L] ⊂ End(L). The lemma applies because given x = ad(x′), y =
ad(y′) ∈M with x′, y′ ∈ [L,L] we have

tr(xy) = κ(x′, y′) = 0

It follows that [M,M ] is nilpotent. Since M = ad(L)(1), we see that ad(L) is solvable and
then the extension

0→ Z(L)→ L
ad−→ ad(L)→ 0

shows that L is also solvable as required.
Finally, note that if K→ K is a field extension, and L is a Lie algebra over K, then

κL⊗K = κL ⊗K Rad(κL⊗K) = Rad(κL)⊗K K

Therefore if L is a Lie algebra over an arbitrary field K of characteristic zero the validity of
the statement of Cartan’s criterion for L follows from the special case of an algebraically
closed field proved above, upon consideration of the Lie algebra L⊗KK with K the algebraic
closure of K. �

Corollary 11.10. Let L be a semisimple Lie algebra over a field of characteristic zero.
Then

L = L1 × · · · × Lk
with Li simple Lie algebras. In particular L = [L,L].
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Proof. It is enough to see that if I ⊂ L is an ideal, then the Killing form breaks L up as a
product of ideals

L = I × I⊥,
for then, inductively we will get the required decomposition. Since κ is associative, I⊥ is
also an ideal: indeed, if x ∈ I, y ∈ I⊥ and z ∈ L then

0 = κ([x, z], y) = κ(x, [z, y])

Moreover, as κ is non-degenerate, dim I⊥ = dimL− dim I. Now κ vanishes identically on
the ideal I ∩ I⊥, therefore Cartan’s criterion for solvability implies that I ∩ I⊥ is solvable.
Since L is semisimple we must have I ∩ I⊥ = {0}. Hence L = I ⊕ I⊥ as a vector space.
Since for x ∈ I, y ∈ I⊥ we have

κ([x, y], z) = κ(x, [y, z]) = 0

for every z ∈ L we see that [I, I⊥] = 0 so the Lie bracket structure on I ⊕ I⊥ is computed
coordinatewise.

Finally, since for a simple Lie algebra Li we have [Li, Li] = Li, the same will be true for
a cartesian product of such. �

Remark 11.11. Suppose L is semisimple over a field of characteristic 0 and ρ : L → V
is arepresentation. Then

tr(ρ(x)) = 0 for all x ∈ L
as ρ(L) = ρ([L,L]) ⊂ [gl(V ), gl(V )] = sl(V ). In particular a semisimple Lie algebra has
no nontrivial one dimensional representations.

Exercise 11.12. Show that if L is a semisimple Lie algebra over a field of characteristic
zero, any ideal I ⊂ L is a direct sum of orthogonal simple ideals. Conclude that if f : L→ L′

is Lie algebra homomorphism and L is semisimple then f(L) is semisimple.

12. Lie modules and cohomology

Let L be a Lie algebra. A representation ρ : L → gl(V ) gives rise to a bilinear map
L× V → V defined by the expression

(x, v) 7→ ρ(x)v

Writing xv for ρ(x)v, the condition that ρ is a map of Lie algebras becomes

(8) [x, y]v = x(yv)− y(xv)

Conversely a bilinear map satisfying the above relation gives rise to a representation of L,
as one immediately checks. Sometimes it is more convenient to think of representations in
this way, which leads to the following definition.

Definition 12.1. A Lie module over the Lie algebra L is a vector space V together with
a bilinear map L× V → V satisfying (8) for every x, y ∈ L and v ∈ V .

There are several ways of obtaining new L-modules from old. Here are some construc-
tions with L-modules:
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• Tensor product: Let V1, V2 be L-modules. Their tensor product V1 ⊗ V2 becomes
an L-module (check!) extending linearly the action on decomposable tensors given
by

x(v1 ⊗ v2) = (xv1)⊗ v2 + v1 ⊗ (xv2)

A motivation for this formula comes from the fact that given representations V1

and V2 of a Lie group G, the tensor product naturally becomes a representation via
the action g · (v1 ⊗ v2) = (gv1)⊗ (gv2). If we differentiate this formula at g = e we
obtain the expression defining the action on a tensor product of Lie modules.
• Dual: The dual of the L-module V is the dual vector space V ∗ with the action of
L defined by

(x · φ)(v) = −φ(xv) for x ∈ L, φ ∈ V ∗, v ∈ V

It is easy to check that the above formula gives V ∗ an L-module structure. Again
the motivation for this formula comes from differentiating the standard action of a
Lie group G on the dual of a G-representation V , which is given by

(g · φ)(v) = φ(g−1v)

(the inverse is needed for the resulting action on V ∗ to be a left action).
• Homomorphisms: If U, V are L-modules, the vector space Hom(U, V ) of linear maps

from U to V becomes an L-module via

(9) (xf)(u) = x(f(u))− f(xu) for x ∈ L, f ∈ Hom(U, V ), u ∈ U

Note that, in the special case when U = V , the previous formula can alternatively
be interpreted as saying that the action of x on f is given by the commutator of
the endomorphism of V given by the action of x and f :

xf = [x·, f ] ∈ End(V )

The identity (9) is in fact a consequence of the formulas for the action on the dual
and tensor product as there is a canonical isomorphism U∗⊗V = Hom(U, V ) which
sends a decomposable tensor φ⊗ v to the rank one homomorphism defined by

u 7→ φ(u)v

The action on U∗ ⊗ V is given by x(φ ⊗ v) = (xφ) ⊗ v + φ ⊗ (xv), which is taken
via the canonical homomorphism to

u 7→ −φ(xu)v + φ(u)xv

From the above we can get L-module structures on arbitrary tensors, including symmetric
and anti-symmetric tensors. Note also that if f : V1 → V2 is a map of L-modules (defined in
the obvious way), then ker f and Im f are again L-modules. In this language an irreducible
representation is called a simple module.

Definition 12.2. Let L be a Lie algebra and V be an L-module. V is said to be simple if
its only L-submodules are 0 and V .
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Our next aim is to prove a basic result concerning semisimple Lie algebras over fields of
characteristic zero.

Theorem 12.3 (Weyl). Let L be a semisimple Lie algebra over a field of characteristic
zero. Then all finite dimensional L-modules are direct sums of simple modules.

This is in contrast with what happens with solvable Lie algebras (see Example 6.9) and
in parallel to what happens for compact Lie groups (see Proposition 6.10). This theorem
says that the representation theory of semisimple Lie algebras is “as simple as possible”:
it boils down to a classification of the irreducible representations.

Theorem 12.3 will follow immediately once we prove that every extension of L-modules
for such an L

(10) 0→ V
i−→ W

π−→ U → 0

(i.e. a short exact sequence of vector spaces where i and π are maps of L-modules) splits,
meaning there exists a map of L-modules s : U → W with π ◦ s = idU . In that case the
map i ⊕ s : V ⊕ U → W will be an isomorphism and by induction on the dimension of a
module one sees that any L-module breaks up as a sum of irreducible modules.

One basic point I would like to get across is that a question such as this is a question
about cohomology. In order to understand this let us analyse the splitting of (10) in the
most concrete way imaginable. We start by noticing that it always splits linearly, i.e.
there always exists a map of vector spaces s : U → W such that π ◦ s = idU . Such a linear
splitting gives us an isomorphism of vector spaces

V ⊕ U
∼=−→ W

(v, u) 7→ i(v) + s(u)

Let us see how the L-module structure on W looks in terms of this isomorphism. Given
x ∈ L, we have

x · (i(v) + s(u)) = i(x · v) + x · s(u)

and since π(x · s(u)) = x · πs(u) = x · u we see that x · s(u) − s(x · u) ∈ Im i. Writing
φ : L× U → V for the unique bilinear map such that iφ(x, u) = x · s(u)− s(x · u) we have
that

x · (i(v) + s(u)) = i(x · v + φ(x, u)) + s(x · u)

Thus the induced L-module structure on the direct sum via the isomorphism is

(11) x · (v, u) = (x · v + φ(x, u), x · u)

The bilinear map φ : L × U → V measures the failure of s in providing an L-module
splitting. Note moreover that φ completely determines the L-module structure on W and,
indeed, it completely determines the isomorphism class of the extension in the following
sense (exercise).

Definition 12.4. Let L be a Lie algebra, U, V,W,W ′ be L-modules and

0→ V
i−→ W

π−→ U → 0 0→ V
i′−→ W ′ π′−→ U → 0
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be two extensions of U by V . The two extensions are isomorphic if there is an isomorphism
ψ : W → W ′ making the following diagram commute.

0 V W U 0

0 V W ′ U 0

idV

i

ψ

π

idU

i′ π′

From now on we will omit i so as to simplify the notation. The map φ is not an arbitrary
bilinear map, as we have

φ([x, y], u) = [x, y] · s(u)− s([x, y] · u)

= x · (y · s(u))− y · (x · s(u))− s(x · (y · u)) + s(y · (x · u))

= x · (y · s(u))− y · (x · s(u))− (x · s(y · u)− φ(x, y · u)) + (y · s(x · u)− φ(y, x · u))

= x · (y · s(u)− s(y · u)) + φ(x, y · u)− y(x · s(u)− s(x · u))− φ(y, x · u)

= x · φ(y, u) + φ(x, y · u)− y · φ(x, u)− φ(y, x · u),

so regarding φ as a linear map

L→ Hom(U, V )

x 7→ φ(x, ·)
we have

φ([x, y], u)− x · φ(y, u)− φ(x, y · u) + y · φ(x, u) + φ(y, x · u) = 0 for all u ∈ U
or, equivalently, with respect to the L-module structure on Hom(U, V )

(12) φ([x, y]) = (x · φ)(y)− (y · φ)(x)

The definition of the function φ depended on the choice of a section s : U → W . What
effect does the choice of section have on φ? If s′ : U → W is another section, we can write

s′(u) = s(u) + iλ(u)

for a unique linear map λ : U → V , and then

φ′(x, u) = x · s′(u)− s′(xu) = φ(x, u) + xλ(u)− λ(xu)

or, regarding φ, φ′ as maps from L to Hom(U, V ) and λ as an element in Hom(U, V ),

φ′ = φ+ x · λ

Definition 12.5. Let L be a Lie algebra and V be an L-module. A derivation of L with
values in V is a linear map D : L→ V such that

D([x, y]) = x ·D(y)− y ·D(x)

The vector space of derivations of L with values in V is denoted Der(L, V ). An inner
derivation Dv determined by an element v ∈ V is a derivation Dv : L → V given by the
expression

Dv(x) = x · v
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(check that this is indeed a derivation). The subspace of inner derivations is denoted
InnDer(L, V ).

Example 12.6. (i) If V = L with L acting on itself by x · v = [x, v] then Der(L,L) =
Der(L) is the set of derivations of the Lie algebra L. The inner derivations form the
subset ad(L) ⊂ Der(L).

(ii) If V is abelian, i. e. if x · v = 0 for all x, v, then a derivation D : L → V is
precisely a linear map from L to V which vanishes on [L,L] therefore Der(L, V ) =
Hom(L/[L,L], V ).

With this definition of derivations with values in a module we see that the functions
φ : L → Hom(U, V ) characterizing an extension are elements of Der(L,Hom(U, V )) and
that two correspond to the same extension if and only if they differ by the inner derivation
determined by an element λ ∈ Hom(U, V )). In the homework you will check that any
derivation φ gives rise to an extension of U by V via the formula (11). We have therefore
proved the following result.

Proposition 12.7. Let L be a Lie algebra and U, V be L-modules. Then isomorphism
classes of extensions of U by V

0→ V → W → U → 0

are in one-to-one-correspondence with

Der(L,Hom(U, V ))/ InnDer(L,Hom(U, V ))

We will now consider a similar, but slightly more complicated classification problem.
Consider a Lie algebra extension

0→ I
i−→ L1

π−→ L→ 0

i.e. a short exact sequence of vector spaces where both i and π are maps of Lie algebras.
In particular i identifies I with the ideal kerπ ⊂ L1. We refer to this as an extension of the
Lie algebra L by the ideal I. The extension is said to be abelian if the ideal I is an abelian
Lie algebra. In that case, I has a canonical L-module structure for, given u ∈ I, x ∈ L
and letting x̃ be any lift of x to L1 (meaning an element of L1 such that π(x̃) = x) we can
define

x · u = i−1([x̃, i(u)]) ∈ U
This makes sense because I is an ideal and is well defined because if x′ is another lift of
x then x′ − x̃ ∈ I and hence, as I is abelian, [x̃, u] = [x′, u] for all u ∈ I (we are omitting
and will continue to omit i in order to simplify the expressions).

Conversely, given an L-module V we can give L1 = L ⊕ V a Lie algebra structure by
setting

[(x, v), (x′, v′)] = ([x, x′], x · v′ − x′ · v)

(check) for which V is an abelian ideal sitting in an obvious extension of L by V for which
the action of L on V is the initially given one.
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Let us try to classify abelian extensions of Lie algebras as we did for extensions of
modules. Given an abelian extension, pick a linear map s : L → L1 with πs = idL. This
gives us an isomorphism of vector spaces L⊕ I → L1 given by

(x, y) 7→ s(x) + y

Moreover (omitting i) we have

[s(x) + y, s(x′) + y′] = [s(x), s(x′)] + [y, s(x′)] + [s(x), y′] + 0 = [s(x), s(x′)]− x′ · y + x · y′

As before there is a bilinear map φ : L × L → I measuring the failure of s in being a Lie
algebra homomorphism. It is given by

(x, x′) 7→ [s(x), s(x′)]− s([x, x′])
and, since

[s(x) + y, s(x′) + y′] = s([x, x′]) + φ(x, x′)− x′ · y + x · y′

we again see that the Lie algebra extension is completely determined by φ. Note that φ is,
by definition, skew symmetric. As before, this skew symmetric function is not arbitrary.
We leave it as an exercise to check the following relation.

Lemma 12.8. For all x, y, z ∈ L, the skew symmetric function φ : L×L→ I satisfies the
following equality

(13) − φ([x, y], z) + φ([x, z], y)− φ([y, z], x) + x · φ(y, x)− y · φ(x, z) + z · φ(x, y) = 0

Conversely, one checks (as you will in the homework) that a skew-symmetric function
satisfying (13) gives rise to a Lie bracket on L⊕ I sitting in an extension of L by I. The
simplest extension of L by I is the one obtained by setting φ = 0.

Definition 12.9. Let L be a Lie algebra and I be an L-module. The Lie algebra structure
on L⊕ I defined by

[(x, y), (x′, y′)] = ([x, x′], x · y′ − x′ · y)

is called semi-direct product of L and I and denoted Ln I. More generally, if L acts on a
Lie algebra M by derivations, the semi-direct product of L by M with respect to the action
is the Lie algebra LnM which equals L⊕M as a vector space and has Lie bracket given
by the expression

[(x, y), (x′, y′)] = ([x, x′], x · y′ − x′ · y + [y, y′])

Let us now see how the choice of section s affects φ. Another section s′ : L→ I is of the
form s′ = s+ λ, with λ : L→ I an arbitrary linear map. Then

φ′(x, y) = [s′(x), s′(y)]− s′([x, y])

= [s(x), s(y)] + [λ(x), s(y)] + [s(x), λ(y)] + [λ(x), λ(y)]− s([x, y])− λ([x, y])

= φ(x, y) − y · λ(x) + x · λ(y)− λ([x, y])

Note that, since I is abelian, the difference between φ′(x, y) and φ(x, y) is exactly given
by the expression vanishing in (12)! Moreover there is clearly a pattern in conditions (12)
and (13) which is a telltale of cohomology. It can be generalized as follows.
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Definition 12.10. Let K be a field, L a Lie algebra over K and V be an L-module. The
Chevalley-Eilenberg complex of L with coefficients in V is the cochain complex

Ck(L;V ) = Hom(ΛkL, V ), (the space of k-multilnear maps L× · · · × L→ V )

for k ≥ 0, with differential

δ : Ck(L;V )→ Ck+1(L;V )

defined by

(δϕ)(x0, . . . , xk) =
∑

0≤i<j≤k

(−1)i+jϕ([xi, xj], x0, . . . , x̂i, . . . , x̂j, . . . , xk)

+
k∑
i=0

(−1)ixi · ϕ(x0, . . . , x̂i, . . . , xk)

The cohomology of this complex is called the cohomology of L with coefficients in V :

Hk(L;V ) = (ker δ : Ck → Ck+1)/(Im δ : Ck−1 → Ck)

It is left as an exercise to check that δ2 = 0 so that the above definition makes sense.

Remark 12.11. Note that the deRham complex of a manifold M is the special case when
L = X (M) is the Lie algebra of vector fields on the manifold M and V = C∞(M) is the
vector space of smooth functions on M with the usual action of X (M). That is

H∗dR(M) = H∗(X (M);C∞(M))

(although for the above to be precise we must consider suitably “smooth” cochains, rather
then arbitrary multilinear maps from L to V ).

It is worth writing down explicitly the formula for the differential in low degrees.

C0(L;V ) = V C1(L;V ) = Hom(L;V ) C2(L;V ) = Hom(Λ2L, V )

v (x 7→ x · v)

ϕ ((x, y) 7→ −ϕ([x, y]) + x · ϕ(y)− y · ϕ(x))

δ δ

In particular, the 1-cocycles are the derivations, and the 1-coboundaries are the inner
derivations.

Proposition 12.12. Let L be a Lie algebra and V be an L-module. Then:

(i) H0(L;V ) = V L = {v ∈ V : x · v = 0 for all x ∈ L} is the space of invariants
under the action of L;

(ii) H1(L;V ) = Der(L;V )/ InnDer(L;V ) classifies extensions of U by W when V =
Hom(U,W );

(iii) H2(L;V ) classifies abelian extensions of L by V .
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(iv) If K→ F is a field extension and L is a Lie algebra over K then

H∗(L⊗K F;V ⊗K F) = H∗(L;V )⊗K F;

(v) If 0 → V1 → V2 → V3 → 0 is a short exact sequence of L-modules, then there is a
long exact sequence on cohomology:

0 H0(L;V1) H0(L;V2) H0(L;V3)

H1(L;V1) H1(L;V2) H1(L;V3)

H2(L;V1) H2(L;V2) . . .

Proof. (i) is immediate from the definition and we have already pointed out (ii). Statement
(iii) is also immediate from the definition of cohomology and the discussion preceding the
definition of the Chevalley-Eilenberg complex. Statement (iv) is also immediate from the
definition of cohomology and the properties of the tensor product. To see (v), apply the
snake lemma to the short exact sequence of cochain complexes

0→ C∗(L;V1)→ C∗(L;V2)→ C∗(L;V3)→ 0

�

Let G be a Lie group. Then, the subspaces

Ω∗`(G) ⊂ Ω∗(G)

of left invariant forms on G constitute a subcomplex of the deRham complex (because the
exterior derivative is linear and commutes with pullbacks - exercise!). Evaluation at e ∈ G
gives rise to an isomorphism of vector space

Ωk
` (G)

eve−−→ Ck(g;R) = Hom(Λkg,R)

A form on G is completely determined by its evaluation on left invariant vector fields.
Given X0, . . . , Xk ∈ X (G) left invariant we have

dω(X0, . . . , Xk) =
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk)

+
k∑
i=1

(−1)iXi · ω(X0, . . . , X̂i, . . . , Xk)

=
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk)

where the last equality holds because the evaluation of a left invariant form on left invariant
vector fields is a constant function. We conclude the following.
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Proposition 12.13. The map eve : Ω∗`(G)→ C∗(g;R) is an isomorphism of cochain com-
plexes (where R denotes the trivial g-module).

Now if G is a compact Lie group, there is an averaging map which turns any form on G
into a left invariant form:

π : Ω∗(G)→ Ω∗`(G)

is defined by

π(ω) =

ˆ
G

L∗gωdg

If i : Ωk
` (G) ↪→ Ωk(G) denotes the inclusion then clearly πi = idΩ∗` (G). It is clear that π is

a map of complexes, as is i obviously, so we conclude that, in this case,

H∗(g;R)
i∗−→ H∗dR(G)

is injective. However, using deRham’s Theorem one can check (as you will do in the
homework) that i∗ is surjective and therefore we have.

Proposition 12.14. If G is a compact Lie group, then H∗dR(G) ∼= H∗(g;R).

Example 12.15. Let L = Rn be an abelian Lie algebra. Then the differential δ in the
Chevalley-Eilenberg complex is identically zero and therefore

Hk(L;R) = Ck(L;R) = (Λk(Rn))∗

so that Hk(L;R) is a real vector space of dimension
(
n
k

)
. This is indeed the deRham

cohomology of an n-dimensional torus S1×· · ·×S1, which is the unique compact Lie group
with Lie algebra L.

Note that the Lie groups with Lie algebra Rn are those of the form Rn/D with D a discrete
subgroup of Rn. One can check (exercise) that these subgroups are all isomorphic to some Zk
spanning a k-dimensional subspace of Rn (for some k ≤ n) and then Rn/D ∼= (S1)k×Rn−k.

We will finish this section by giving another perspective on L-modules and cohomology
which will be important for the computation of cohomology. Let V be a vector space over
a field K and

T (V ) = K⊕ V ⊕ (V ⊗ V )⊕ V ⊗3 ⊕ . . .
denote the tensor algebra on V . The product is defined on decomposable tensors by the
expression

(v1 ⊗ · · · ⊗ vk) · (w1 ⊗ · · · ⊗ w`) = v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ w`
and then extended linearly

Example 12.16. If V ∼= K2, then T (V ) is the polynomial algebra on “two non-commuting
variables”. Indeed, picking a basis {x, y} for V , a basis for T (V ) is given by

{1, x, y, x⊗ x, x⊗ y, y ⊗ x, y ⊗ y, . . . }
and so on can think of T (V ) as a polynomial algebra in two non-commuting variables x
and y.
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The algebra T (V ) is also called the free associative algebra on V for the following reason.
If A is any associative algebra over K and f : V → A is a linear map, there is a unique
algebra homomorphism f̄ making the following diagram (of linear maps) commute:

V A

T (V )

f

f̄

Indeed there clearly is exactly one map f̄ making the diagram commute; it must be given
on decomposable tensors by the expression

f̄(v1 ⊗ · · · ⊗ vn) = f(v1) · · · · · f(vn)

This property (called a universal property) completely determines T (V ) up to isomorphism.
It says that “to give a map of K-algebras out of T (V ) is the same as to give a linear map
out of V ”.

Definition 12.17. Let L be a Lie algebra over a field K. The universal enveloping algebra
of L is the algebra

U(L) = T (L)/〈x⊗ y − y ⊗ x− [x, y] : x, y ∈ L〉

(where the quotient is by the two-sided ideal8 in T (L) generated by the given elements).

We have given a “hands on” definition of U(L) but it is, like the tensor algebra, char-
acterized by a universal property. Recall that any associative algebra A becomes a Lie
algebra with the Lie bracket given by the commutator of elements of A.

Proposition 12.18. Let L be a Lie algebra, A an associative algebra over the field K,
and f : L → A be a map of Lie algebras. Then there is a unique map f̄ : U(L) → A of
associative algebras making the following diagram commute

L A

U(L)

f

i

f̄

where i is the canonical map L ↪→ T (L)→ U(L).

Proof. By the universal property of the tensor algebra, the map f can be extended to a
unique map of algebras f̃ : T (L)→ A. The existence and uniqueness of the required map
f̄ follows from the fact that maps from U(L) → A correspond to maps from T (L) → A

8A subspace I ⊂ A of an associative algebra is a two sided ideal i f aI ⊂ I and Ia ⊂ I for all a ∈ A.
These are the kernels of homomorphisms of algebras, just as in the Lie case.
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sending the ideal 〈x⊗ y − y ⊗ x− [x, y] : x, y ∈ L〉 to 0 ∈ A.

L A

T (L)

U(L)

f

f̃

f̄

But the condition that the generators x⊗ y − y ⊗ x− [x, y] of the ideal go to 0 under f̃ is
exactly equivalent to the condition that f is a map of Lie algebras. �

Example 12.19. Consider the Lie algebra sl(2;K) = 〈h, x, y〉 with the usual basis

h =

[
1 0
0 −1

]
x =

[
0 1
0 0

]
y =

[
0 0
1 0

]
As [x, y] = h, [h, x] = 2y and [h, y] = −2x, we obtain (for instance) the following basis for
the universal enveloping algebra:

U(sl(2;K)) = 〈1, h, x, y, h2, xh, x2, xy, y2, hy, x3, . . . 〉

where we have not written yx because that element of T (L) is identified in U(L) with
xy − [x, y], and similarly for the other missing quadratic terms.

Remark 12.20. When L = Lie(G) is the Lie algebra of a Lie group G, the universal
enveloping algebra U(L) can be interpreted as the algebra of left invariant linear differential
operators on G.

We now come to a central Theorem whose proof we will regrettably omit.

Theorem 12.21 (Poincaré-Birkhoff-Witt theorem). Let L be a finite dimensional Lie
algebra over a field K and {v1, . . . , vn} be a basis for L. Then

{[vi1 . . . vi` ] : i1 ≤ i2 ≤ · · · ≤ i`}

is a vector space basis for U(L).

Proof. See, for instance, [Hu, Chapter VI]. �

The previous Theorem states that U(L) has the same “size” as a symmetric algebra
on L (i.e. the polynomial algebra in dimL variables). In particular, the canonical map
L→ U(L) is injective, a fact which, although plausible, is far from obvious.

Remark 12.22. If the Lie algebra L is abelian, then one easily checks that U(L) is the
symmetric algebra on L. One can think of U(L) for a general L as a “deformation” of the
symmetric algebra. The underlying vector spaces can be identified but the product in U(L)
is no longer the product in a polynomial algebra when L is not abelian.
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Now, the universal property of U(L) implies that an L-module is precisely the same
as a U(L)-module. This is our final way of regarding a representation of L. Indeed, an
L-module is the same as a Lie algebra endomorphism ρ : L → End(V ) which corresponds
via Proposition 12.18 to a map of associative algebras

ρ̄ : U(L)→ End(V )

and this is the same as a U(L) module structure on V (which is by definition a bilinear
map U(L)× V → V satisfying 1 · v = v, a(bv) = (ab)v for all a, b ∈ U(L) and v ∈ V ). We
can use this to rewrite the Chevalley-Eilenberg cochain complex

(14) Ck(L;V ) = HomK(ΛkL, V ) = HomU(L)(U(L)⊗K ΛkL, V ).

The gain in regarding the Chevalley-Eilenberg complex in this way is that we see that
the differentials in the cochain complex are actually induced by maps of U(L)-modules
between the free U(L)-modules U(L) ⊗K Λ∗L. Indeed δ : Ck(L;V ) → Ck+1(L;V ) can be
reinterpreted as

δ = HomU(L)(∂, V ) with ∂ : U(L)⊗K Λk+1L→ U(L)⊗K ΛkL

given (on generators) by the expression

∂(x0 ∧ · · · ∧ xk) =
∑
i<j

[xi, xj] ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xk

+
∑
i

((−1)ixi) · x0 ∧ · · · ∧ x̂i ∧ · · · ∧ xk

Thus we see that the Chevalley-Eilenberg complex comes from a more fundamental object,
the Chevalley-Eilenberg chain complex of L consisting of free U(L)-modules

(U(L)⊗K Λ∗L, ∂).

Proposition 12.23. The Chevalley-Eilenberg chain complex of a Lie algebra L is acyclic,
meaning

Hk(U(L)⊗K ΛkL, ∂) =

{
0 if k > 0

K if k = 0

Proof. This will be in the next homework. It makes use of the Poincaré-Birkhoff-Witt
Theorem. �

Remark 12.24. An acyclic complex as in the previous statement is called a free resolution
of the trivial module K. Relation (14) then identifies Lie algebra cohomology with the
derived functors of the functor HomU(L)(K, ·) = (·)L which computes the invariants of an
L-module. These functors are usually denoted by ExtU(L)(K, ·). See for instance [We] for
more on this.

The new interpretation of Lie algebra cohomology afforded by (14) is very useful because
it allows us to invoke not only functoriality in the L-module V , which was already apparent
in the original definition, but crucially, also in the trivial module K which is being resolved
by the Chevalley-Eilenberg chain complex.
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13. The Whitehead Lemmas, Weyl’s and Levi’s Theorems, Lie’s third
Theorem

Suppose L is a semisimple Lie algebra over a field K of characteristic zero. Then the
Killing form κ gives us an isomorphism (still denoted κ)

κ : L→ L∗

defined by
x 7→ κ(x, ·)

The associativity property κ([x, y], z) = κ(x, [y, z]) implies that κ is in fact an isomorphism
of L-modules:

κ([x, y], ·) = −κ(y, [x, ·]) = x · (κ(y, ·))
Now consider the isomorphism

L⊗ L id⊗κ−−−→ L⊗ L∗ = End(L)

On the right we have a canonical element idL, which in terms of a vector space basis {vi}
for V and the corresponding dual basis v∗i is written

n∑
i=1

vi ⊗ v∗i

This gives rise to a canonical element in L⊗L and hence in U(L) under the canonical map

L⊗ L ↪→ T (L)→ U(L)

Definition 13.1. Let L be a semisimple Lie algebra over a field K of characteristic zero.
The Casimir element of L is the element

c(L) =
n∑
i=1

viv
i ∈ U(L)

where {v1, . . . , vn} is any basis of L and {v1, . . . , vn} is the dual basis with respect to the
Killing form (i.e. the elements vi ∈ L are characterized by the relations κ(vi, v

j) = δij).

The discussion preceding the definition shows that c(L) is independent of the choice of
basis for L.

Example 13.2. Consider the Lie algebra sl(2;K) with basis {h, x, y} as in Example 12.19.

With respect to this basis we have seen that κ is given by the symmetric matrix

 8 0 0
0 0 4
0 4 0


Therefore the dual basis for sl(2;K) with respect to κ is

h∗ = 1
8
h, x∗ = 1

4
y, y∗ = 1

4
x

and the Casimir element in U(sl(2;K)) is

hh∗ + xx∗ + yy∗ =
1

8
h2 +

1

4
xy +

1

4
yx =

1

8
h2 +

1

4
h+

1

2
yx,
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where we have used that [x, y] = h in the second equality.

The significance of the Casimir element is the following.

Proposition 13.3. The Casimir element c(L) ∈ U(L) is a nontrivial element in the center
of U(L) and therefore gives rise to a canonical endomorphism for any L-module V .

Proof. The action of L on the L-module End(L) is given by the commutator with ad(x).
Therefore, for all x ∈ L, we have x · idL = 0. Since c(L) is the image of idL under the
L-module isomorphism id⊗κ : L⊗ L→ End(L) it follows that x · c(L) = 0 for all x ∈ L.

Writing c(L) =
∑
vi ⊗ vi this means that∑

[x, vi]⊗ vi + vi ⊗ [x, vi] = 0

and the image of the previous equality in U(L) is∑
xviv

i − vixvi + vixv
i − vivix = 0⇔ x

∑
viv

i = (
∑

viv
i)x⇔ xc(L) = c(L)x

Thus the Casimir element commutes with all the generators of U(L) and is therefore in
the center of U(L).

The element c(L) is nontrivial because the trace of its action on L (via the adjoint action)
is nonzero: indeed, c(L) acts on L as

(
∑
i

viv
i)x =

∑
i

[vi, [v
i, x]] =

∑
i

ad(vi) ad(vi)(x)

and the trace of ad(vi) ad(vi) is, by definition, κ(vi, v
i). Hence

tr(c(L)) = tr(
∑
i

viv
i) =

∑
i

κ(vi, v
i) = dimL 6= 0

where we are using again that K has characteristic zero.
Finally, any element z in the center of an associative algebra A determines, by left

multiplication, an endomorphism of any module over A. �

Remark 13.4. If G is a semisimple Lie group (meaning a Lie group whose Lie algebra is
semisimple), then interpreting the universal enveloping algebra of g as the algebra of left
invariant linear differential operators, the Casimir element is a canonically defined, left
invariant, second order linear differential operator on G, which commutes with all other
left invariant linear differential operators. One can check that, up to a scalar multiple, it
corresponds to the Laplacian determined by a left invariant metric on G.

The construction giving rise to the Casimir element can be performed using any non-
degenerate, associative, symmetric bilinear form β : L × L → K. One obtains an element
c(β) =

∑
i viv

i ∈ U(L) where {v1, . . . , vn} is a basis for L and {v1, . . . , vn} is the dual basis
with respect to the pairing β. This element is again in the center of U(L) by the same
argument as above. Here is how such bilinear pairings arise:



74 LECTURE NOTES ON LIE GROUPS AND LIE ALGEBRAS

Lemma 13.5. Let L be a semisimple Lie algebra over a field of characteristic 0. If ρ : L→
gl(V ) is a faithful representation, then

β(x, y) = tr(ρ(x)ρ(y))

defines a non-degenerate, associative, symmetric bilinear form on L.

Proof. Clearly β is bilinear and symmetric because the trace form is. We check associativity

β([x, y], z) = tr([ρ(x), ρ(y)]ρ(z)) = tr(ρ(x)[ρ(y), ρ(z)]) = β(x, [y, z])

where we have used associativity of the trace form. Non-degeneracy follows as in the proof
of Cartan’s criterion for solvability: If I = Rad β, then associativity of β implies that I is
an ideal in L. The trace form vanishes identically on ρ(I) ⊂ gl(V ) hence ρ(I) is solvable.
As ρ is faithful, it follows that I is a solvable ideal in L. As L is semisimple, I must be 0,
i.e. β is nondegenerate. �

Given a faithful representation ρ : L→ gl(V ), we will write c(ρ) ∈ U(L) for the Casimir
element of the representation ρ. Recall this is given by

c(ρ) =
∑
i

viv
i

with {v1, . . . , vn} any basis for L and {v1, . . . , vn} the dual basis determined by tr(ρ(vi)ρ(vj)) =
δij. As before, c(ρ) ∈ Z(U(L)). It is a nontrivial element of the center because the trace
of its action on V in nontrivial (by definition of β, its trace is dimL - check!).

If ρ : L→ gl(V ) is not a faithful representation then ker ρ is an ideal and we can decom-
pose L as a product of ideals

L = (ker ρ)× (ker ρ)⊥

(where the orthogonal is taken with respect to the Killing form) and this decomposition
gives rise to a decomposition of the universal enveloping algebra of L as

U(L) = U(ker ρ)⊗K U((ker ρ)⊥)

Check this as an exercise with the universal property of the enveloping algebras. Now ρ
restricts to a faithful representation of the semisimple Lie algebra (ker ρ)⊥ and we then
define c(ρ) ∈ U(L) to be the image of the Casimir element

c(ρ|(ker ρ)⊥) ∈ U((ker ρ)⊥)

under the canonical inclusion

U((ker ρ)⊥) ↪→ U(L)

The element c(ρ) is central in U(L) (because it is in U((ker ρ)⊥)) and the trace of its action
on V is easily checked to be dim(ker ρ)⊥, so c(ρ) is non-trivial as soon as the representation
ρ is not trivial.

Remark 13.6. If we write the semisimple Lie algebra as the product of its simple factors
L = L1 × · · · × Ln with Li then

U(L) = U(L1)⊗K · · · ⊗K U(Ln)
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Writing ci ∈ U(Li) for the Casimir element of Li, it is not hard to see that for any
representation ρ : L→ gl(V ) we have

c(ρ) =
∑
i

λici

for some scalars λi ∈ K, which will be 0 for the factors in the kerne of ρ and nonzero
otherwise.

We now come to a central result in representation theory (whose proof is completely
trivial). This result holds for any kind of representations (Lie groups, Lie algebras, asso-
ciative algebras) with the same proof but for simplicity we state it only in the case of Lie
algebra representations.

Lemma 13.7 (Schur’s lemma). Let L be a Lie algebra and f : V → W be an L-module
homomorphism between simple modules. Then,

(1) Either f = 0 or f is an isomorphism.
(2) If V = W and the base field is algebraically closed, then f is multiplication by some

scalar.

Proof. f(V ) ⊂ W is a submodule. Either it is 0 and then f = 0 or it is different from 0
and then f(V ) = W so f is surjective. In the latter case, since ker f 6= V is a submodule
and it is not the whole of V , we must have ker f = 0. We conclude that if f 6= 0 then f is
an isomorphism.

Suppose now that V = W and the base field is algebraically closed. An endomorphism
f : V → V will have a non-trivial eigenspace which is easily checked to be a submodule of
V . Since V is simple, the eigenspace must be all of V . �

Example 13.8. Let L be a semisimple Lie algebra over an algebraically closed field of
characteristic zero and let V be a simple L-module. Then

v 7→ c(ρ)v

is an endomorphism of the L-module V and therefore must correspond to multiplica-
tion by some scalar. Since tr(c(ρ)) = dim(ker ρ)⊥, we conclude that the scalar must be
dim(ker ρ)⊥/ dimV .

We can now exploit the Casimir element to obtain information about the cohomology
of semisimple Lie algebras.

Theorem 13.9. Let L be a semisimple Lie algebra over an algebraically closed field K of
characteristic 0 and V be a simple L-module other than K with the trivial action. Then
H i(L;V ) = 0 for all i ≥ 0.

Proof. Let ρ : L → gl(V ) be the representation corresponding to the module structure
on V . The assumption that V is not isomorphic to the trivial module K implies that
(ker ρ)⊥ 6= 0 (as a simple module on which L acts trivially clearly must have dimension
one). Consider the map induced on cohomology by c(ρ)

c(ρ) : H i(L;V )→ H i(L;V )
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By Example 13.8, this map must be multiplication by the nonzero scalar dim(ker ρ)⊥

dimV
.

On the other hand, multiplication by c(ρ) gives a self map of the cochain complex

HomU(L)(U(L)⊗K ΛkL, V )
c(ρ)−−→ HomU(L)(U(L)⊗K ΛkL, V )

which is induced by multiplication by c(ρ) on the Chevalley-Eilenberg chain complex

U(L)⊗K ΛkL
c(ρ)−−→ U(L)⊗K ΛkL

Now these complexes have trivial homology except in degree 0, where the homology is K
with trivial L-action. The map induced by acting with c(ρ) on the trivial module K is the
zero map, hence, in every degree, multiplication by c(ρ) induces the 0 map on homology.
A standard Theorem in Homological Algebra (exercise) says that the map induced on
cohomology is the dual of the map on homology so the map on cohomology is also 0 in
every degree. Above we proved that the map on cohomology is given by muItiplication by
a nonzero scalar. This can only be if H i(L;V ) = 0 for all i ≥ 0. �

Corollary 13.10 (First Whitehead lemma). Let L be a semisimple Lie algebra over a field
K of characteristic 0 and V any L-module. Then

H1(L;V ) = 0

Proof. Let K denote the algebraic closure of K. Since H1(L⊗KK, V ⊗KK) ∼= H1(L;V )⊗KK,
we may assume that K is algebraically closed.

By Theorem 13.9 the result holds if V is a simple module other than the trivial module
K. In the latter case, we have Der(L,K) = Hom(L/[L,L],K) = 0 as L = [L,L] and
therefore H1(L;K) = Der(L;K)/ InnDer(L;K) = 0. We conclude that H1 vanishes on all
simple modules.

A short exact sequence of L-modules 0 → V → W → U → 0 gives rise to an exact
sequence

H1(L;V )→ H1(L;W )→ H1(L;U).

so induction on the dimension of the module W gives us H1(L;W ) = 0 for all L-modules
W . �

Remark 13.11. Taking V = L in the previous result we se that all derivations of a
semisimple Lie algebra are inner derivations. If L is the Lie algebra of a connected Lie
group G, this implies that the Lie group Aut(L) (which has Der(L) as its Lie algebra) has
connected component of the identity G/Z(G).

We can now prove a basic result about semisimple Lie algebras.

Proof of Theorem 12.3. Extensions of modules are classified by H1 which vanishes iden-
tically by the First Whitehead Lemma. Hence all extensions of modules split and then
inductively on the dimension we see that every finite dimensional L-module is a direct sum
of simple L-modules �
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Proposition 13.12. Let L be a semisimple Lie algebra over a field K of characteristic 0.
Then,

H2(L;K) = 0

(where K is the trivial module).

Proof. We need to show that any extension

(15) 0→ K→ L1
π−→ L→ 0

splits, i.e. that there is a map of Lie algebras s : L → L1 with π ◦ s = idL. Define an
L-module structure on L1 by the expression

x · y = [x̃, y] for x ∈ L, y ∈ L1 and x̃ any element in L1 lifting x

This is well defined because if x̄ is any other lift of x we have x̄ = x̃ + λ for some λ ∈ K
and [λ, y] = 0 (we are assuming that the action of L on K determined by the extension is
trivial so K is central). It is now easy to see that the formula above gives L1 an L-module
structure and, moreover, (15) is a short exact sequence of L-modules.

By the Weyl’s Theorem, there is a map s : L → L1 of L-modules such that πs = idL,
and this map gives the required splitting: given x1, x2 ∈ L we have

s([x1, x2]) = s(x1 · x2) = x1 · s(x2) = [x̃1, s(x2)]

for any lift x̃1 of x1 and we may take x̃1 to be s(x1). �

Corollary 13.13 (Second Whitehead lemma). Let L be a semisimple Lie algebra over a
field of characteristic 0. Then H2(L;V ) = 0 for any L-module V .

Proof. Exercise (this is just as in the First Whitehead Lemma). �

We can now prove a basic structure theorem about Lie algebras which will allow us to
finally give a proof of Lie’s third Theorem.

Theorem 13.14 (Levi’s theorem). Let L be a Lie algebra over a field of characteristic 0.
Then the canonical extension

0→ RadL→ L
π−→ L/Rad(L)→ 0

splits, i.e. there is a map of Lie algebras s : L/Rad(L) → L such that πs = idL/Rad(L).
Therefore any Lie algebra L over a field of characteristic zero is a semidirect product of a
semisimple Lie algebra with a solvable Lie algebra:

L ∼= (L/Rad(L)) n Rad(L)

Proof. Let S = Rad(L). If S is abelian the statement follows from the second Whitehead
Lemma as L/S is semisimple and abelian extensions are classified by H2. We now proceed
by induction on the degree of solvability of S. Suppose the result holds when S(k) = 0 and
assume S is such that S(k+1) = 0. Then

0→ S/S(k) → L/S(k) p−→ L/S → 0
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splits, so there is a Lie algebra L1 ⊂ L/S(k) mapping isomorphically to L/S under p.
Let q : L → L/S(k) denote the canonical projection and set L2 = q−1(L1) ⊂ L. Then L2

contains S(k) and we have an extension

0→ S(k) → L2
q−→ L2/S

(k) ∼= L1 → 0

As L1 is semisimple and S(k) is abelian this extension splits. Let L3 ⊂ L2 be a Lie algebra
mapping isomorphically to L2/S

(k) under the canonical projection. Then it is easy to check
that L3 ⊂ L2 ⊂ L maps isomorphically to L/S under π, which completes the proof. �

Remark 13.15. A Lie subalgebra L′ ⊂ L mapping isomorphically to L/Rad(L) is called
a Levi factor of L. It is a Theorem of Mal’cev that Levi factors are unique up to automor-
phism of L.

Theorem 13.16 (Lie’s Third Theorem). Let L be a Lie algebra over R. Then, there exists
a Lie group G with Lie algebra isomorphic to L.

Proof. Let us first see that if L1 is a Lie algebra acting on L2 by derivations and G1, G2 are
simply connected Lie groups integrating L1 and L2 respectively then there is a Lie group
integrating L = L1nL2: since G1 is simply connected, there is a Lie group homomorphism
G1 → Aut(L2) integrating the action map L1 → Der(L2). By Lie’s second Theorem we
have Aut(L2) ∼= Aut(G2) and in a previous homework we observed that the corresponding
action of G1 on G2 by Lie group automorphisms is smooth.

Let G = G1 nG2 be the semidirect product determined by this action. This means that
G = G1 ×G2 as a smooth manifold and the product on G is given by the expression

(g1, g2) · (h1, h2) = (g1h1, (h
−1
1 · g2)h2)

where h−1
1 · g2 denotes the effect on g2 of the automorphism of G2 determined by h−1

1 . It
is an easy exercise to check that this gives G a Lie group structure whose Lie algebra is
isomorphic to L.

Now let L be any Lie algebra over R. By the previous discussion and Levi’s Theorem
it suffices to prove that there is a Lie group integrating L when L is either semisimple or
solvable. In the first case L ∼= ad(L) ⊂ End(L) is a linear Lie algebra so there is a subgroup
of GL(L) integrating it.

Now suppose L is solvable. Then we can pick a codimension one ideal I in L containing
[L,L] (the inverse image under L → L/[L,L] of any codimension one subspace). Writing
L = I ⊕ R we have an extension

0→ I → L
p−→ R→ 0

which splits (one just needs to pick x ∈ L with p(x) = 1 ∈ R, the Lie algebra spanned by x
will then provide the splitting). Thus L ∼= Rn I for some action of R on I by derivations.
By induction it follows that there exists a Lie group integrating L (moreover the simply
connected version of this Lie group is diffeomorphic to Rn) �

Remark 13.17. The proof above shows that a simply connected Lie group integrating a
solvable Lie algebra L will be diffeomorphic to Rn and, more generally, that any simply
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connected Lie group is diffeomorphic to Rn × H, with H the simply connected Lie group
integrating the semisimple quotient of the original Lie algebra.

One can further show that the simply connected Lie group integrating a semisimple Lie
algebra is diffeomorphic to the cartesian product of a compact Lie groups and an Euclidean
space. See [Kn] for example.

Compact Lie algebras. We will finish this section by using our understanding of coho-
mology to characterize the Lie algebras of compact Lie groups.

Theorem 13.18. Let G be a compact Lie group. Then, g = a × s with a abelian and s
semisimple with negative definite Killing form.

Proof. Assume G is connected and consider the canonical extension

0→ Z(G)→ G→ Ad(G)→ 0

with Ad(G) ⊂ Aut(g) ⊂ GL(g). Since Ad(G) is compact we can pick an Ad(G)-invariant
inner product on g. With respect to an orthonormal basis for this inner product, the
matrices Ad(g) are orthogonal, so their eigenvalues are of the form eiθ for some θ. Therefore
the matrices ad(x) for x ∈ g are diagonalizable with purely imaginary eigenvalues iyα with
yα ∈ R. It follows that

κ(x, x) = tr(ad(x) ad(x)) =
∑
α

(iyα)2 = −
∑
α

y2
α < 0

if ad(x) 6= 0. We conclude that κ is negative definite on ad(g). By Cartan’s criterion
for semisimplicity ad(g) is semisimple. By the second Whitehead Lemma, the abelian
extension

0→ Z(g)→ g→ ad(g)→ 0

splits and, since the action of ad(g) on Z(g) is trivial, this means that

g = Z(g)× ad(g)

as required. �

Theorem 13.19. Suppose g = a×s is a Lie algebra over R with a abelian and s semisimple
with negative definite Killing form. Then

(1) There is a compact Lie group G with Lie algebra g.
(2) If a = 0, then the simply connected Lie group integrating g = s is (and therefore all

connected Lie groups integrating g are) compact.

Proof. (1) Since S1×· · ·×S1 is a compact Lie group integrating an abelian Lie algebra
a, it suffices to consider the case when a = 0. Let G be a connected Lie group
integrating g and consider the extension

0→ Z(G)→ G→ Ad(G)→ 0

As g is semisimple, Z(g) is trivial and therefore Z(G) is discrete. Since Ad(G)
preserves the inner product determined by the Killing form, it is contained in an
orthogonal group Oκ(g), which is compact. Thus we need only show that Ad(G) is
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a closed subgrop of GL(g). Now, since all derivations of a semisimple Lie algebra
are inner derivations (see Remark 13.11), we have

Lie(Ad(G)) = ad(g) = Der(g) = Lie(Aut(g)),

Therefore, Ad(G) is the connected component of e in the closed subgroup Aut(g)
and is therefore closed.

(2) Given a connected Lie group G integrating g we need to check that the compact
Lie group Ad(G) has finite fundamental group, for then its universal cover, which
is the simply connected Lie group integrating g, will be compact. As Ad(G) is a
topological group, π1(Ad(G)) is abelian. Since Ad(G) is a compact manifold, its
fundamental group must be finitely generated and so

(16) π1(Ad(G)) ∼= Zk ⊕ Z/n1 ⊕ · · · ⊕ Z/nk
Now H1

dR(Ad(G)) ∼= Hom(π1(Ad(G)),R) (this follows from the deRham Theo-
rem, or see the homework for an elementary proof). Since Ad(G) is compact,
H1
dR(Ad(G)) = H1(ad(g);R) and by the first Whitehead Lemma H1(g;R) = 0. We

conclude that k in (16) equals zero and hence π1(Ad(G)) is finite.
�

14. Representations of sl(2)

Having discussed some of the general structure of Lie algebras we’ll now concentrate
on understanding the structure of semisimple algebras and their representation theory,
starting with the simplest (and most important) example.

Let K be an algebraically closed field of characteristic 0 and consider the Lie algebra
sl(2,K) with basis

h =

[
1 0
0 −1

]
x =

[
0 1
0 0

]
h =

[
0 0
1 0

]
The Lie bracket on sl(2,K) is determined by the relations

[h, x] = 2x, [h, y] = −2y, [x, y] = h.

Let V be a representation of sl(2,K). As K is algebraically closed, the element h : V → V
must have some eigenvector v with eigenvalue µ ∈ K. Then

h · (x · v) = [h, x] · v + x · h · v
= 2x · v + x · µv
= (µ+ 2)(x · v)

This xv will also be an eigenvector for h with eigenvalue µ + 2, i.e. “x raises eigenvalues
by 2”. An analogous computation will show (exercise) that yv is an eigenvector of h with
eigenvalue µ− 2.

Starting with an eigenvector v, consider the span of the set {v, xv, . . . , xnv, . . .}. Since
V is finite dimensional there is a largest integer k such that {v, xv, . . . , xkv} is linearly
independent. As eigenvectors with distinct eigenvalues are linearly independent, it must
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be that xk+1v = 0. The vectors xk · v have a special role to play in the representation
theory of sl(2,K).

Definition 14.1. Let V be an sl(2;K)-module. An element v ∈ V is said to be a highest
weight vector if v is an eigenvector for h and xv = 0. The weight of an eigenvector for h
in an sl(2,K)-module is the corresponding eigenvalue. The eigenspaces for h will be called
weight spaces.

Proposition 14.2. Let v0 ∈ V be a highest weight vector with weight µ (x · v0 = 0,
hv0 = µv0). Define for i ≥ −1

vi =
1

i!
yi · v0

with the convention that v−1 = 0. Then

(i) y · vi = (i+ 1)vi+1;
(ii) h · vi = (µ− 2i)vi;

(iii) x · vi = (µ− i+ 1)vi−1;

Proof. Statement (i) is immediate from the definition of the vi and we have already pointed
out (ii) (y lowers the weight by 2). Statement (iii) is true for i = 0 because of our
convention that v−1 = 0.

x · vi = x · y · vi
i+ 1

=
1

i+ 1
([x, y]vi + y · x · vi)

=
1

i+ 1
(h · vi + y(µ− i+ 1) · vi−1)

=
1

i+ 1
((µ− 2i)vi + (µ− i+ 1)ivi)

=
(i+ 1)µ− 2i− (i− 1)i

i+ 1
vi

= (µ− i)vi

�

An important consequence of the previous Proposition is that the highest weight µ must
be a non-negative integer. Indeed, the argument that gave us the existence of a highest
weight vector also gives us the existence of a “lowest weight vector”, namely for some ` ≥ 1
we will have v` = 0 and then condition (iii) will imply that µ = `− 1.

For each non-negative integer ` we let

V (`) = 〈v0, . . . , v`〉

denote the sl(2)-module defined by the equations in Proposition 14.2 (leaving you to check
that these equations do indeed define an sl(2)-module structure). In terms of the given
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basis, the action of the basis elements of sl(2,K) on V (`) is given by the following formulas:

h =


`
`− 2

. . .
−`

 x =


0 `

0 `− 1

0
. . .
. . . 1

0

 y =


0
1 0

2 0
. . . . . .

` 0


It is also easy to check that the representations V (`) are irreducible: given any nonzero
vector v ∈ V (`) for a suitable k, we will have that xkv is a highest weight vector, and then
acting on xkv with y repeatedly shows that sl(2,K)v = V (`).

Conversely, if V is an irreducible representation of sl(2,K) it will contain a highest weight
vector (by the argument explained above) and then since V is irreducible it must equal the
representation spanned by the highest weight vector. We have proved the following basic
result.

Theorem 14.3. Let K be an algebraically closed field of characteristic zero. The irreducible
representations of sl(2,K) are the representations V (`) for each non-negative integer `.

An arbitrary finite dimensional representation of sl(2,K) is isomorphic to a unique rep-
resentation of the form V (n1)⊕ . . .⊕ V (nk), hence isomorphism classes of representations
of sl(2,K) are parametrized by tuples of non-negative integers.

It is easy to identify the isomorphism type of a representation of sl(2,K). One need only
compute the highest weight vectors and identify their weights. The irreducible representa-
tions can also be described more concretely.

Example 14.4. (i) V (0) is the trivial one-dimensional representation.
(ii) V (1) is clearly the defining representation of sl(2,K), K2.

(iii) The eigenvalues of the action of h on V (2) ar 2, 0,−2, so V (2) looks just like the
adjoint representation of sl(2,K). But then it must be the adjoint representation, by
Theorem 14.3. We can check this by expressing the adjoint representation in terms
of the basis 〈x,−h, y〉 for sl(2,K). We have

ad(h) =

 2 0 0
0 0 0
0 0 −2

 ad(x) =

 0 2 0
0 0 1
0 0 0

 ad(y) =

 0 0 0
1 0 0
0 2 0

 .
Alternatively, V (2) ∼= Sym2 V (1) can be identified with the space of symmetric 2-
tensors on V (1): writing 〈v0, v1〉 for the basis of V (1), a basis for Sym2 V (1) is given
by

{v0 ⊗ v0, v0 ⊗ v1 + v1 ⊗ v0, v1 ⊗ v1} ⊂ V (1)⊗ V (1)

or in more compact notation

{v2
0, v0v1, v

2
1}
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The formula for the action on a tensor product gives us

h · v2
0 = (hv0)v0 + v0(hv0) = v2

0 + v2
0 = 2v2

0

h · v0v1 = (hv0)v1 + v0hv1 = v0v1 − v0v1 = 0

h · v2
1 = 2v1hv1 = −2v2

1

and the action of h alone, identifies Sym2(V (1)) as V (2).

Exercise 14.5. For an arbitrary non-negative integer ` check that V (`) is isomorphic to
Sym` V (1) (the symmetric ` tensors on V (1) which we can think of as homogeneous degree
` polynomials in two variables).

15. The Cartan decomposition of a semisimple Lie algebra

In the next few sections we will see how the very simple structure of the representations of
sl(2) discussed in the previous section completely determines the structure of an arbitrary
semisimple Lie algebra L over an algebraically closed field K of characteristic zero. For the
next few sections L will be a fixed such Lie algebra.

Recall from the discussion preceding Lemma 11.9 that if x ∈ gl(V ) then ad: gl(V ) →
End(gl(V )) preserves de Jordan-Chevalley decomposition. When L is a semisimple Lie
algebra, the adjoint representation is faithful and the previous result suggests a way of
decomposing an element x abstractly into a semisimple and a nilpotent part.

Definition 15.1. Let L be a semisimple Lie algebra over an algebraically closed field of
characteristic zero. An element x ∈ L is said to be semisimple or nilpotent if ad(x) ∈
End(L) is.

Proposition 15.2. Let L be a semisimple Lie algebra over an algebraically closed field of
characteristic zero. Given x ∈ L, there exist (necessarily unique) elements xs, xn ∈ L such
that

ad(xs) = ad(x)s and ad(xn) = ad(x)n
Moreover,

• If L ⊂ End(V ), xs and xn are the semisimple and nilpotent part of the endomor-
phism x ∈ L.
• If ρ : L → gl(V ) is any representation of L and x ∈ L then ρ(xs) = ρ(x)s and
ρ(xn) = ρ(x)n.

Proof. We will skip this proof, which uses Weyl’s Theorem. See [Hu, Sections 5.4 and
6.4]. �

The elements xs, xn ∈ L are called the semisimple and nilpotent parts of x ∈ L and
the decomposition x = xs + xn is called the abstract Jordan-Chevalley decomposition of
the element x. An element x ∈ L is semisimple if x = xs and nilpotent if x = xn.
The previous Proposition tells us moreover that the Jordan-Chevalley decomposition is
preserved by arbitrary representations, and that when L is a semisimple Lie subalgebra
of gl(V ), the abstract Jordan-Chevalley decomposition coincides with the usual Jordan-
Chevalley decomposition of endomorphisms.
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Definition 15.3. A Lie subalgebra t ⊂ L is said to be a toral subalgebra if it consists of
semisimple elements. A Cartan subalgebra of L is a maximal toral subalgebra.

Proposition 15.4. There exist non-zero toral subalgebras. Moreover, a toral subalgebra of
L is abelian.

Proof. There must be some nonzero element in L which is semisimple. Otherwise, ad(x)
would be nilpotent for every x ∈ L and then, by Engel’s Theorem, L would be nilpotent.
If x ∈ L \ {0} is semisimple then Kx ⊂ L is a nontrivial toral subalgebra.

Let t ⊂ L be a toral subalgebra. Given x ∈ t\{0}, adt(x) is diagonalizable because
ad(x)(t) ⊂ t and ad(x) is diagonalizable by assumption. If t is not abelian, adt(x) has a
nonzero eigenvalue, i. e., there is y ∈ t \ {0} and a ∈ K \ {0} such that [x, y] = ay.

As y ∈ t we can pick a basis {v1, . . . , vn} of t formed by eigenvectors of y. Suppose
[y, vi] = λivi and write x = c1v1 + · · ·+ cnvn. Then

ay = [x, y] = −c1λ1v1 − . . .− cnλnvn
and hence

0 = [y, [x, y]] = −c1λ
2
1v1 − . . .− cnλ2

nvn

But then ciλ
2
i = 0⇔ ciλi = 0 for every i and hence y = 0, which is a contradiction. �

Example 15.5. It is easy to check that L = sl(n;K) is semisimple using the Killing form.
Later we will see that is is actually simple. The subspace

h =

〈
1
−1

0
. . .

0

 ,


0
1
−1

. . .
0

 , . . . ,


0
. . .

0
1
−1


〉

is a Cartan subalgebra. Indeed, h consists of semisimple elements which commute with each
other so it is a toral subalgebra. It is maximal because one easily checks that only diagonal
matrices commute with all elements of h.

If h is a Cartan subalgebra, ad(h) ⊂ End(L) is a set of commuting diagonalizable matrices
so we can decompose L as a sum of common eigenspaces for all elements of h simultaneously.
If v ∈ L is an eigenvector for all h ∈ h and we write α(h) for the eigenvalue corresponding
to h

[h, v] = hv = α(h)v,

the function α : h→ K is linear:

α(h1 + h2)v = (h1 + h2) · v = h1v + h2v = α(h1)v + α(h2)v = (α(h1) + α(h2))v

hence α(h1 + h2) = α(h1) + α(h2). Similarly we see that α preserves scalar multiplication.
Therefore the common eigenvalues are elements α ∈ h∗ in the dual of h. Given α ∈ h∗

we set

Lα = {x ∈ L : [h, x] = α(h)x for all h ∈ h}
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Of course most of these spaces will be zero. The number of distinct α’s such that Lα is
nonzero can be at most dimL. A special role is played by L0 which is the centralizer of h.

Definition 15.6. The set
Φ = {α ∈ h∗ \ {0} : Lα 6= 0}

is called the set of roots of the Cartan subalgebra h. The spaces Lα with α ∈ Φ are called
the root spaces. The expression

L = L0 ⊕
⊕
α∈Φ

Lα

is called the Cartan decomposition of L.

Example 15.7. Let L = sl(2,K) and consider the usual basis {x, h, y} where h = diag(1,−1).
Then h = Kh and writing H for the dual of h we have

Φ = {−2H, 2H} with L2H = Kx and L−2H = Ky
(where x and y are the standard basis elements of sl(2)).

Example 15.8. Let L = sl(3;K) and h = 〈h1, h2〉 where h1 = diag(1,−1, 0) and h2 =
diag(0, 1,−1). Let eij denote the matrix which has every entry 0 except for 1 at the ij-
th entry, so that h1 = e11 − e22 and h2 = e22 − e33. The elements h1, h2 and eij with
1 ≤ i 6= j ≤ 3 form a basis for L as a vector space.

Since
[eij, ekl] = δjkeil − δliekj

we obtain

[h1, e12] = 2e12 [h1, e13] = e13 [h1, e31] = −e31 [h1, e21] = −2e21 [h1, e23] = −e23 [h1, e32] = e32

[h2, e23] = 2e23 [h2, e13] = e13 [h2, e12] = −e12 [h2, e32] = −2e32 [h2, e31] = −e31 [h2, e21] = e21

Let {H1, H2} ⊂ h∗ be the dual basis to {h1, h2} (so Hi(hj) = δij). The above computations
show that the eij with i 6= j are common eigenvectors for h1, h2. For instance

[h1, e12] = 2e12, [h2, e12] = −e12

implies that [h, e12] = (2H1−H2)(h)e12. Similar computations show that the set of roots is

Φ = {−H1 + 2H2, H1 − 2H2, 2H1 −H2,−2H1 +H2, H1 +H2,−H1 −H2}
which forms an hexagon in the h∗ plane. The Cartan decomposition is

sl(3,K) = h⊕ (Ke23 ⊕Ke32 ⊕Ke12 ⊕Ke21 ⊕Ke13 ⊕Ke31)

Let us now prove some elementary properties of the Cartan decomposition. Note that
the first property already strongly restricts the expression of the Lie bracket on L.

Proposition 15.9. Let h be a Cartan subalgebra of L.

(i) Given α, β ∈ h∗ we have [Lα, Lβ] ⊂ Lα+β.
(ii) If α ∈ h∗ is nonzero the elements of Lα are nilpotent.

(iii) If α + β 6= 0, then Lα and Lβ are orthogonal with respect to the Killing form.
(iv) The restriction of the Killing form to L0 is non-degenerate.
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Proof. (i) Given x ∈ Lα, y ∈ Lβ and h ∈ h we have

[h, [x, y]] = [[h, x], y] + [x, [h, y]] = [α(h)x, y] + [x, β(h)y] = (α(h) + β(h))[x, y]

so [x, y] ∈ Lα+β.
(ii) This follows from (i) as ad(x)k(Lβ) ⊂ Lβ+kα and, as Φ is finite, Lβ+kα = 0 for

sufficiently large k.
(iii) Let x ∈ Lα and y ∈ Lβ with α, β such that α + β 6= 0. Pick h ∈ h such that

(α + β)(h) 6= 0. Then,

α(h)κ(x, y) = κ([h, x], y) = −κ(x, [h, y]) = −β(h)κ(x, y)

It follows that (α(h) + β(h))κ(x, y) = 0 and hence κ(x, y) = 0.
(iv) Given α ∈ Φ, (iii) tells us that L0 ⊥ Lα with respect to the Killing form. If x ∈ L0

is such that κ(x, y) = 0 for all y ∈ L0 then, since L = L0 ⊕ ⊕α∈ΦLα, we will have
κ(x, z) = 0 for all z ∈ L. As κ is non-degenerate it follows that x = 0. We conclude
that κ|L0×L0 is non-degenerate.

�

Theorem 15.10. L0 = h, i. e., h is self-centralizing. Hence the restriction of the Killing
form to the Cartan subalgebra h is non-degenerate.

Proof. The proof exploits the fact that the Killing form is non-degenerate on L0 and the
Jordan-Chevalley decomposition. See [Hu, Proposition 8.2] �

Thus the Killing form gives us an isomorphism

κ : h→ h∗

(we still denote it by κ), which sends

h 7→ κ(h, ·)

Using this isomorphism we may regard the set of roots Φ as a subset of h. We will soon see
that we can in fact regard Φ as a subset of Euclidean space and, as such, it is an exceedingly
symmetric set, akin to the vertices of a platonic solid in the case of three dimensions. As
such it is very rigid and this will lead to the classification of semisimple Lie algebras.

Example 15.11. Consider again L = sl(3,K) (see Example 15.8). You will see in the
homework that on sl(n;K) the Killing form is given by the expression

κ(A,B) = 2n tr(AB)

Taking this for granted, in terms of the basis {h1 = diag(1,−1, 0), h2 = diag(0, 1,−1)} for
h we see that κ is given by the symmetric matrix

6

[
2 −1
−1 2

]
(which defines an inner product on Q2). The eigenvalues of this matrix are 3 and 1 with
corresponding eigenvectors are (1,−1) and (1, 1), so {h1 − h2, h1 + h2} is an orthogonal
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basis for h with respect to κ. The norms are ‖h1 − h2‖2 = 36, ‖h1 + h2‖2 = 12, so an
orthonormal basis for h is

v1 =
h1 − h2

6
v2 =

h1 + h2

2
√

3

The set κ(Φ) ⊂ h is (in terms of the basis {h1, h2}) given by

{±(0, 1
6
),±(1

6
, 0),±(1

6
, 1

6
)}

so, in the orthonormal coordinates described above, the image of Φ is the set of vertices{
±
(
−1

2
,

1

2
√

3

)
,±
(

1

2
,

1

2
√

3

)
,±
(

0,
1√
3

)}
of a regular hexagon. Note that the inner product of any pair of these vectors is a rational
number.

We will use the following notation for the isomorphism κ−1 : h∗ → h determined by the
Killing form: For α ∈ h∗ we write

(17) tα = κ−1(α)

so that

α = κ(tα, ·)
We shall now prove some more properties of the Cartan decomposition which together
strongly hint at the fact that the set of roots completely determines the Lie product
structure on L.

Proposition 15.12. (i) Φ spans h∗ and Φ = −Φ.
(ii) Given x ∈ Lα\{0}, y ∈ L−α, then

[x, y] = κ(x, y)tα.

Moreover, κ(x, y) 6= 0 for some y and hence [Lα, L−α] = Ktα.
(iii) Given α ∈ Φ, xα ∈ Lα\{0}, there exists yα ∈ L−α so that setting hα = [xα, yα]

we have that Sα = K{xα, hα, yα} ⊂ L is a Lie subalgebra isomorphic to sl(2) (more
precisely, [hα, xα] = 2xα and [hα, yα] = −2yα). Moreover,

hα =
2tα

κ(tα, tα)
.

(iv) dimLα = 1 and if α ∈ Φ, then cα ∈ Φ if and only if c = ±1. In particular the yα in
(iii) is unique given xα.

(v) Given α, β ∈ Φ with β 6= −α the subspace of L defined by

Wα,β =
⊕
j∈Z

Lβ+jα
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is an irreducible module over the copy Sα of sl(2) of point (iii) so there are integers
q and r such that

Wα,β =

q⊕
j=−r

Lβ+jα

Moreover

(18) 〈β, α〉 def= β(hα) = 2
κ(tβ, tα)

κ(tα, tα)
= r − q

(vi) The bilinear form QΦ×QΦ→ K defined by

(α, β) 7→ κ(tα, tβ)

takes values in Q and determines an inner product on the rational span of the roots
QΦ ∼= QdimK h.

Given α, β ∈ h∗, the integers 〈β, α〉 defined in (18) are called Cartan integers. Note that
the pairing 〈·, ·〉 : h∗ × (h∗ \ 0)→ K defined by the expression

〈β, α〉 = 2
κ(tβ, tα)

κ(tα, tα)

is only linear in the first variable.

Proof. (i) If h ∈ h is such that α(h) = 0 for all α ∈ Φ, then [h, x] = 0 for all x ∈ Lα and
hence ad(h) = 0, so h ∈ Z(L) = {0}.

Let α ∈ Φ. If −α 6∈ Φ then for all β ∈ Φ we have α + β 6= 0, so by Proposition
15.9(iii) we have Lα ⊥ Lβ for all β ∈ Φ ∪ {0}, i.e. Lα is contained in the radical of
the Killing form, which is 0. This is a contradiction which shows that −α ∈ Φ.

(ii) By Proposition 15.9(i) we have [x, y] ∈ L0 = h. Moreover

κ([x, y], h) = κ(h, [x, y]) = κ([h, x], y) = α(h)κ(x, y) = κ(tα, h)κ(x, y)

= κ(κ(x, y)tα, h) for all h ∈ h

Since κ is nondegenerate on h it follows that [x, y] = κ(x, y)tα. If κ(x, y) = 0 for all
y ∈ L−α then again we would have that x is perpendicular to Lβ for all β ∈ Φ ∪ {0},
which would contradict the non-degeneracy of the Killing form.

(iii) By (ii) we may pick y ∈ L−α such that κ(xα, y) = 1 and S = 〈xα, y, tα〉 ⊂ L is then
a Lie subalgebra satisfying the relations

[xα, y] = κ(xα, y)tα = tα, [tα, xα] = α(tα)xα = κ(tα, tα)xα, [tα, y] = −κ(tα, tα)y

If κ(tα, tα) = 0 then S is a solvable subalgebra and therefore adL([S, S]) is nilpotent.
It follows that ad(tα) is nilpotent. However, being in h, ad(tα) is semisimple and so
it must be 0, which is a contradiction.

Setting y′ = λy with λ ∈ K we have

[x, y′] = λtα, [λtα, xα] = λκ(tα, tα)xα, [λtα, y
′] = −λκ(tα, tα)y′
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so if we take

λ =
2

κ(tα, tα)
, hα = λtα =

2

κ(tα, tα)
tα

we see that yα = λy′ together with xα and tα satisfy the structure relations of sl(2).
(iv) By (ii) and Proposition 15.9(i), the subspace

Vα = 〈hα〉 ⊕ ⊕rα∈Φ
r∈K

Lrα ⊂ L

ia a representation of Sα (the copy of sl(2;K) constructed in (iii)). The classification
of sl(2) representations tells us that

rα(hα) = rκ(tα, hα) = 2r
κ(tα, tα)

κ(tα, tα)

is an integer if Lrα 6= 0 and this can only happen if r ∈ K is a half integer. As the
0 eigenspace for the action of hα on Vα is one dimensional, there can only be one
irreducible summand V (n) with n even in Vα. As Lα is the eigenspace of the action
of hα on Vα corresponding to the eigenvalue 2, it must be one dimensional. Moreover
since Vα contains the adjoint representation of Sα (which is isomorphic to V (2)) the
irreducible component with even highest weight is in fact V (2).

The statement in the previous paragraph holds for any root, so whenever α is a
root, 2α can not be a root (otherwise α would have a weight space L2α with weight
4). But then it follows that if α is a root then 1

2
α can not be a root. This means

that the weight space of the eigenvalue 1 in Vα is trivial and hence Vα contains no
irreducible summands with odd highest weights, i.e.

Vα = L−α ⊕Khα ⊕ Lα.
(v) We saw in point (iv) that the spaces Lβ+jα are one dimensional. As Lβ+jα is the

weight space of hα with weight β(hα) + 2j with β(hα) ∈ Z, the classification of
representations of sl(2) tells us that Wα,β is irreducible. If the highest weight of this
irreducible representation is n, then writing r and q for the integers in the statement
we have

β(hα) + 2q = n
β(hα)− 2r = −n ⇒ 2β(hα) = 2r − 2q ⇔ β(hα) = r − q.

(vi) Pick a basis α1, . . . , αn ∈ Φ for h∗ (over K), which is possible by (i). Given β ∈ Φ,
we can write

β = c1α1 + · · ·+ cnαn, with ci ∈ K
Writing (α, β) for κ(tα, tβ) we have

(β, αj)

(αj, αj)
=
∑
i

ci
(αi, αj)

(αj, αj)
.

Since κ is nondegenerate, the matrix
[

(αi,αj)

(αj ,αj)

]
∈ Mn×n(1

2
Z) is invertible over Q. As

the elements
(β,αj)

(αj ,αj)
are in Q, it follows that the coefficients ci must also be rational
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numbers, so the rational vector space spanned by the roots has dimension equal to
dimK h.

Given λ, µ ∈ h∗ we have by definition of the Killing form

(19) (λ, µ) = tr(ad(tλ) ad(tµ)) =
∑
α∈Φ

α(tλ)α(tµ) =
∑
α∈Φ

(α, λ)(α, µ)

In particular, for β in Φ

(β, β) =
∑
α∈Φ

(α, β)2 ⇒ 1

(β, β)
=
∑
α∈Φ

1

4
〈α, β〉2 ∈ Q

It follows that

(α, β) = 2〈α, β〉(β, β) ∈ Q

so the Killing form takes rational values on QΦ. The formula (19) shows that (β, β) >
0 for every β ∈ Φ (as at least one summand in the formula is non-zero by non-
degeneracy of κ and (i)). This completes the proof.

�

It is important to note the geometric meaning of the Cartan integers, which is implicit
in (v). The set of roots

β + jα j = −r,−r + 1, . . . , q

is called the α string through β. The Cartan integer 〈β, α〉 = r − q gives the position of
the root β in this string: β sits r−q

2
“steps” to the right of the center of the string. This

has the following important consequence: for each β ∈ Φ we have

sα(β) = β − 〈β, α〉α ∈ Φ,

as this is the element which is r−q
2

positions to the left of the centre of the string (there are
no holes in the string because it is an sl(2) representation). Equivalently, we can observe
that

sα(β)(hα) = β(hα)− 2β(hα) = −β(hα)

must be a weight in the representation of Sα, because β(hα) is.
Now sα is the reflection on the hyperplane orthogonal to α in h∗:

sα(α) = α− 〈α, α〉α = α− 2α = −α
sα(β) = β if κ(tα, tβ) = 0.

so we see that the roots associated to a Cartan subalgebra form an extremely symmetric
subset of a Euclidean space. These sets can be completely classified using Euclidean
geometry. We will briefly outline this in the next section.
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16. Root systems and Serre’s relations.

We have seen in the previous section that the set of roots of a semisimple Lie algebra
constitute a very symmetric set of Euclidean space. In this section we will briefly summarize
the classification of such objects skipping most proofs.

Definition 16.1. Let (E, (·, ·)) be a Euclidean space. A subset Φ ⊂ E\{0} is called a root
system if it satisfies the following axioms

(R1) Φ is finite and spans E
(R2) If α ∈ Φ and tα ∈ Φ then t = ±1

(R3) If α, β ∈ Φ then 〈β, α〉 def= 2 (β,α)
(α,α)

∈ Z
(R4) Given α, β ∈ Φ, the reflection of β on the plane Pα = α⊥ preserves Φ, i.e.

sα(β) = β − 〈β, α〉α ∈ Φ for all α, β ∈ Φ

The rank of a root system is the dimension of the underlying Euclidean space.

Our main example of interest is of course the root system associated to a semisimple Lie
algebra over an algebraically closed field of characteristic zero. In the previous section we
proved that the set of roots Φ in the Euclidean space (RΦ, (·, ·)) (where the inner product
is the one given in Proposition 15.12(vi)) is a root system.

Definition 16.2. Given a root system Φ ⊂ E, the Weyl group W (Φ) is the subgroup of
the orthogonal group O(E) generated by the reflections sα with α ∈ Φ.

One basic first observation about the Weyl group is that it is finite. Indeed, as Φ spans
E the action of an element of W on E is completely determined by the permutation of the
finite set Φ that it induces. More generally, the automorphism group of the root system

Aut(Φ) = {f ∈ GL(E) : f(Φ) = Φ, 〈f(α), f(β)〉 = 〈α, β〉 for all α, β ∈ Φ}
is finite for the same reason. Note that isomorphisms of root systems are not required to
be isometries of the underlying Euclidean spaces, but only to preserve the pairing 〈·, ·〉. For
instance scalar multiplication by λ ∈ R \ {0} is an isomorphism between the root systems
Φ and λΦ.

Example 16.3. The root system associated to sl(3) is called A2 - see Example 15.11. It is
easy to check (exercise) that the Weyl group can be identified with the group of permutations
of the set of pairs of opposing vertices in the hexagon. Hence W ∼= D3

∼= Σ3. The
automorphism group Aut(A2) is the full group of symmetries of the hexagon D6, so W is
a subgroup of index 2, missing the automorphism x 7→ −x. See Example 16.6 below for a
picture of this root system and also for another example, called G2. In this second example
the ratio between the lengths of the roots corresponding to the outer and inner hexagon is√

3.

Exercise 16.4. Check that if Φ is a root system, then

Φ∨ =

{
2α

(α, α)
: α ∈ Φ

}
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is also a root system, called the dual root system. Note that if there are roots of different
lengths this is not (or at least not obviously) isomorphic to Φ.

The axiom R3 has the following important consequences regarding the relative position
of the roots: Since

〈β, α〉 =
2(β, α)

(α, α)
= 2
‖β‖‖α‖
‖α‖2

cos θ = 2
‖β‖
‖α‖

cos θ

(with θ the angle between α and β) we have

〈β, α〉〈α, β〉 = 4 cos2 θ ∈ Z

so

4 cos2 θ ∈ {0, 1, 2, 3, 4}

Suppose for instance that 4 cos2 θ = 3. Then, cos θ = ±
√

3
2

, i. e., θ = π
6

or 5π
6

. and

〈α, β〉〈β, α〉 = 3

Since 〈α, 〈β〉 and 〈β, α〉 must be integers it follows that

{〈α, β〉, 〈β, α〉} = {−1,−3} or {1, 3}

Assuming for definiteness that ‖β‖ ≥ ‖α‖ we must have 〈β, α〉 = ±3 with the sign accord-
ing to whether θ = π

6
or θ = 5π

6
. In any case we have

2
‖β‖
‖α‖

√
3

2
= 3⇒ ‖β‖ =

√
3‖α‖

Considering all the possibilities leads to the range presented in Table 1.

‖β‖
‖α‖ assuming ‖β‖ ≥ ‖α‖ 〈α, β〉 〈β, α〉 θ

arbitrary 0 0 π
2

1
1
−1

1
−1

π
3

2π
3√

2
1
−1

2
−2

π
4

3π
4√

3
1
−1

3
−3

π
6

5π
6

Table 1. Possible angles and relative lengths of pairs of roots

One consequence of Table 1 is that

(α, β) > 0⇒ β − α ∈ Φ

(α, β) < 0⇒ β + α ∈ Φ
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Indeed the table tells us that either 〈α, β〉 or 〈β, α〉 = ±1. Assuming for instance that
(α, β) > 0 and therefore 〈α, β〉 or 〈β, α〉 equal 1 (the other case is similar) we have

sα(β) = β − 〈β, α〉α = β − α if 〈β, α〉 = 1

sβ(α) = α− 〈α, β〉β = α− β if 〈α, β〉 = 1

Thus, in any case, we have β − α ∈ Φ.
In general, Table 1 implies that the relative positions of the roots in a root system is

severely constrained. For instance with regard to the root system associated to a semisimple
Lie algebra, the fact that the maximum value of 〈β, α〉 is 3 implies that the maximum
dimension of the irreducible sl(2) representations appearing in the adjoint representation
is 4, or equivalently, the maximum dimension of an α string through β is 4. Moreover this
can only occur for roots whose length ratio is

√
3. The previous statements follow easily

from the interpretation of the Cartan integers given at the end of the previous section.

Definition 16.5. A base for the root system Φ is a subset ∆ = (α1, . . . , α`) ⊂ Φ such that:

(i) ∆ is a vector space basis for E;
(ii) Every α ∈ Φ can be written as

∑
i niαi with ni ∈ Z in such a way that the ni are

either all positive or all negative.

It is not immediately clear that bases exist but it is true that every root system has one.
A base allows us to partition Φ into a subset of positive and negative roots

Φ = Φ+
∐

Φ−

(defined in the obvious way) and introduces a partial order ≺ on Φ:

α ≺ β ⇔ β − α ∈ Φ+

The elements of a base ∆ are called simple roots and if α =
∑
niαi, the integer

∑
i ni is

called the height of the root (with respect to the given base).

Example 16.6. Here are the examples A2 and G2 again, with a choice of base ∆ = {α, β}
and the corresponding sets of positive roots indicated.
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The existence of bases follows from an analysis of the geometry of the action of the Weyl
group on the root system.

Definition 16.7. Let Pα = α⊥ be the plane perpendicular to α ∈ Φ. The connected
components of E \

⋃
α∈Φ Pα are called Weyl chambers. The planes Pα are said to be the

walls of the Weyl chambers. An element x ∈ E is regular if it does not belong to a wall
and singular otherwise

When the root system comes from a complex semisimple Lie algebra (and is regarded
as a subset of h via the isomorphism given by the Killing form) then the Euclidean space
RΦ is contained in the Cartan subalgebra h and x ∈ Pα means that α(x) = 0. This in
turn means that x centralizes the copy Sα of sl(2) corresponding to α. Thus the regular
elements are those elements in RΦ ⊂ h which have h as centralizer, whilst singular elements
have bigger centralizers.

Given a regular element x ∈ E, we define

∆+(x) = {α ∈ Φ: (α, x) > 0, α indecomposable.}
(indecomposable means that α can not be written as a nontrivial sum of other such roots).

Proposition 16.8. The assignment

x→ ∆+(x)

induces a one to one correspondence between Weyl chambers and bases of Φ.

Proof. See [Hu, Section 10.1]. �

The Weyl chambers corresponding to the bases indicated are shaded in the picture in
Example 16.6. The walls of the Weyl chambers are the lines perpendicular to the simple
roots indicated.

We will now state the basic properties of the action of the Weyl group on the root system.
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Theorem 16.9. (1) The Weyl group W acts simply transitively (i.e. freely and tran-
sitively) on the Weyl chambers and hence also on the bases.

(2) Every root is part of some base.
(3) Given a base ∆, W is generated by the simple reflections {sαi : αi ∈ ∆}, which are

reflections on the walls of the Weyl chamber corresponding to ∆.
(4) The closure of a Weyl chamber is a fundamental domain for the action of W on

E, i. e., the orbit of each x ∈ E under the action of W intersects the closure of a
Weyl chamber at a single point.

Proof. See [Hu, Section 10.3] �

Definition 16.10. Let ∆ = (α1, . . . , α`) be an ordered base for the root system Φ. The
Cartan matrix of (E,Φ,∆) is the `× ` integer matrix

[〈αi, αj〉]

Example 16.11. Referring back to Example 16.6 we see that the Cartan matrix for A2 is[
2 −1
−1 2

]
while the Cartan matrix for G2, where the angles between two adjacent roots is π

6
and the

ratio between the lengths of long and short roots is
√

3, is[
2 −1
−3 2

]
The point of the Cartan matrix is that it encodes all the information contained in the

root system. This is the content of the following Proposition.

Proposition 16.12. The Cartan matrix determines the root system Φ up to isomorphism.

Proof. Given two root systems Φ and Φ′ we can pick bases ∆ and ∆′ and define a linear
isomorphism f : E → E ′ by extending linearly the assignment αi 7→ α′i. By assumption
this isomorphism will satisfy 〈f(αi), f(αj)〉 = 〈αi, αj〉. The fact that such an isomorphism
will commute with the simple reflections allows us to prove that it will in fact preserve all
the brackets 〈α, β〉, as the simple reflections generate W and any root is the image of a
simple root by some element of W . See [Hu, Proposition 11.1] for the full details. �

The information contained in the Cartan matrix can be pictorially encoded in a graph.

Definition 16.13. The Coxeter graph of a root system Φ is the graph with one vertex for
each simple root and 〈αi, αj〉〈αj, αi〉 ∈ {0, 1, 2, 3} edges between the vertices corresponding
to the roots αi and αj.

The Dynkin diagram of Φ is the Coxeter graph together with an orientation of the edges
connecting roots of different lengths pointing towards the shorter root.

Here are the Coxeter graphs of A2 and G2:
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G2 α1 α2
〈α1, α2〉〈α2, α1〉 = (−1)(−3) = 3

A2 α1 α2
〈α1, α2〉〈α2, α1〉 = (−1)2 = 1

and the Dynkin diagrams of the root systems A1, A1 × A1, A2 and G2:

Clearly the Dynkin diagram contains exactly the same information as the Cartan matrix:
the edges in the diagram give us the set of values {〈αi, αj〉, 〈αi, αj〉} as these numbers must
be negative (by the discussion following Table 1 since αi − αj can’t be a root), while the
orientation of the edges identifies which of the two numbers is bigger and hence where the
numbers appear in the Cartan matrix.

Definition 16.14. A root system is said to be irreducible if it cannot be partitioned into
orthogonal subsets or, equivalently, if a base ∆ cannot be partitioned into two orthogonal
subsets.

Clearly, any root system Φ can be written as a cartesian product of irreducible root
systems. If L = L1 × · · · × Ln is the decomposition of a semisimple Lie algebra into a
cartesian product of simple factors then clearly

Φ(L) = Φ(L1)
∐
· · ·
∐

Φ(Ln)

Moreover the Φ(Li) will be irreducible. Indeed the orthogonality of two sub root systems
precisely translates into the fact that the Lie subalgebras spanned by the corresponding
root spaces commute with each other (the sum of two roots one from each set will never
be a root).

Proposition 16.15. Let (E,Φ) be an irreducible root system with base ∆. Then:

(1) There is a unique maximal root for the partial order ≺.
(2) The W -orbit of every α ∈ Φ spans E.
(3) There are at most 2 roots lengths and each set of roots with the same length form

an orbit of W .
(4) The maximal root is long.

Proof. See [Hu, Section 10.4] �
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In Example 16.6 above, the unique maximal roots are α + β and 2β + 3α as indicated
in the picture.

We can now state the classification of the irreducible root systems. This classification
appears somewhat mysteriously in many areas of Mathematics including the classification
of reflection groups, finite subgroups of Lie groups as well as singularities of algebraic
varieties and smooth maps.

Theorem 16.16. An irreducible root system Φ of rank ` is isomorphic to one of the
following:

The root systems A`, B`, C`, D` can be shown to be the root systems of the classical Lie
algebras, respectively:

• The special linear Lie algebra sl(`+ 1) = {x ∈M`+1(K) : trx = 0}
• The orthogonal Lie algebra so(2` + 1) = {x ∈ M2`+1(K) : x + xT = 0}. This is

isomorphic to the Lie algebra of automorphisms of an arbitrary non-degenerate
symmetric bilinear form on K2`+1

• The symplectic Lie algebra sp(2`) = {x ∈ M2`(K) : xTJ + Jx = 0} where J =[
0 Id
− Id 0

]
. This is the Lie algebra of automorphisms of an arbitrary non-

degenerate skew-symmetric bilinear form on K2`.
• The orthogonal Lie algebra so(2`).

You will check this in the homework in the case of the symplectic algebra.
The remaining five root systems are deemed exceptional and correspond to the excep-

tional Lie algebras also denoted G2, F4, E6, E7, E8. The latter are all in some way related
to the existence of the octonions. For instance G2 is the complexification of the Lie algebra
of derivations of the octonions.

Remark 16.17. As an example of the exceptional symmetry of root spaces, the vertices
of F4 form a 24-cell in R4 (the exceptional regular solid in 4 dimensions). The E8-lattice
spanned by the roots in R8 also has many exceptional properties and was very recently
proved to provide the highest density spherical packing of 8 dimensional space.
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As an example of how to produce the Cartan matrix from the Dynkin diagram, here is
the Cartan matrix for B`: 

2 −1

−1 2
. . .

0
. . . . . .

−1 0
... −1 2 −2
0 · · · 0 −1 2


Our assignment of a root system to a semisimple Lie algebra L depended on the choice

of a Cartan subalgebra. It may be shown that any two Cartan subalgebras of L differ by
an automorphism of L (see [Hu, Sections 15 and 16]). We then have a function assigning a
root system to any semisimple Lie algebra. Given the classification stated above one may
show that this function is surjective by example, i.e. by identifying a specific Lie algebra
corresponding to a root system in the list. This is however not entirely satisfactory.

The previous section together with the discussion of root systems in the present section
strongly suggest that the root system associated to a semisimple Lie algebra determines
the Lie algebra in question. This can in fact be done. One can see that an isomorphism
between root systems arising from semisimple algebras can be promoted to an isomorphism
between the Lie algebras (starting with a linear isomorphism between the Cartan subalge-
bras and extending) - see [Hu, Theorem 14.2]. This then implies that the correspondence
between semisimple Lie algebras and root systems is a bijection, giving the classification
of semisimple Lie algebras.

However, by far the most satisfactory formulation of the fact that the root system com-
pletely encodes a semisimple LIe algebra structure is the following famous Theorem of
Serre.

Theorem 16.18 (Serre). Let Φ be a root system with base (α1, . . . , α`). The Lie algebra
freely generated by generators xi, yi, hi, i = 1, . . . , ` with relations

(S1) [hi, hj] = 0,
(S2) [xi, yi] = hi, [xi, yj] = 0 for i 6= j,
(S3) [hi, xj] = 〈αj, αi〉xj, [hi, yj] = −〈αj, αi〉yj,
(S+

ij ) (adxi)
−〈αj ,αi〉+1(xj) = 0,

(S−ij ) (adxi)
−〈αj ,αi〉+1(yj) = 0

is a semisimple Lie algebra with root system Φ.

We refer to [Hu, Theorem 18.3] for the proof. Note that the above relations are certainly
satisfied by a semisimple Lie algebras: picking a Cartan subalgebra and generators xi of
the root spaces Lαi corresponding to a base {α1, . . . , αn} we can take yi and hi to be the
elements giving the corresponding copy of sl(2). Relations (S1)-(S3) are then clear (note
that [xi, yj] = 0 because αi − αj is not a root). As for the exponents in (S±ij ) they come
from the facts that simple roots sit at the end of an αi string through them and that the
Cartan integers are the lengths of such strings.
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A word about the meaning of the statement. A free Lie algebra on a vector space V
is defined via a universal property like the one characterizing the free associative algebra
T (V ). In fact, the Poincaré-Birkhoff-Witt Theorem allows us to identify the free Lie algebra
on V with the Lie algebra generated by V inside T (V ). Imposing relations on a free Lie
algebra amounts to quotienting the Lie algebra by the ideal generated by the relations.

Defining an object via generators and relations has the problem that we don’t have a
very concrete handle on it, but has the important advantage that we know very well how
to map from it. In particular we get functoriality on the root system. Given a semisimple
Lie algebra with root system Φ, it receives a map from Serre’s universal Lie algebra and it
is not hard to prove that the map must be an isomorphism.

17. The Weyl-Chevalley normal form. The compact form.

In this section we will explain in much more concrete terms how a semisimple Lie algebra
is determined by its root system. This is called the Weyl-Chevalley normal form of a
semisimple Lie algebra and it has many applications. We will use it to prove that every
complex semisimple Lie algebra is the complexification of a compact semsimple Lie algebra.

Lemma 17.1. Let Φ be a root system and α, β ∈ Φ be linearly independent roots. Let

β − rα, . . . , β + qα

be the α-string through β. Then

(i) If α + β ∈ Φ, then

r + 1 = q
(α + β, α + β)

(β, β)

(ii) Given xα ∈ Lα \ {0}, let hα and x−α be such that xα, hα, x−α are the standard gener-
ators of the copy of sl(2) corresponding to α. Then

[x−α, [xα, xβ]] = q(r + 1)xβ

Proof. (i) Such α and β span a rank 2 root system so it suffices to check this is the
case for the three possibilities given by the classification (note also it is quite easy to
classify rank 2 root systems directly - see [Sa, Section 2.7]).

(ii) If α + β 6∈ Φ then both sides of the equality are zero, as q = 0. Otherwise, Since
q⊕

j=−r

Lβ+jα

is the irreducible representation of sl(2) with highest weight q+r, the equality follows
from the formulas in Proposition 14.2.

�

Proposition 17.2. It is possible to choose xα ∈ Lα \ {0} such that

(i) For all α ∈ Φ, we have [xα, x−α] = hα;
(ii) For each α, β ∈ Φ with α + β ∈ Φ, if we write [xα, xβ] = cα,βxα+β, then

c−α,−β = −cα,β.
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For any such choice we have

c2
α,β = q(r + 1)

(α + β, α + β)

β, β
= (r + 1)2 ⇒ cα,β = ±(r + 1)

Proof. The idea is that L has a canonical automorphism called the Cartan involution com-
ing from the root system automorphism α 7→ −α. The existence of such an automorphism
follows from Serre’s Theorem, although for the classical Lie algebras it is easy to produce
such an automorphism: it is just A 7→ −AT .

(i) Letting σ : L → L denote an involution sending each root α to −α, we can pick
x′α ∈ Lα \ {0} and set x′−α = −σ(x′α) ∈ L−α. Then

[x′α, x
′
−α] = κ(x′α, x

′
−α)tα ⇒ [cx′α, cx

′
−α] = c2κ(x′α, x

′
−α)tα = c2κ(x′α, x

′
−α)

(α, α)

2
hα

Thus, up to sign, there is a unique scaling of x′α which will satisfy (i).
(ii) By definition we have

[x−α, x−β] = c−α,−βx−α−β
On the other hand, with σ the involution discussed above, we have

[x−α, x−β] = [σ(xα), σ(xβ)] = σ([xα, xβ]) = σ(cα,βxα+β) = −cα,βx−α−β
and the desired result follows.

As for the value of the structure constants, we have

[[xα, xβ], [x−α, x−β]] = −[cα,βxα+β, cα,βx−α−β] = −c2
α,βhα+β

On the other hand, writing

β − rα, . . . , β + qα α− r′β, . . . α + q′β

for the α string through β and the β string through α respectively, we have

[[xα, xβ], [x−α, x−β]] = [xα, [xβ, [x−α, x−β]]︸ ︷︷ ︸
−q′(r′+1)x−α

]− [xβ, [xα, [x−α, x−β]]︸ ︷︷ ︸
q(r+1)x−β

] = q′(r′+1)hα− q(r+1)hβ

Putting everything together we have

−c2
α,β

(
2(tα + tβ)

(α + β, α + β)

)
= −2q′(r′ + 1)

(α, α)
tα −

2q(r + 1)

(β, β)
tβ

and as α and β are linearly independent this implies

c2
α,β

(α + β, α + β)
=
q′(r′ + 1)

(α, α)
=
q(r + 1)

(β, β)

Hence

c2
α,β = q(r + 1)

(α + β, α + β)

(β, β)
= q(r + 1)

(r + 1)

q
= (r + 1)2

as required. �

Definition 17.3. Let L be a semisimple Lie algebra. A basis for L satisfying the require-
ments of Proposition 17.2 is called a Weyl-Chevalley basis for L.
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Theorem 17.4. Let L be a semisimple Lie algebra over an algebraically closed field of
characteristic zero. Let ∆ = {α1, . . . , α`} be a base for the root system Φ determined by a
Cartan subalgebra of L, and let hi = hαi. Then, with respect to a Weyl-Chevalley basis,
the Lie bracket on L satisfies the following relations:

[hi, hj] = 0

[hi, xα] = 〈α, αi〉xα
[xα, x−α] = hα is a Z− linear combination of the hi

[xα, xβ] =

{
0 if α + β 6∈ Φ i.e., if q = 0

±(r + 1)xα+β if α + β ∈ Φ

In particular, the structure constants of L may be chosen to be integers.

Proof. The only think to check is that hα is a linear combination of the hi. This follows
from the fact that {hα : α ∈ Φ} is also a root system (the dual root system - see Exercise
16.4) and the fact that the hi form a base for this dual root system (exercise). �

The previous Theorem has many important consequences. For instance it allows for
the classification of the real forms of a complex semisimple Lie algebra L (meaning real
Lie algebras M such that M ⊗ C ∼= L). We will content ourselves with proving that any
complex semisimple Lie algebra is the complexification of a compact Lie algebra. See [Sa,
Section 2.10] for more information along these lines.

Corollary 17.5. Let L be a semisimple Lie algebra over C. Then there exists a compact
semisimple Lie algebra (i.e. semisimple with negative definite Killing form) U such that
L = U ⊗R C.

Proof. We will just construct U explicitly from a Weyl-Chevalley basis for L. Let

t = R{ih1, . . . , ihn}
and set

(20) uα =
i

2
(xα + x−α), vα =

1

2
(xα − x−α)

for eachα ∈ Φ+. One easily checks that the vector space U spanned by t and the uα, vα for
all α ∈ Φ+ is a real Lie subalgebra of L. It is clear from the definition that U ⊗R C ∼= L.

Given x = ih+
∑

α∈Φ+ tαuα + sαvα with tα, sα ∈ R we have

κ(x, x) = i2‖h‖2 +
∑
α∈Φ+

t2αk(uα, uα) + 2tαsαk(uα, vα) + s2
αk(vα, vα)

Since κ(xα, xα) = 0, κ(xα, x−α) = 4
(α,α)

and κ(xα, x±β) = 0 if β 6= α we see that

κ(x, x) = negative + 0 + negative,

and hence κ is negative definite, which shows that U is compact. �
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Remark 17.6. The way to remember the formulas (20) is to consider the basic example
when L = sl(n,C) and U = su(n) is the subspace of skew-hermitian matrices with trace
0. Then the standard basis for sl(n) is a Weyl-Chevalley basis: setting hi = ei,i − ei+1,i+1

for i = 1, . . . , n − 1 we have the Cartan subalgebra h = C{h1, . . . , hn} and the Cartan
decomposition

sl(n) = h⊕
⊕
i 6=j

Ceij

where the generators xα = eij for i < j, and x−α = eij for i > j. Then

uα =
i

2
(eij + eji), vα =

1

2
(eij − eji) for i < j

form the standard basis for the skew Hermitian matrices.

18. Representations of semisimple Lie algebras

In this short section we will briefly describe the classification of the irreducible repre-
sentations of a semisimple Lie algebra L over an algebraically closed field of characteristic
zero.

Let V be a representation of L and h a Cartan subalgebra and assume fixed a base
∆ = {α1, . . . , α`} for the root system Φ determined by h. Recall that h acts on V via
semisimple elements, so we can decompose V as a direct sum of weight spaces

V =
⊕
λ∈h∗

Vλ, with Vλ = {v ∈ V : h · v = λ(h)v}

Given v ∈ Vλ and xα ∈ Lα we have for every h ∈ h

h(xαv) = [h, xα]v + xαhv = α(h)xαv + xα(λ(h)v)

= (α(h) + λ(h))xαv = (α + λ)(h)xαv

Hence
LαVλ ⊂ Vλ+α

For each α ∈ Φ, Lα ⊕ L−α generates a copy of sl(2). As λ(hα) is a weight of V as a
representation of this copy of sl(2), it is an integer:

λ(hα) = λ

(
2tα

(tα, tα)

)
= 2

(λ, α)

(α, α)
= 〈λ, α〉 ∈ Z

Definition 18.1. The weight lattice is the set

Λ = {λ ∈ h∗ : 〈λ, α〉 ∈ Z for all α ∈ Φ} ⊂ h∗

This is indeed a lattice in h∗, namely a free abelian group of rank dim h spanning h∗, as
the condition that defines Λ can alternatively be stated as λ(hαi) ∈ Z for each element αi
in a base for Φ. Now the hαi form a base for the dual root system Φ∨ (see homework), and
hence a basis for h. It follows that

Λ = Z〈λ1, . . . , λ`〉
with {λi} the dual basis to {hαi}.
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Note that the root lattice Z ·Φ is contained in Λ. If we write αi =
∑
nijλj with nij ∈ Z

then
〈αi, αk〉 =

∑
nij〈λj, αk〉 =

∑
nijδjk = nik

so the Cartan matrix expresses the base ∆ for Φ in terms of the basis {λ1, . . . , λ`} of Λ.
It follows that the order of the finite abelian group Λ/(Z · Φ) is the determinant of the
Cartan matrix.

Consider the following subalgebra of L (called a Borel subalgebra):

B = h⊕
⊕
α∈Φ+

Lα

This is a solvable subalgebra of L. By Lie’s theorem, given a finite dimensional represen-
tation V of L we can pick a basis for V such that B acts via upper triangular matrices.
Then

[B,B] =
⊕
α∈Φ+

Lα

will act via strictly upper triangular matrices. The first basis element will be an eigenvector
v ∈ V for all of B for which

[B,B] · v =

(⊕
α∈Φ+

Lα

)
· v = 0

This is called a highest weight vector of V . The weight of such a vector is the element
λ ∈ h∗ such that

h · v = λ(h) · v for all h ∈ h

By the classification of sl(2)-modules we must have λ(hα) ≥ 0 for every α ∈ Φ+, or
equivalently

λ(hαi) = 〈λ, αi〉 ≥ 0 for i = 1, . . . , `

Definition 18.2. The set

Λ+ = {λ ∈ Λ: 〈λ, α〉 ≥ 0 for all α ∈ Φ+}
is called the set of dominant weights.

Now if V is an irreducible representation, then it will be generated by such a highest
weight vector v (as L · v will be a nontrivial subrepresentation). The following basic
Theorem, which generalizes the classification of sl(2)-modules states that the weight of
such a highest weight vector is an arbitrary dominant weight which completely determines
the representation.

Theorem 18.3. Let L be a semisimple Lie algebra over an algebraically closed field of
characteristic zero. Fix a Cartan subalgebra h ⊂ L and a base {α1, . . . , α`} for the root
system Φ determined by h. Then there is a one-to-one correspondence

{isomorphism classes of finite dimensional irreducible representations of L}
∼=−→ Λ+

which sends a representation to the weight of its unique (up to scalar) highest weight vector.
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Proof. We have already explained how an irreducible representation V must contain a
highest weight vector v. It is not hard to show using the PBW theorem that all weights
appearing in such a representation must be lower than the highest weight (with respect to
the partial order determined by the choice of base). Indeed, the PBW Theorem allows us
to decompose the university enveloping algebra U(L) as a vector space as

U(L) = U(N−)⊗K U(B)

where N− = ⊕α∈Φ−Lα. We then have

V = U(L)v = U(N−)v

and the monomials on the standard basis elements of N− will produce from v vectors of
lower weight. It follows that the highest weight vector in an irreducible representation is
unique up to scalar.

As for the construction of a representation with a given highest weight λ ∈ Λ+, we can
start by constructing an infinite dimensional representation (called a Verma module)

Vλ = U(L)⊗U(B) Kv

where U(B) acts on the one dimensional space KV via the weight λ. This will have highest
weight λ. The idea is that Vλ is the “largest representation with highest weight λ”. One can
then show that this representation has a unique irreducible quotient with highest weight
λ which is the required irreducible representation corresponding to λ. See [Hu, Sections
20,21] for the complete details. �

Example 18.4. Referring back to Example 15.11, i.e. sl(3), we see that if we pick as a
base

α1 = (1
2
,− 1

2
√

3
), α2 = (0, 1√

3
)

Then the dual root system has base

hα1 = (3,−
√

3), hα2 = (0, 2
√

3)

and hence the dominant weights are

λ1 = (1
3
, 0), λ2 = (1

6
, 1

2
√

3
)

For instance the highest weight of the adjoint representation (which is α1 + α2 in terms of
the base) is equal to λ1 + λ2 in terms of the fundamental dominant weights (see the figure
below).
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19. Characters of compact Lie groups

Let G be a compact Lie group. We have seen that every representation of G is a direct
sum of irreducible representations. In this section we will prove very basic properties of
the representations of G in terms of some associated complex valued functions on G called
characters. Even though the proofs are very easy (they basically come down to repeated
applications of Schur’s Lemma), the results are very striking and they are already very
interesting and useful in the case when G is a finite group (in which case the integrals
appearing below are finite sums).

For the sake of simplicity we will discuss only complex representations of G, although real
and quaternionic representations are also of interest (they can be understood as complex
representations with added structure). See [BtD, Section II.6 ] for more on this.

As we have seen in the case of Lie algebra representations, linear algebra gives us a
way of constructing new representations from old. If V is a representation of G, the dual
representation is the vector space V ∗ with the G-action given by

(g · ϕ)(v) = ϕ(g−1 · v) for g ∈ G,ϕ ∈ V ∗, v ∈ V

Given G representations V and W , their tensor product is the vector space V ⊗C W with
the action

g · (v ⊗ w) = (g · v)⊗ (g · w)

The space Hom(V,W ) = V ∗⊗W of linear maps from V to W also has a natural G-action
(which can be derived from the two described above). It is given by

(g · f)(v) = g · f(g−1v) for g ∈ G, f ∈ Hom(V,W ), v ∈ V

Note that the fixed point space of the G-action on Hom(V,W ) is the set

HomG(V,W ) = {f ∈ Hom(V,W ) : f(gv) = gf(v)}

of G-equivariant maps from V to W , i.e. the set of maps of representations from V to W .
If V is a complex vector space, the conjugate vector space V is the complex vector space

which has the same underlying set and vector sum as V but where the scalar multiplication
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is defined by
λ · v = λv

(where on the right hand side, juxtaposition denotes scalar multiplication in V ).
Recall that a (Hermitian) inner product on a complex vector space is a map

〈·, ·〉 : V × V → C
which is complex linear in the second variable and conjugate linear in the first variable. If
G×V → V is a representation then the exact same function will define a G-representation
V (which need not be isomorphic to V ; in concrete terms, if we pick a basis for V , the
matrix ρ(g) representing the action of g on V will be the conjugate of the matrix ρ(g)
representing the action of g on V ).

A Hermitian inner product determines a vector space isomorphism V → V ∗ via

v 7→ 〈v, ·〉
and clearly a G-invariant Hermitian inner product identifies the dual and conjugate repre-
sentations.

Proposition 19.1. Let W be a finite dimensional (complex) representation of (the compact

Lie group) G. Let Ĝ denote the set of isomorphism classes of irreducible representations

of G and Vα be a representative of α ∈ Ĝ. Then the evaluation map

Ψ:
⊕
α∈Ĝ

HomG(Vα,W )⊗C Vα → W

defined by Ψ(f⊗v) = f(v) is an isomorphism of G-representations (HomG(Vα,W ) is given
the trivial G-action).

Proof. Since Ψ(g · (f ⊗ v)) = Ψ(f ⊗ (gv)) = f(gv) = gf(v) we see that Ψ is a map of
representations. Schur’s Lemma 13.7 implies that

HomG(Vα, Vβ) =

{
C if Vα ∼= Vβ
0 otherwise

therefore the statement holds when W is irreducible. Since Ψ clearly preserves direct sums
and every representation W is a direct sum of irreducible representations, we see that Ψ
is an isomorphism for any W . �

We now come to a central definition in the study of representations.

Definition 19.2. Let ρ : G→ GL(V ) be a representation, the character of ρ is the function
χρ : G→ C defined by

χρ(g) = tr(ρ(g))

A representative function for ρ is a function f : G→ C of the form

f(g) = ϕ(g · v) for some v ∈ V, ϕ ∈ V ∗

A representative function of G is a representative function for some representation ρ of G.
The set of representative functions is denoted T ⊂ C∞(G;C).
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Concretely, if we pick a basis {v1, . . . , vn} for V , then ρ(g) is represented by a matrix
[aij(g)] and a representative function for ρ will be some complex linear combination of the
matrix entries g → aij(g). We note that the representative functions T form a subalgebra
of the algebra C∞(G;C) of complex valued smooth functions, which is moreover closed
under complex conjugation.

Example 19.3. Consider the Lie group G = S1. A representation ρ : G → GL(V ) is
determined by a Lie algebra map dρ : g→ gl(V ) and since g ∼= R, this amounts to picking
an arbitrary element A ∈ End(V ) such that dρ(1) = A.

Since exp: R→ S1 sends 2π to 1, A is not completely arbitrary, it must satisfy exp(2πA) =
IdV . Conversely given such a matrix,

ρ(eiθ) = exp(θA)

will define an S1 representation.
If we pick an orthonormal basis with respect to some S1-invariant inner product on V ,

the matrices ρ(g) will be unitary and hence A will be skew-Hermitian. A skew-hermitian
matrices is diagonalizable with purely imaginary eigenvalues, so the representation of g
(and hence that of G breaks up as a direct sum of one dimensional representation.

If iy is an eigenvalue of A, the condition that exp(2πA) = id is that the real number y
be an integer. We conclude that the irreducible representations are all 1-dimensional and
are parametrized by the integers. The representation corresponding to the integer n ∈ Z is
defined by

ρ(eiθ)z = einθz with z ∈ C
It follows that a representative function on S1 takes the form∑

α

aαe
inαθ, aα ∈ C, nα ∈ Z

i. e., T ⊂ C∞(S1,C) is the subalgebra of trigonometric polynomials. Note that in this
case, since the irreducible representations are one dimensional, they may be identified with
their characters.

Recall that if X is a measure space, L2(X) denotes the space of square integrable complex
valued function on X, and that we always give a compact Lie group a (bi)-invariant measure
for which the volume of G is 1.

Theorem 19.4. Let V,W be non isomorphic irreducible representations of the compact
Lie group G. If f, h : G → C are representative functions for V and W respectively, then
f ⊥ h in L2(G). In particular, the characters of V and W are orthogonal in L2(G).

Proof. Pick invariant inner products on V and W . Then, representative functions of V
and W take the form

f(g) = 〈v1, g · v2〉, h(g) = 〈w1, g · w2〉, for some v1, v2 ∈ V,w1, w2 ∈ W
thus we need to show that

(21)

ˆ
G

〈v1, g · v2〉〈w1, g · w2〉dg = 0.
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For each fixed v2, w2, the integral above defines a bilinear map V ×W → C

(v1, w1) 7→
ˆ
G

〈v1, g · v2〉〈w1, g · w2〉dg

The invariance of the inner product and of the integral implies that this map is G-invariant
(check). It therefore gives an invariant element in (V ⊗ W )∗ = (Hom(W,V ))∗, i.e. an
element in HomG(W,V )∗. However as V,W are not isomorphic and irreducible, Schur’s
lemma implies that HomG(W,V ) = 0 and hence the equality (21) holds for all v1, v2, w1, w2

as required. �

Proposition 19.5 (Elementary properties of characters of compact Lie groups). (i) If V ∼=
W , then χV = χW .

(ii) χ(ghg−1) = χ(h) for all g, h ∈ G. Thus characters are class functions meaning they
are constant in each conjugacy class in G.

(iii) χV⊕W = χV + χW .
(iv) χV⊗W = χV χW .

(v) χV ∗(g) = χV (g) = χV (g) = χV (g−1) for all g ∈ G.
(vi) χv(e) = dim(V ).

(vii)
´
G
χV (g)dg = dim(V G).

(viii) 〈χV , χW 〉 = dim HomG(V,W ).

Proof. (i)− (vi) are left as exercises. For the last equality in (v) note that we may assume
that the representation is unitary and hence ρ(g−1) = ρ(g)−1 = ρ(g)∗, where ∗ denotes the
adjoin with respect to the invariant inner product (in terms of matrices it is the conjugate
transpose). For (vii) let’s check that the map p : V → V G defined by

p(v) =

ˆ
G

gvdg

is a projection onto V G: If v ∈ V G then p(v) =
´
G
vdg = v, and left invariance of the

integral implies that the image of p is contained in V G. Now the trace of a projection is
the dimension of its range.

As for (viii), we have

〈χV , χW 〉 =

ˆ
G

χV (g)χW (g)dg =

ˆ
G

χV ∗⊗W (g)dg =

ˆ
G

χHom(V,W )dg

By (vii) this is equal to dim(Hom(V,W ))G = HomG(V,W ). �

We can now easily see that a representation is completely determined by its character
(thus justifying the name).

Corollary 19.6. Let G be a compact Lie group.

(i) Two representations V,W are isomorphic if and only if χV = χW .
(ii) If V =

⊕
V
nj
j with Vj irreducible, then

‖χV ‖2 =
∑
j

n2
j .
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Therefore V is irreducible if and only if ‖χV ‖L2(G) = 1.

Proof. By Proposition 19.5 and Schur’s Lemma 13.7 we have for Vi, Vj irreducible

〈χVi , χVj〉 =

{
1 if Vi ∼= Vj
0 if Vi 6∼= Vj

Writing V =
∑
V
nj
j we have (by Pythagoras’ theorem)

‖χV ‖ =
∑
j

‖njχVj‖2 =
∑
j

n2
j

As nj = 〈χV , χVj〉 is determined by the character of V we see that a representation is
determined by its character. �

Here is an interesting and useful Corollary of the previous result.

Proposition 19.7. Let G,H be compact Lie groups. The irreducible representations of
the cartesian product G×H are of the form V ⊗W with V an irreducible representation
of G and W an irreducible representation of H.

Proof. Let V,W be irreducible representations of G and H respectively. Since (g, h) · (v ⊗
w) = (gv)⊗ (hw) we have χV⊗W (g, h) = χV (g)χW (h) and thereforeˆ
G×H
|χV⊗W (g, h)|2dgdh =

ˆ
G

ˆ
H

|χV (g)|2|χW (h)|2dgdh = (

ˆ
G

|χV (g)|2dg)(

ˆ
H

|χW (h)|2dh) = 1

where we have used Fubini’s Theorem and Corollary 19.6(ii) which then in turn implies
that V ⊗W is an irreducible representation of G×H.

Now, let U be an arbitrary representation of G × H. Since U is a representation of G
we have an isomorphism of G-representations given by evaluation (see Proposition 19.1)⊕

α∈Ĝ

HomG(Vα, U)⊗ Vα
∼=−→ U

Since the action of H commutes with the G, HomG(Vi, U) are naturally representations of
H and the previous map is actually an isomorphism of representations of G×H (check).
Decomposing each of the summands as a representation of H using Proposition 19.1 again
we obtain an isomorphism of H-representations⊕

α∈Ĝ,β∈Ĥ

HomH(Wβ,HomG(Vα, U))⊗ Vα)⊗Wβ

∼=−→ U

(where the action of G×H on the left factors in the tensor product is trivial). But again,
the fact that G and H commute means that the map above is actually (G×H)-equivariant.
This decomposes any representation of G × H as a direct sum of Vα ⊗Wβ proving that
these are all the irreducible representations of G×H.

Note that

HomH(Wβ,HomG(Vα, U)) = HomG×H(Vα ⊗Wβ, U)
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so the expression obtained above for the decomposition of U is none other than the formula
of Proposition 19.1 applied to the Lie group G×H. �

Example 19.8. Suppose G is a compact abelian group. Then G = (S1)` × Z/n1 × Z/nk
for some non-negative integers `, k and positive integers ni ≥ 2.

A representation of a finite cyclic group Z/n is the same as a complex matrix A, which we
may assume unitary, such that An = id. The eigenvalues of such a matrix are (arbitrary) n-
th roots of unity so we see that the irreducible representations of Z/n are one dimensional
and classified by j ∈ {0, 1, . . . , n} with the irreducible representation corresponding to j
given by

[k] · z = e
2πjki
n z

By Proposition 19.7 and Example 19.3, irreducible representations of G are all one dimen-
sional and are classified by tuples

(k1, . . . , k`, j1, . . . , jk) with ki ∈ Z and ji ∈ {0, . . . , ni − 1}

An element

(
eiθ1 , . . . , eiθ` , e

2πim1
n1 , . . . , e

2πimk
nk

)
will act by

z 7→ e
i
(
k1θ1+...+k`θ`+

2πm1j1
n1

+...+
2πmkjk
nk

)
z.

20. The Peter-Weyl Theorem

We’ll conclude our discussion of the basic representation theory of compact Lie groups
with the following fundamental result.

Theorem 20.1 (Peter-Weyl). Let G be a compact Lie group. Then the algebra T of
representative functions of G is dense in C0(G;C) with respect to the supremum norm,
and hence also in L2(G) with its usual topology.

It is not immediately apparent from the statement why this Theorem is so important.
This is made more clear by the following equivalent formulation.

Theorem 20.2. Every compact Lie group has a faithful representation.

Proof. We will prove that the above statement is equivalent to Theorem 20.1. Suppose
ρ : G → GL(V ) is a faithful representation of G. Then, given distinct elements g, g′ ∈ G
we have ρ(g) 6= ρ(g′) and hence aij(g) 6= aij(g

′) for some i, j in some matrix representation
[aij(g)] of ρ(g). This shows that the algebra of representative functions T ⊂ C0(G;C)
separates points. Since it is also closed under conjugation, the Stone-Weierstrass Theorem9

implies that T is dense in C0(G;C).
Conversely, suppose that T is dense in C0(G;C). Then given g ∈ G \ {e} there exists a

representative function which takes different values at e and g and hence there is ρ : G→
GL(V ) such that ρ(g) 6= ρ(e). Let G1 = ker(ρ). Then G1 ( G is a closed subgroup. Let

9This Theorem is a generalisation of Weierstrass’ Theorem to the effect that polynomials are uniformly
dense in functions on an interval. The proof is very similar and can easily be done as an exercise. Alter-
natively, look it up in any book on Real or Functional Analysis.
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g1 ∈ G1 \ {e} and pick ρ1 : G → GL(V1) with ρ1(g1) 6= ρ1(e). Let G2 = ker(ρ ⊕ ρ1 : G →
GL(V ⊕ V1)). Then G2 ( G1. Continuing in this way we can obtain a strictly decreasing
sequence of compact Lie groups as long as the representation we have constructed has a
nontrivial kernel.

However, if K ( G is a strict inclusion of compact Lie groups, then either K has
fewer components or smaller dimension than G and hence any strictly decreasing sequence
of compact Lie groups must terminate. It follows that the procedure of the previous
paragraph will end with a faithful representation after a finite number of steps. �

Here are some other Corollaries of Theorem 20.1 for which we regrettably do not have
time.

Corollary 20.3. Let G be a compact Lie group.

(i) The characters of G are uniformly dense in the space of class functions on G. In
particular, when G is finite, the number of irreducible representations of G equals the
number of conjugacy classes in G.

(ii) If V is any faithful representation of G then any irreducible representation of G is a
summand in some tensor power V ⊗k ⊗ (V ∗)⊗l.

(iii) If H is a closed subgroup of G, then there is a G-representation V and v ∈ V such
that the isotropy subgroup Gv equals H.

Proof. For (ii) we just need to observe that the span of representative functions of the
tensor powers will form a subalgebra of C0(G;C) closed under conjugation and separating
points. Hence such functions will be dense in L2(G), which can only be if all irreducible
representations appear as direct summands. See [BtD, Section III.4] for more details and
proofs of the other two statements. �

Note that point (ii) in the previous corollary allows for pretty concrete descriptions of
irreducible representations of compact Lie groups.

In order to prove the Peter-Weyl Theorem we will study the representation of G on
the complex valued functions on G. This can take many forms: we can consider for
instance the action on the space C0(G;C) of continuous functions or on the space L2(G)
of square integrable complex valued functions. This representation is called the regular
representation. It is an infinite dimensional complex representation unless G is finite.

In fact, there are two possible ways of representing G on complex valued functions on
G. We can define

(22) (g · f)(h) = f(g−1 · h) or (g · f)(h) = f(h · g).

Luckily the two representations above are isomorphic: if i : G → G is the inverse map
defined by i(g) = g−1 one easily checks that

f 7→ fi

is an isomorphism between the two possible definitions of the regular representation (in
any of its forms). However, it is important to notice that the two actions (22) commute
with each other so that the regular representation is actually a representation of G×G.
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Proposition 20.4 (Characterization of representative functions on G). Let G be a compact
Lie group. A function f ∈ C0(G;C) is a representative function of G if and only if the
vector space spanned by the action of G on f

C{g · f : g ∈ G} ⊂ C0(G;C)

is finite dimensional.

Proof. Given f ∈ T let V be a representation of G and v ∈ V, ϕ ∈ V ∗ be such that f(g) =
ϕ(g · v). If {ϕ1, . . . , ϕn} is a basis for V ∗, then there are complex numbers ci ∈ C such that
ϕ = c1ϕ1 + . . .+cnϕn. If h ∈ G we have (h ·ϕi)(g ·v) =

∑n
j=1 aij(h)ϕj(gv) where aij denote

the matrix coefficients of the representation V ∗ with respect to the basis {ϕ1, . . . , ϕn}. It
follows that {h · f : h ∈ G} is contained in the linear span of the representative functions
{g 7→ ϕi(gv) : i = 1, . . . , n} which is a finite dimensional vector space.

Conversely, suppose that f ∈ C0(G;C) is such that C{g·f : g ∈ G} has basis {f1, . . . , fn}.
Taking g = e, we see that f = c1f1 + . . . + cnfn for some scalars ci ∈ C. The vector
space spanned by the action of G on f is clearly closed under the G action and hence
a continuous10 representation of G. Any continuous homomorphism between Lie groups
is smooth (this is an exercise with the exponential map - see for instance [Wa, Theorem
3.39]) so this is in fact a smooth representation. Writing

g · fi =
n∑
j=1

aij(g)fj

we see that

fi(g) = (g−1 · f)(e) =
n∑
j=1

aij(g
−1)fj(e)

The functions g 7→ aij(g
−1) are again representative functions (use for instance the formula

for the inverse of a matrix) therefore

f(g) =
n∑

i,j=1

(cifj(e))aij(g
−1)

is also a representative function. �

Proof of Theorem 20.1. Let δ : G → [0,∞[ be a smooth function supported on a small
neighbourhood of e such that

δ(g) = δ(g−1) and

ˆ
G

δ(g)dg = 1.

Consider the operators

K : L2(G)→ C0(G;C)

10This is a slightly subtle point which we leave as an exercise. Note that the action is continuous on
C0(G;C) and the subspace has the induced topology.
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which takes the convolution with δ (we omit δ from the notation for K). Thus

(23) K(f) = δ ∗ f where (δ ∗ f)(g) =

ˆ
G

δ(h)f(gh)dh =

ˆ
G

δ(kg−1)f(k)dk

Note that the second expression for δ ∗ f in (23) shows (Leibniz’s rule) that K(f) is a
smooth function on G.

(1) The operators K are continuous linear operators: We have

‖δ ∗ f‖∞ = max
g∈G
|δ ∗ f(g)|

and

|(δ ∗ f)(g)| = |〈δ(·g−1), f〉L2|
≤ ‖δ(·g−1)‖L2‖f‖L2 (by Cauchy-Schwarz)

= ‖δ‖L2‖f‖L2

where in the last equality we have used the invariance of the integral under right
translation. We conclude that ‖δ ∗ f‖∞ ≤ ‖δ‖L2‖f‖L2 .

(2) The union of the images of the operators K is dense in C0(G;C): Since G is
compact, a continuous function f is uniformly continuous, i. e., for all ε > 0 there
exists a > 0 such that d(g, h) < a⇒ |f(g)− f(h)| < ε (where we use a bi-invariant
distance function d onG inducing the topology, for instance the distance determined
by a bi-invariant Riemannian metric on G). Now

|(δ ∗ f)(g)− f(g)| =
∣∣∣∣ˆ
G

δ(h)(f(gh)− f(g))dh

∣∣∣∣ ≤ ˆ
supp δ

δ(h)|f(gh)− f(g)|dh

As long as diam(supp(δ)) < a, we will have d(gh, g) < a when δ(h) 6= 0 and hence

‖K(f)− f‖∞ = max
g∈G
|(δ ∗ f)(g)− f(g)| ≤

ˆ
supp δ

δ(h)εdg = ε

(3) The operators K are compact: we have to see that if B ⊂ L2(G) is bounded then

K(B) is compact. Since K is continuous, K(B) is certainly uniformly bounded. By
Ascoli’s theorem it suffices to show that the set {K(f) : f ∈ B} is equicontinuous.
We have

|Kf(g)−Kf(g′)| =
∣∣∣∣ˆ
G

(δ(kg−1)− δ(kg′−1
))f(k)dk

∣∣∣∣ .
Given ε > 0, since δ is uniformly continuous, there exists a > 0 such that d(g, g′) <
a⇒ |δ(kg−1)−δ(kg′−1)| < ε. Hence, for all f ∈ B and all g, g′ ∈ G with d(g, g′) < a

|K(f)(g)−K(f)(g′)| =
∣∣∣∣ˆ
G

(δ(kg−1)− δ(kg′−1
))f(k)dk

∣∣∣∣
≤ ‖δ(·g−1)− δ(·g′−1

)‖L2‖f‖L2

≤ ε‖f‖L2 ≤ εM
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with M an upper bound for the L2 norm on B. We conclude that K(B) is equicon-
tinuous.

(4) K : L2(G) → L2(G) is a compact self-adjoint operator: it is compact because K :
L2(G)→ C0(G;C) is compact and the inclusion C0(G;C) ↪→ L2(G) is continuous.
Recall that being selfadjoint means 〈Kf1, f2〉 = 〈f1, Kf2〉 for all f1, f2 ∈ L2(G).
Let us check this identity:

〈Kf1, f2〉 =

ˆ
G

(ˆ
G

δ(kg−1)f1(k)dk

)
f2(g)dg

=

ˆ
G×G

δ(kg−1)f1(k)f2(g)dkdg

=

ˆ
G×G

δ(gk−1)f1(k)f2(g)dkdg

= 〈f1, Kf2〉,

where we have used that δ(x) = δ(x−1). By the spectral theorem for compact
self-adjoint operators we have that

K =
∞∑
n=0

λnPn

where Pn : L2(G)→ L2(G) are orthogonal projections onto the eigenspaces of K

En = {f ∈ L2(G) : K(f) = λnfn}

Moreover the eigenvalues λn are real and limn→∞ λn = 0. Setting λ0 = 0 (so that
E0 = kerK), the spaces En are all finite dimensional with the possible exception
of E0. Moreover the eigenspaces En are all pairwise orthogonal.

(5) K is equivariant, i. e., K(g · f) = g ·K(f). This follows immediately the definition
of convolution and the left invariance of the integral. It follows that the eigenspaces
En of K are representations of G. For n > 0, we have that En ⊂ ImK ⊂ C0(G;C)
are finite dimensional representations and hence by Proposition 20.4 are contained
in T .

We can now finish the proof. We see that

K(f) =
∞∑
n=0

λnPnf =
∞∑
n=1

λnPnf = lim
n→∞

N∑
n=1

λnPnf

is an L2 limit of functions in T . But the elements
∑N

n=1 λnPnf belong to the compact set

K(B‖f‖L2 (0)) ⊂ C0(G;C)

so
∑N

n=1 λnPnf has a convergent subsequence in C0. Since its L2 limit is Kf the C0

limit must also be Kf . We conclude that T is uniformly dense in the image of K, which
completes the proof. �
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The example when G = S1 makes it clear that there is a relation between the Peter-Weyl
Theorem and classical Fourier analysis. Indeed, in that case, the Fourier series gives a way
of expressing an arbitrary square integrable function on L2 as a limit of representative
functions, a.k.a trigonometric polynomials. We will now explain how to generalise this to
Fourier decomposition on any compact Lie group, following the discussion in Terry Tao’s
blog.

Recall that Ĝ denotes the set of isomorphism classes of irreducible unitary represen-
tations of G. This set is called the unitary dual of G. We have included the adjective
unitary because this is the standard term, but we note that for a compact Lie group, any
representation admits an invariant inner product and is therefore equivalent to a unitary

representation. For each ξ ∈ Ĝ, let Vξ be a fixed representative of ξ and consider the map

Hom(Vξ, Vξ) = (Vξ)
∗ ⊗ Vξ

iξ−→ L2(G)

determined by

ϕ⊗ v 7→ (g 7→ ϕ(gv))

Both the domain and image of iξ have a G×G action and the map iξ is easily checked to
be G×G-equivariant:

iξ((gϕ)⊗ (g′v))(h) = (gϕ)(hg′v) = ϕ(g−1hg′v) = (g, g′) · ϕ(·v)

On V ∗ξ ⊗ Vξ = Hom(Vξ, Vξ) there is a natural G×G invariant inner product

〈S, T 〉 = tr(S∗T )

where S∗ denotes the adjoint of an endomorphism S with respect to the given inner product.
With respect to this inner product and the L2 inner product on the range, the maps iξ are
almost isometries:

Proposition 20.5. Given ξ ∈ Ĝ, T, S ∈ End(Vξ) we have

〈iξ(T ), iξ(S)〉L2(G) =
1

dim(Vξ)
〈f, g〉End(Vξ)

Proof. It is enough to show the identity for T, S of the form ϕ⊗v. Using the inner product
on Vξ we will write a functional ϕ as 〈a, ·〉 with a ∈ Vξ and write a∗b for the endomorphism
v 7→ 〈a, v〉b. Then one easily checks that (a∗b)∗ = b∗a and hence

〈a∗b, c∗d〉End(Vξ) = tr(b∗a ◦ c∗d) = tr(〈b, d〉c∗a) = 〈c, a〉〈b, d〉
On the other hand we have

〈iξ(a∗b), iξ(c∗d)〉L2(G) =

ˆ
G

〈a, gb〉〈c, gd〉dg =

ˆ
G

〈gb, a〉〈c, gd〉dg

=

ˆ
G

tr((gb)∗(gd) ◦ c∗a) dg = tr

((ˆ
G

(gb)∗(gd)dg

)
◦ c∗a

)
= tr

((ˆ
G

g · (b∗d)dg

)
◦ c∗a

)
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Now recall that for T : V → V , the expression
´
G
g · Tdg is a projection of T onto

HomG(V, V ). It is easy to see that it is in fact the orthogonal projection when we give
End(V ) the invariant inner product considered above (or equivalently the invariant inner
product determined by an invariant inner product on V ). In our case, HomG(Vξ, Vξ) ∼=
C IdVξ by Schur’s Lemma and clearly

T 7→ tr(T )

dimVξ
IdVξ

is the orthogonal projection onto the line spanned by the IdVξ . We conclude that

〈iξ(a∗b), iξ(c∗d)〉L2(G) =

〈
tr b∗d

dimVξ
IdVξ , c

∗a

〉
End(Vξ)

=
tr b∗d

dimVξ
tr c∗a

=
1

dimVξ
〈b, d〉〈c, a〉 =

1

dimVξ
〈a∗b, c∗d〉End(Vξ)

as required. �

Theorem 20.6. Let G be a compact Lie group. Then the map of G×G representations

⊕̂ξ∈Ĝ
(√

dimVξ iξ

)
:
⊕̂

ξ∈Ĝ
V ∗ξ ⊗ Vξ → L2(G)

is an isomorphism of Hilbert spaces, where on the left ⊕̂ denotes the L2-completion of the
direct sum.

Proof. The map ⊕ξ
√

dimVξ iξ is a map of G × G representations. The summands in
the domain of the map are by definition orthogonal and then it follows from Proposition
20.5 and Theorem 19.4 that ⊕ξ

√
dimVξ iξ is an isometry onto its image. The Peter-Weyl

Theorem says that this isometry, whose image is the algebra T of representative functions,
has dense image. The desired statement follows immediately. �

Remark 20.7. When G is finite, the previous theorem implies that∑
ξ∈Ĝ

(dimVξ)
2 = |G|

For instance, the symmetric group Σ3 of order 6 must have either six one dimensional
irreducible representations or two one dimensional and one two dimensional irreducible
representations (the latter holds of course).

The inverse of the isomorphism given by the Theorem 20.6 is usually denoted

f 7→ (f̂(ξ))ξ∈Ĝ with f̂(ξ) ∈ End(Vξ)

The elements f̂(ξ) are called the Fourier coefficients of f along ξ. In concrete terms the

f̂(ξ) are square matrices of dimension dimVξ.
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The fact that the map in the Theorem 20.6 is an isomorphism of Hilbert spaces implies
the Plancherel identity ∑

ξ∈Ĝ

‖f̂(ξ)‖2 = ‖f‖2
L2(G)

The component f̂(ξ) is computed by the adjoint
√

dimVξ i
∗
ξ of the map√

dimVξ iξ : End(Vξ)→ L2(G)

Exercise 20.8. Check that for f ∈ L2(G) and ξ ∈ Ĝ we have

(24) i∗ξ(f) =

ˆ
G

f(g)ρξ(g
−1)dg

The expression in the previous exercise for the Fourier coefficients is called the Fourier
inversion formula. Another standard property of Fourier series that is still valid is the
interpretation of convolution in terms of the Fourier coefficients.

Exercise 20.9. Given f1, f2 ∈ L2(G), the convolution of f1 with f2 is the function f1∗f2 ∈
L2(G) defined by the expression

(f1 ∗ f2)(x) =

ˆ
G

f1(xg−1)f2(g)dg

Prove that (f̂1 ∗ f2)(ξ) = f̂1(ξ) ◦ f̂2(ξ).

Example 20.10. (1) When G = S1, Theorem 20.6 gives the usual decomposition of a
complex valued function on the circle as a Fourier series. The map in the Theorem
computes the Fourier series given a sequence f̂(n) ∈ `2(Z) and (24) is the usual
formula for the Fourier coefficients of a function.

(2) Let G = S3 ∼= SU(2). Since SU(2) is simply connected, the representations of
SU(2) are the same as those of su(2). The complex representations of this Lie
algebra are the same as those of its complexification

su(2)⊗ C ∼= sl(2;C)

Thus ŜU(2) = N0, with the non-negative integer n corresponding to the representa-
tion of SU(2) on the degree n homogeneous polynomials on C2. Given f : S3 → C,
its n-th Fourier coefficient is

f̂(n) =
√
n+ 1

ˆ
S3

f(g)ρn(g−1)dg ∈ End(Cn+1)

For instance, when n = 1, ρ1 is the standard representation of S3 on H ∼= C2 by
left multiplication and so

f̂(1) =
√

2

ˆ
S3

f(q)q̄ dq ∈ End(C2)
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21. The structure of compact Lie groups

Definition 21.1. Let G be a compact Lie group. A maximal torus of G is a Lie subgroup
of G isomorphic to T = S1×· · ·×S1 which is not contained in any strictly larger subgroup
of the same form.

Alternatively, a maximal torus can be defined as maximal connected abelian subgroup of
G. Indeed, since the closure of a connected abelian group is still connected and abelian,
such a group must be closed, hence compact, and connected hence a torus (which must be
maximal).

Maximal tori always exist because given X ∈ g

{exp(tX) : t ∈ R} is a torus

and any torus is contained in a maximal torus (if T, T ′ are tori and T ( T ′, then dimT <
dimT ′ therefore any strictly increasing chain of tori in a compact Lie group is finite).

One useful thing about tori is that they have topological generators : if α1, . . . , αn are
rationally independent irrational numbers then the subgroup of T = (S1)n generated by
the element (e2πiα1 , . . . , e2πiαn) ∈ T will have closure equal to T . This is certainly familiar
when n = 1 and, in general, follows by induction on n (exercise). This concept often allows
us to deal with the whole torus focusing on a single element in the torus. For instance if
t ∈ T is a topological generator for a maximal torus T and t belongs to some other torus
T ′ then we must have T = T ′ (because the closure of the subgroup generated by t will be
contained in the torus T ′).

Definition 21.2. Let G be a compact Lie group and T ⊂ G a maximal torus. The Weyl
group of G is

W = NG(T )/T

where NG(T ) = {g ∈ G : gTg−1 = T} is the normalizer of T .

It is not immediately clear that the above definition makes sense as different maximal
tori could give rise to different Weyl groups. The main Theorem on maximal tori which
we will state shortly will imply that all maximal tori in G are conjugate and therefore the
isomorphism class of the Weyl group of a compact Lie group G is well defined.

Note that there is a natural map

W → Aut(T )

sending gT to the automorphism cg : T → T given by conjugation by g. One can check
that this map is injective (see [BtD, Corollary IV.2.4]) so that in this way we can regard
the Weyl group as a group of automorphisms of T . It follows that W is a finite group as
W is clearly a compact group and one easily checks that Aut(T ) is isomorphic to GL(n,Z)
(exercise) and hence discrete.
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Example 21.3. (i) Let G = U(n). Then

T =


 eiθ1

. . .

eiθn

 : θ1, . . . , θn ∈ R


(the subset of diagonal matrices) is a maximal torus. It is even a maximal abelian
subgroup as it is easy to check that a matrix which commutes with all matrices in T
must be diagonal. The normalizer of T is the group generated by T together with the
permutation matrices (check). Thus the Weyl group W is isomorphic to the symmetric
group on n elements. It acts on the torus T by permuting the diagonal entries. In this
case the Weyl group can be regarded as a subgroup of G (the subgroup of permutation
matrices) but that is not always the case.

(ii) Let G = SU(n). Then

T =


 eiθ1

. . .

eiθn

 : eiθ1+...+iθn = 1


is a maximal torus (check that the diagonal matrices form a maximal abelian sub-
group). The Weyl group is still isomorphic to Σn and acts on T by permuting the
diagonal entries. Unlike in the previous example, it is now not possible to regard W
as being naturally embedded in G.

(iii) Let G = SO(2n). Then

T =




cos θ1 − sin θ1

sin θ1 cos θ1

. . .
cos θn − sin θn
sin θn cos θn




is again a maximal abelian subgroup. One can show that the Weyl group W is iso-
morphic to Σn n (Z/2)n, where Σn acts on the torus by permuting the block diagonal
matrices while (Z/2)n acts by switching the signs of the θi (see [BtD, Section IV.3]).

The following result is the main Theorem concerning maximal tori and is absolutely
fundamental to understanding the structure of compact Lie groups

Theorem 21.4. Let G be a compact Lie group.

(i) Every g ∈ G belongs to some maximal torus.
(ii) All maximal tori in G are conjugate, i.e. given maximal tori T, T ′, there exists

g ∈ G such that gTg−1 = T .

Note that in the case of classical compact Lie groups like the orthogonal or unitary
groups, the statement is familiar from basic linear algebra. It comes down to the fact that
orthogonal or unitary matrices are diagonalisable.

Here is an important immediate consequence of Theorem 21.4
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Corollary 21.5. If G is a compact Lie group, the exponential map exp: g→ G is surjec-
tive.

Proof. The exponential map is certainly surjective on tori and every element of G is con-
tained in some torus. �

Corollary 21.5 is in fact equivalent to Theorem 21.4(i) because if we know that exp is
surjective11, then given g ∈ G we may find X ∈ g with exp(X) = g and then

{exp(tX) : t ∈ R}

is a torus containing g and this torus will be contained in some maximal torus.
We also note that the homework includes a proof of Theorem 21.4(ii) based on Lie

algebras.
Here is another fundamental consequence for the representation theory of compact Lie

groups.

Corollary 21.6. Let G be a compact Lie group and T be a maximal torus in G. Then every
conjugacy class of G intersects T . In particular, any representation ρ of G is determined
by its restriction ρ|T to the maximal torus.

Proof. Given g ∈ G, we have that g ∈ T ′ for some maximal torus T ′. Let h ∈ G be such
that hT ′h−1 = T , then hgh−1 ∈ T so the conjugacy class of g intersects T .

The second statement follows because a representation ρ is determined by its character
χρ(g) = tr(ρ(g)) which is constant on conjugacy classes. Thus χρ is determined by its
restriction to T and this restriction is exactly the character of ρ|T . �

Theorem 21.4 implies more specifically that the canonical map

T/W → {conjugacy classes in G}

is surjective (and hence a quotient map of topological spaces). In particular the character
of a representation of G will be a character of T which is invariant under the action of the
Weyl group. However, one can show more precisely that the previous map is a bijection
(and hence a homeomorphism - see [BtD, Lemma IV.2.5]).

Example 21.7. Recall from Example 20.10(ii) that the irreducible complex representations
of SU(2) are parametrized by the non-negative integers, and we can take the irreducible
representation V (n) corresponding to n to be the vector space of degree n homogeneous
polynomials on C2.

A maximal torus of SU(2) is

T =

{[
eiθ 0
0 e−iθ

]
: θ ∈ R

}
11Recall by the way that this follows from the Hopf-Rinow Theorem once one identifies the exponential

map with the geodesic exponential for a bi-invariant metric on G.
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The standard basis zk1z
n−k
2 for the homogeneous polynomials consists of eigenvectors for the

action of T (the element zk1z
n−k
2 is acted on with weight k − (n − k) = 2k − n) and we

obtain the following expression for the restriction of the character χn of V (n) to T

χ0(eiθ) = 1, χ1(eiθ) = eiθ + e−iθ, χ2(eiθ) = e2iθ + 1 + e−2iθ

and, more generally,

χn(eiθ) = einθ + ei(n−2)θ + · · ·+ e−inθ

The action of the Weyl group on the torus switches the sign of the angle and the expressions
above are indeed invariant under this action.

The (complex) representations of SO(3) are the representations of SU(2) that send ± Id
to the identity matrix, so these are exactly the V (2n) with n ≥ 0.

Let us now discuss the relation between compact Lie groups and complex semisimple
Lie algebras. Recall that if g is the Lie algebra of a compact Lie group G, we have proved
that

g = z× k

with z abelian and k a semisimple Lie algebra (over R) with negative-definite Killing form.
(moreover z is the center of g). Then

g⊗ C = (z⊗ C)× (k⊗ C)

with k ⊗ C a complex semisimple Lie algebra. For instance, when G = U(n) we have the
decomposition g = R × su(n) with R the Lie algebra of the circle corresponding to the
multiples of the identity, and g⊗ C ∼= C× sl(2,C).

It is easy to check (see homework) that writing t for the Lie algebra of a maximal torus
T , we have

t⊗ C = (z⊗ C)× h

with h a Cartan subalgebra of complex semisimple Lie algebra k× C.
The adjoint action of T on g ⊗ C will be trivial on z ⊗ C but on its complement k ⊗ C

it will be equivalent to the adjoint action of h on k ⊗ C. The weights of this T -action
will define a root system in t∗ (the root system will not in general span t∗ but only k∗, the
annihilator of z inside t∗) which can be identified with the root system of the corresponding
complex semi-simple Lie algebra. One can then identify the Weyl group of the compact Lie
group with a reflection group acting on the root system and hence identify the compact Lie
group Weyl group with the Weyl group of the associated complex semisimple Lie algebra.

The representation theory of the compact connected Lie groups can be understood in
terms of the representation theory of compact semisimple Lie algebras (and the extremely
simple representation theory of tori): we begin by observing that there is a “largest”
compact Lie group integrating a compact Lie algebra

g = z× k,

namely

T n ×K
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where T n is a torus with dimension n = dimR z and K is the (unique) simply connected Lie
group integrating k. Indeed, the simply connected Lie group integrating g is Rn×K. Any
other Lie group integrating g is a quotient (Rn×K)/A with A a discrete central subgroup.
Writing π : Rn × K → Rn for the projection, we have that π(A) is a free abelian group
isomorphic to Zk for some k (and if the quotient is to be compact k must equal n). As
π(A) is free, the short exact sequence

0→ kerπ|A → A
π−→ π(A)→ 0

splits, so A = Zk ×D with D = kerπ|A = A ∩K a finite central subgroup of K.
In conclusion, the Lie groups integrating g take the form Rn−k × T k × (K/D), and the

compact Lie groups integrating g take the form T n × (K/D). In particular, T n ×K is the
“largest” compact subgroup integrating g.

The irreducible representations of the product T n × K/D are tensor products of irre-
ducible representations of the factors (by Proposition 19.7) and the irreducible representa-
tions of T n are one dimensional and classified by their weights in Zn (see Example 19.8),
so it suffices to describe the irreducible representations of K/D.

The irreducible representations of the compact Lie group K are in 1− 1 correspondence
with those of the complex semisimple Lie algebra k⊗C, and are classified by their highest
weight. A representation of K/D is exactly a representation of K which sends D to
the identity linear transformation, from which one immediately sees that the irreducible
representations of K/D are the irreducible representations of K where D acts trivially.
One can show that a finite central subgroup D is contained in every maximal torus (in
fact the center of a compact Lie group is the intersection of all its maximal tori - see
[BtD, Theorem 4.2.3]) so one can easily check whether an irreducible representation of K
descends to K/D using the restriction of its character to the maximal torus.

Example 21.8. Consider the group U(2). Its Lie algebra u(2) is isomorphic to R× su(2)
and so the largest compact Lie group with Lie algebra u(2) is S1 × SU(2). The covering
S1 × SU(2)→ U(2) is a double covering given by the expression

(eiθ, A) 7→ eiθA

so we have

U(2) = (S1 × SU(2))/D with D =

{
±
(

1,

[
1 0
0 1

])}
∼= Z/2

The representations of S1 × SU(2) are parametrized by Z × N0. We have the standard
maximal torus

T 2 =

{
±
(
eiθ,

[
eiα 0
0 e−iα

])}
and we easily compute that for (n, k) ∈ Z× N0 we have

χn,k(e
iθ, eiα) =

k∑
j=0

ei(nθ+(k−2j)α)
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(see Example 21.7). Such a representation will send the generator (eiπ, eiπ) of D to the
identity if and only if n+ (k − 2j) are even for all j, i.e. if n and k are both even or both
odd. Thus the irreducible representations of U(2) are parametrized by

{(n, k) ∈ Z× N0 : n+ k is even.}

To summarize: the theory of compact Lie groups is closely related to the theory of
complex semisimple Lie algebras. Except for central torus factors which are easily dealt
with, the difference is completely explained by a finite abelian group D, the fundamental
group of the compact semisimple factor of the compact Lie group. The group D can be
described combinatorially in terms of the way that the dual root lattice sits inside the
lattice of one parameter groups of the maximal torus. See [BtD, Section V.7].

Sketch proof of Theorem 21.4. For a fixed maximal torus T ⊂ G consider the conjugation
map

G/T × T q−→ G

defined by

(gT, t) 7→ gtg−1

It is enough to show that this map is surjective. Indeed, if that is the case then an arbitrary
element h ∈ G can be written as gtg−1 and is therefore contained in the maximal torus
gTg−1. Moreover if T ′ is any maximal torus in T then letting h ∈ T ′ denote a topological
generator, we see that h ∈ gTg−1 for some g, hence T ′ ⊂ gTg−1 for some g and, T ′ being
a maximal torus we must have T ′ = gTg−1.

There are several ways of proving the map q is surjective, the nicest of which envolve
some algebraic topology. One elementary way is to compute the degree of q. If the degree
is nonzero then (by the standard definition of degree as the signed count of preimages of a
regular value), the map must be surjective.

Let h ∈ T be a topological generator of T , then

q−1(h) = {(gT, t) : gtg−1 = h}

Given a point in the fiber, t = g−1hg must also be a topological generator of a maximal torus
and, since it belongs to T , must be a topological generator of T . It follows that gTg−1 = T ,
i.e. gT is an element of the Weyl group of T . Conversely any element gT ∈ W corresponds
to the element (gT, g−1hg) ∈ q−1(h). Thus the fiber over a topological generator of T can
be identified with the Weyl group, which is a finite group.

The tangent spaces of the domain and range of q at the points in q−1(h) and h respec-
tively, can naturally be identified with the vector space g/t ⊕ t and with regard to fixed
orientations one can check that the sign of the determinant of dq is the same at all points
in q−1(h) (one can obtain an expression for dq in terms of the adjoint action of h on the
Lie algebra - see [BtD, Lemma IV.1.7] for the full details).

It follows that the degree of q is |W |, hence q is surjective, which concludes the proof. �
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