An ARL-unbiased np-chart

Manuel Cabral Morais

maj@math.ist.utl.pt

Department of Mathematics & CEMAT — IST, ULisboa, Portugal

IST — Lisbon, September 2016
Agenda

1. Charts for nonconforming items
 - The np—chart with 3-sigma limits
 - Some variants

2. Eliminating the bias of the ARL function
 - A first attempt
 - Relating ARL-unbiased charts and UMPU tests

3. Illustrations
 - A few ARL-unbiased np—charts
 - A useful table and a curiosity

4. Final thoughts
In industrial processes, we can classify each inspected item as either conforming or nonconforming to a set of specifications. The np-chart with 3-sigma limits has been historically used to detect changes in the fraction nonconforming (p):

- control statistic: number of nonconforming items in the t–th sample of size n, X_t
- distribution: $X_t \sim \text{Binomial}(n, p)$, $t \in \mathbb{N}$
- target mean: $n p_0$
- process mean: $n p = n (p_0 + \delta)$ ($\delta =$ magnitude of the shift in p)

3-sigma control limits:

$$LCL = \left[\max \left\{ 0, np_0 - 3\sqrt{np_0(1 - p_0)} \right\} \right]$$

$$UCL = \left[np_0 + 3\sqrt{np_0(1 - p_0)} \right]$$

- triggers a signal and deem the process out-of-control at sample t if $X_t \notin [LCL, UCL]$.

An ARL-unbiased np-chart
Example 1

- \(n = 100 \) (sample size), \(p_0 = 0.05 \) (target fraction nonconforming).
- Simulated data: first 50 samples — process is known to be in-control; last 20 samples — process out-of-control (increase in \(p, p = p_0 + 0.006 \)).
- 3 - \(\sigma \) control limits
 \[
 LCL = \left\lceil \max \left\{ 0, np_0 - 3\sqrt{np_0(1-p_0)} \right\} \right\rceil = 0
 \]
 \[
 UCL = \left\lfloor np_0 + 3\sqrt{np_0(1-p_0)} \right\rfloor = 11
 \]
- \(np \)-chart

\[\text{X}_t\]

One false alarm, sample 23; one valid signal, sample 65.
Example 1 (cont’d)

Parallels with a repeated hypothesis test...

- $H_0 : p = p_0$ (process is in-control)
 - $H_1 : p \neq p_0$ (process is out-of-control)

- control statistic: $T = \frac{X - np_0}{\sqrt{np_0(1-p_0)}} \sim_{H_0} \text{Normal}(0, 1)$

- rejection region: $W = (-\infty, -3) \cup (3, +\infty)$

- exact power function: $\xi(p) = P(T \in W | p), \quad p \in (0, 1)$

![Graph showing the power function $\xi(p)$ with a minimum not achieved at p_0.]

problems

- minimum of $\xi(p)$ not achieved at $p_0 \Rightarrow \xi(p) < \xi(p_0), \ p < p_0$
- significance level: $\xi(p_0) = 0.004274 \neq 0.0027 \approx 1 - [\Phi(3) - \Phi(-3)]$.

An ARL-unbiased np-chart
The \(np \)-chart with 3-sigma limits

Performance

\[\xi(p) = P(\text{emission of a signal} \mid p) = 1 - \sum_{x=LCL}^{UCL} \binom{n}{x} p^x (1 - p)^{n-x}. \]

- **Run length (RL)** — number of samples taken until a signal is triggered.
 \(RL(p) \sim \text{Geometric}(\xi(p)) \).

- The performance is frequently assessed in terms of \(ARL(\delta) = 1/\xi(\delta) \).
 It is desirable that false alarms (resp. valid signals) are rarely triggered (resp. emitted as quickly as possible), corresponding to a large in-control (resp. small out-of-control) ARL.

- In most practical applications \(p_0 \leq 9/(9 + n) \), thus \(LCL = 0 \) and \(ARL(p) \geq ARL(p_0), \ p \in (0, p_0) \), i.e., the chart triggers false alarms more frequently than valid signals in the presence of any decrease in \(p \).

- Selecting the smallest sample size \(n_{\min} \) verifying \(n > 9(1 - p_0)/p_0 \) to deal with \(LCL > 0 \), can lead to impractical sample sizes (e.g., \(p_0 = 0.001 \), \(n_{\min} = 8992 \)).

- The 3-sigma control limits presume the adequacy of the normal approximation to the binomial distribution, often a poor approximation.
Some variants

Variants to mitigate the poor performance of the np–chart with 3-sigma limits basically rely on:

- **transformations**\(^1\) traced back to
 - Freeman and Tukey (1950), $y = 0.5 \left[\arcsin \frac{\sqrt{x/(n + 1)}}{1/n} + \arcsin \frac{\sqrt{(x + 1)/(n + 1)}}{1/n} \right]$
 - Hald (1952, p. 685), $y = \arcsin \frac{\sqrt{x/n}}{n}$
 - Johnson and Kotz (1969, p. 65), $y = \arcsin \frac{(x + 3/8)/(n + 3/4)}{n}$;

- **modified control limits**\(^2\) obtained by regression against np_0 and $\sqrt{np_0}$, for $p_0 \in (0, 0.03]$ (Ryan and Schwertman, 1997)
 - $LCL = 2.9529 + 1.01956 np_0 - 3.2729 \sqrt{np_0}$
 - $UCL = 0.6195 + 1.00523 np_0 + 2.983 \sqrt{np_0}$.

All resulting charts are ARL-biased, i.e., the ARL function does not attain a maximum at $p = p_0$.

1. Transform the binomial data (x) so that the transformed data (y) are approximately normal, and use 3-sigma limits for the transformed data (Ryan, 1989, p. 182).

2. Search for values of n that would lead to control limits associated with in-control tail areas very close to the nominal value of 0.0027×0.5.
Example 2

- \(n = 1267, \ p_0 = 0.01 \)

\[\alpha^{-1} = \frac{1}{0.0027} \approx 370.4 \text{ (desired in-control ARL).} \]

<table>
<thead>
<tr>
<th>Chart</th>
<th>[LCL, UCL]</th>
<th>Max. of ARL</th>
<th>Relat. bias of ARL</th>
<th>In-control ARL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-sigma</td>
<td>[3, 23]</td>
<td>650.419</td>
<td>−10.723%</td>
<td>327.976</td>
</tr>
<tr>
<td>RS</td>
<td>[4, 24]</td>
<td>381.718</td>
<td>−1.449%</td>
<td>376.811</td>
</tr>
</tbody>
</table>

- It takes longer, in average, to detect some shifts in \(p \) than to trigger a false alarm!
The first attempt to correct the bias of the ARL function of the np–chart is attributed to Acosta-Mejía (1999).

- By differentiating the probability of triggering a signal with respect to p and conditioning this derivative to be equal to zero when $p = p_0$:

$$
\frac{p_0^{LCL-1} (1 - p_0)^{n-LCL}}{\Gamma(n - LCL + 1) \Gamma(LCL)} = \frac{p_0^{UCL} (1 - p_0)^{n-UCL-1}}{\Gamma(n - UCL) \Gamma(UCL + 1)}.
$$

- This equation defines the unbiased performance line (UPL) and leads in general to non-integer control limits.

- Acosta-Mejía (1999) suggested the adoption of the pair of integers closest to the intersection point of the UPL and the iso-ARL curve that defines all pairs (LCL, UCL) having the same desired in-control ARL.

- The resulting chart is ARL-biased, yet Acosta-Mejía (1999) termed it *nearly ARL-unbiased np–chart*.
Example 4

- \(n = 1000, p_0 = 0.01 \)

- ARL curves associated with the \((LCL, UCL)\) closest to the intersection of the UPL and the iso-ARL curve for a desired in-control ARL equal to 300:

<table>
<thead>
<tr>
<th>(LCL, UCL)</th>
<th>Maximum of ARL</th>
<th>Relative bias of the ARL</th>
<th>In-control ARL</th>
</tr>
</thead>
<tbody>
<tr>
<td>B = (2, 19)</td>
<td>458.698</td>
<td>-10.901%</td>
<td>265.421</td>
</tr>
<tr>
<td>C = (3, 20)</td>
<td>241.056</td>
<td>+1.237%</td>
<td>239.469</td>
</tr>
<tr>
<td>D = (3, 21)</td>
<td>336.472</td>
<td>+5.219%</td>
<td>300.187</td>
</tr>
</tbody>
</table>

The smallest relative bias corresponds to \(C = (3, 20) \), however the associated \(np \)-chart has the in-control ARL furthest from 300.
Basic facts

- A size α test for $H_0 : p = p_0$ against $H_1 : p \neq p_0$, with power function $\xi(p)$, is said to be unbiased if $\xi(p_0) \leq \alpha$ and $\xi(p) \geq \alpha$, for $p \neq p_0$. The test is at least as likely to reject under any alternative as under H_0;

 $$ARL(p_0) \geq \alpha^{-1} \quad \text{and} \quad ARL(p) \leq \alpha^{-1}, \ p \neq p_0.$$

- If we consider C a class of tests for $H_0 : p = p_0$ against $H_1 : p \neq p_0$, then a test in C, with power function $\xi(p)$, is a uniformly most powerful (UMP) class C test if $\xi(p) \geq \xi'(p)$, for every $p \neq p_0$ and every $\xi'(p)$ that is a power function of a test in class C.

- In this situation there is no UMP test, but there is a test which is UMP among the class of all unbiased tests — the uniformly most powerful unbiased (UMPU) test.

- The concept of an ARL-unbiased Shewhart-type chart is related to the notion of UMP test.
Basic facts (cont'd)

- The **UMPU test** derived by Lehmann (1959, pp. 128–129, Example 1) for the parameter p of the binomial distribution uses the critical function

$$
\phi(x) = P(\text{Reject } H_0|X = x) = \begin{cases}
1 & \text{if } x < LCL \text{ or } x > UCL \\
\gamma_{LCL} & \text{if } x = LCL \\
\gamma_{UCL} & \text{if } x = UCL \\
0 & \text{if } LCL < x < UCL,
\end{cases}
$$

where LCL, UCL, γ_{LCL}, and γ_{UCL} are such that

$$
E_{n,p_0}[\phi(X)] = \alpha \quad \text{(prob. of false alarm = \alpha)}
$$

$$
E_{n,p_0}[X \phi(X)] = \alpha E_{n,p_0}(X) \quad \text{(unbiased ARL)}.
$$

Equivalently,

$$
\gamma_{LCL} \times P_{n,p_0}(LCL) + \gamma_{UCL} \times P_{n,p_0}(UCL) = \alpha - \left[1 - \sum_{x=LCL}^{UCL} P_{n,p_0}(x) \right]
$$

$$
\gamma_{LCL} \times LCL \times P_{n,p_0}(LCL) + \gamma_{UCL} \times UCL \times P_{n,p_0}(UCL) = \alpha \times np_0 - \left[np_0 - \sum_{x=LCL}^{UCL} x \times P_{n,p_0}(x) \right].
$$
Basic facts (cont’d)

- However, the two previous equations are not sufficient to define two control limits and two randomization probabilities.

Characterizing the ARL-unbiased np–chart

Inspired by this UMPU test, we defined a np–chart that triggers a signal with:

- probability one if the sample number of nonconforming items, x, is below LCL or above UCL;
- probability γ_{LCL} (resp. γ_{UCL}) if $x = LCL$ (resp. $x = UCL$).

Furthermore,

- randomization probabilities

 solution of a system of linear equations:

$$
\gamma_{LCL} = \frac{d e - b f}{a d - b c} \quad \text{and} \quad \gamma_{UCL} = \frac{a f - c e}{a d - b c},
$$

where

$$
a = P_{n,p_0}(LCL), \quad b = P_{n,p_0}(UCL), \quad c = LCL \times P_{n,p_0}(LCL),
$$

$$
d = UCL \times P_{n,p_0}(UCL), \quad e = \alpha - 1 + \sum_{x=LCL}^{UCL} P_{n,p_0}(x),$$

$$
f = \alpha \times np_0 - np_0 + \sum_{x=LCL}^{UCL} x \times P_{n,p_0}(x),$$

and $a d - b c \neq 0$.

An ARL-unbiased np-chart
Characterizing the ARL-unbiased \(np \)-chart (cont’d)

- **Control limits** (and randomization probabilities)

Bear in mind that giving protection to decreases (resp. increases) in \(p \) means a \(LCL \) (resp. \(UCL \)) as large (resp. small) as possible.

Thus, in order to rule out control limits leading to \((\gamma_{LCL}, \gamma_{UCL}) \notin (0, 1)^2 \), \((LCL, UCL)\) should be restricted to the following set of non-neg. integer:

\[
\{(LCL(\alpha), UCL_{LCL(\alpha)}), (LCL(\alpha), UCL_{LCL(\alpha)} + 1), \\
(LCL(\alpha) - 1, UCL_{LCL(\alpha)} - 1), (LCL(\alpha) - 1, UCL_{LCL(\alpha)} - 1 + 1), \ldots, \\
(0, UCL_0), (0, UCL_0 + 1)\},
\]

where

- \(LCL(\eta) \) is the largest non-neg. integer \(LCL : P(X < LCL \mid p = p_0) \leq \eta \),

- \(\alpha_{LCL(\eta)} = P(X < LCL \mid p = p_0) \) is the lower tail in-control area associated with \(LCL(\eta) \),

- \(UCL_{LCL(\eta)} = F_{n,p_0}^{-1} [1 - (\alpha - \alpha_{LCL(\eta)})] \) is the corresponding UCL.

The search for values for \((\gamma_{LCL}, \gamma_{UCL}) \) starts with \((LCL(\alpha), UCL_{LCL(\alpha)})\) and stops as soon as an admissible solution is found (Mathematica program).
Characterizing the ARL-unbiased \(np \)–chart (cont’d)

- **ARL function**

 A signal is triggered by the ARL-unbiased \(np \)–chart with probability

 \[
 \xi_{unbiased}(p) = \left[1 - \sum_{x=LCL}^{UCL} P_{n,p}(x) \right] + \gamma_{LCL} \times P_{n,p}(LCL) + \gamma_{UCL} \times P_{n,p}(UCL)
 \]

 and the corresponding ARL function is given by \(1/\xi_{unbiased}(p) \).

- **Randomization of the emission of the signal**

 Can be done in practice by incorporating the generation of a pseudo-random number from a Bernoulli distribution with parameter \(\gamma_{LCL} \) (resp. \(\gamma_{LCL} \)) in the software used to monitor the data fed from the production line, whenever the observed number of nonconforming items is equal to \(LCL \) (resp. \(UCL \)).

- **ARL-unbiased \(p \)–chart**

 The conversion to the corresponding ARL-unbiased \(p \)–chart is evidently made by dividing the control limits by \(n \).
Example 5

- $n = 1000, \ p_0 = 0.01, \ \alpha = 1/300$

- Acosta-Mejía’s np–chart

 $[LCL, UCL] = [3, 21]$ (in-control ARL very close to 300)

- ARL-unbiased np–chart

 $[LCL, UCL] = [2, 21], \ (\gamma_{LCL}, \gamma_{UCL}) = (0.673094, 0.853994)$

![Graph showing ARL comparison between Acosta-Mejía's chart and the ARL-unbiased np-chart.]

- Acosta-Mejía’s np–chart outperforms (resp. is outperformed by) the ARL-unbiased np–chart in the detection of decreases (resp. increases) in p.
Example 6

- $n = 1267$, $p_0 = 0.01$, $\alpha = 0.0027$
- np-chart with 3-sigma limits: $[LCL, UCL] = [3, 23]$
- Ryan & Schwertmann’s np-chart: $[LCL, UCL] = [4, 24]$
- ARL-unbiased np-chart
 $[LCL, UCL] = [4, 25]$, $(\gamma_{LCL}, \gamma_{UCL}) = (0.076400, 0.713818)$

The elimination of the bias of the ARL function is due to the adoption of the quantile based control limits and the randomization probabilities.
Example 7

- \(n = 100, \ p_0 = 0.05, \ \alpha = 0.0027 \)
- Simulated data: first 50 samples — process is known to be in-control; last 20 samples — process out-of-control (increase in \(p, \ p = p_0 + 0.006 \)).
- ARL-unbiased \(np \)-chart
 \([LCL, UCL] = [0, 13], (\gamma_{LCL}, \gamma_{UCL}) = (0.289066, 0.524741)\)

A red \(\bullet \) corresponds now to an obs. responsible for a signal because it is: beyond \([LCL, UCL]\); or equal to \(LCL \) (resp. \(UCL \)) and the corresp. gen. pseudo-random no. from the Bernoulli dist. with parameter \(\gamma_L \) (resp. \(\gamma_U \)) equals 1.

One false alarm, sample 23, valid signal, sample 65, both due to randomization.
<table>
<thead>
<tr>
<th>p_0</th>
<th>n</th>
<th>$[LCL, UCL]$</th>
<th>$(\gamma_{LCL}, \gamma_{UCL})$</th>
<th>$[n/10]$</th>
<th>$[LCL, UCL]$</th>
<th>$(\gamma_{LCL}, \gamma_{UCL})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>1324</td>
<td>[1, 16]</td>
<td>(0.039089, 0.642052)</td>
<td>132</td>
<td>[0,5]</td>
<td>(0.004567, 0.554449)</td>
</tr>
<tr>
<td>0.01</td>
<td>664</td>
<td>[1, 16]</td>
<td>(0.045716, 0.646175)</td>
<td>66</td>
<td>[0,5]</td>
<td>(0.004573, 0.599389)</td>
</tr>
<tr>
<td></td>
<td>1267</td>
<td>[4, 25]</td>
<td>(0.076399, 0.713818)</td>
<td>126</td>
<td>[0,6]</td>
<td>(0.007775, 0.141892)</td>
</tr>
<tr>
<td>0.02</td>
<td>533</td>
<td>[3, 22]</td>
<td>(0.017480, 0.683500)</td>
<td>53</td>
<td>[0,6]</td>
<td>(0.006534, 0.655018)</td>
</tr>
<tr>
<td></td>
<td>708</td>
<td>[5, 27]</td>
<td>(0.017478, 0.712931)</td>
<td>70</td>
<td>[0,6]</td>
<td>(0.008927, 0.008561)</td>
</tr>
<tr>
<td>0.03</td>
<td>357</td>
<td>[3, 22]</td>
<td>(0.045553, 0.691577)</td>
<td>35</td>
<td>[0,6]</td>
<td>(0.006507, 0.795807)</td>
</tr>
<tr>
<td></td>
<td>474</td>
<td>[5, 27]</td>
<td>(0.059043, 0.716629)</td>
<td>47</td>
<td>[0,6]</td>
<td>(0.009037, 0.027439)</td>
</tr>
<tr>
<td></td>
<td>874</td>
<td>[13, 43]</td>
<td>(0.051330, 0.737303)</td>
<td>87</td>
<td>[0,9]</td>
<td>(0.027701, 0.485802)</td>
</tr>
<tr>
<td></td>
<td>923</td>
<td>[14, 45]</td>
<td>(0.089674, 0.865971)</td>
<td>92</td>
<td>[0,9]</td>
<td>(0.031914, 0.228522)</td>
</tr>
<tr>
<td>0.04</td>
<td>218</td>
<td>[2, 19]</td>
<td>(0.038876, 0.702542)</td>
<td>21</td>
<td>[0,5]</td>
<td>(0.005362, 0.269840)</td>
</tr>
<tr>
<td></td>
<td>268</td>
<td>[3, 22]</td>
<td>(0.062363, 0.772698)</td>
<td>26</td>
<td>[0,6]</td>
<td>(0.006481, 0.966599)</td>
</tr>
<tr>
<td></td>
<td>393</td>
<td>[6, 29]</td>
<td>(0.029994, 0.744246)</td>
<td>39</td>
<td>[0,7]</td>
<td>(0.010418, 0.655596)</td>
</tr>
<tr>
<td></td>
<td>620</td>
<td>[12, 41]</td>
<td>(0.084557, 0.672194)</td>
<td>62</td>
<td>[0,9]</td>
<td>(0.024866, 0.906530)</td>
</tr>
<tr>
<td></td>
<td>755</td>
<td>[15, 48]</td>
<td>(0.990580, 0.771784)</td>
<td>75</td>
<td>[0,10]</td>
<td>(0.040897, 0.969212)</td>
</tr>
<tr>
<td></td>
<td>893</td>
<td>[20, 55]</td>
<td>(0.071036, 0.844692)</td>
<td>89</td>
<td>[0,11]</td>
<td>(0.070106, 0.978386)</td>
</tr>
<tr>
<td>0.05</td>
<td>175</td>
<td>[2, 19]</td>
<td>(0.056816, 0.741418)</td>
<td>17</td>
<td>[0,5]</td>
<td>(0.005422, 0.299790)</td>
</tr>
<tr>
<td></td>
<td>315</td>
<td>[6, 29]</td>
<td>(0.064331, 0.804571)</td>
<td>31</td>
<td>[0,7]</td>
<td>(0.010397, 0.784981)</td>
</tr>
<tr>
<td></td>
<td>345</td>
<td>[7, 31]</td>
<td>(0.034659, 0.759024)</td>
<td>34</td>
<td>[0,7]</td>
<td>(0.011903, 0.379684)</td>
</tr>
<tr>
<td></td>
<td>466</td>
<td>[11, 39]</td>
<td>(0.082700, 0.734550)</td>
<td>46</td>
<td>[0,8]</td>
<td>(0.021011, 0.218476)</td>
</tr>
<tr>
<td></td>
<td>606</td>
<td>[16, 48]</td>
<td>(0.092161, 0.756650)</td>
<td>60</td>
<td>[0,9]</td>
<td>(0.041372, 0.026530)</td>
</tr>
<tr>
<td>0.1</td>
<td>104</td>
<td>[3, 21]</td>
<td>(0.041042, 0.732947)</td>
<td>10</td>
<td>[0,5]</td>
<td>(0.006285, 0.243150)</td>
</tr>
<tr>
<td></td>
<td>139</td>
<td>[5, 26]</td>
<td>(0.071442, 0.813540)</td>
<td>13</td>
<td>[0,6]</td>
<td>(0.008391, 0.569880)</td>
</tr>
<tr>
<td></td>
<td>154</td>
<td>[6, 28]</td>
<td>(0.030245, 0.745744)</td>
<td>15</td>
<td>[0,6]</td>
<td>(0.010116, 0.158061)</td>
</tr>
<tr>
<td></td>
<td>229</td>
<td>[11, 38]</td>
<td>(0.050072, 0.800832)</td>
<td>22</td>
<td>[0,8]</td>
<td>(0.020094, 0.784673)</td>
</tr>
<tr>
<td></td>
<td>299</td>
<td>[16, 47]</td>
<td>(0.086104, 0.864793)</td>
<td>29</td>
<td>[0,9]</td>
<td>(0.039811, 0.404286)</td>
</tr>
<tr>
<td></td>
<td>339</td>
<td>[19, 52]</td>
<td>(0.076982, 0.853738)</td>
<td>33</td>
<td>[0,10]</td>
<td>(0.059491, 0.760501)</td>
</tr>
</tbody>
</table>

These values coincide with the ones recently obtained with the R package *ump*. An ARL-unbiased np-chart
We came a long way since Shewhart proposed the p–chart in the 1920s...

- **An ARL-unbiased np–chart**
 - It has a **pre-specified in-control ARL**, as opposed to the np–chart with 3-sigma control limits or existing alternatives.
 - The associated **ARL curve attain a maximum when p is on target**, i.e., any shift in p leads to a valid signal triggered in less time, in average, than a false alarm.
 - It **tackles the curse of the null LCL** and detects decreases in p in a timely fashion, by relying on the randomization probabilities.

- **Future work**
 - Derive an ARL-unbiased version of the **CUSUM chart/scheme for binomial data**, in order to improve the detection of small-to-moderate shifts in p.
 Since the control statistics of the CUSUM chart/scheme are dependent r.v., we have to resort to different search methods to determine the control limits and randomization probabilities.
Related statistical inference papers et al. found while preparing this seminar

Related SPC papers by submission date