Networked Embedded Systems: Bluetooth

Prof. António Grilo
Instituto Superior Técnico (IST), Lisboa, Portugal
Bluetooth

- Basic idea
 - Universal radio interface for ad-hoc wireless connectivity
 - Interconnecting computer and peripherals, handheld devices, PDAs, cell phones – replacement of IrDA
 - Embedded in other devices, goal: 5€/device (already < 1€)
 - Short range (10 m), low power consumption, license-free 2.45 GHz ISM
 - Voice and data transmission, approx. 1 Mbit/s gross data rate

One of the first modules (Ericsson).
Bluetooth

• History
 • 1994: Ericsson (Mattison/Haartsen), “MC-link” project
 • Renaming of the project: Bluetooth according to Harald “Blåtand” Gormsen [son of Gorm], King of Denmark in the 10th century
 • 1999: erection of a rune stone at Ericsson/Lund ;-)
 • 2001: first consumer products for mass market, spec. version 1.1 released
 • 2005: 5 million chips/week

• Special Interest Group
 • Original founding members: Ericsson, Intel, IBM, Nokia, Toshiba
 • Added promoters: 3Com, Agere (was: Lucent), Microsoft, Motorola
 • > 10000 members
 • Common specification and certification of products
History and hi-tech...

1999:
Ericsson mobile communications AB reste denna sten till minne av Harald Blåtand, som fick ge sitt namn åt en ny teknologi för trådlös, mobil kommunikation.
...and the real rune stone

Located in Jelling, Denmark, erected by King Harald “Blåtand” in memory of his parents. The stone has three sides – one side showing a picture of Christ.

Inscription:
"Harald king executes these sepulchral monuments after Gorm, his father and Thyra, his mother. The Harald who won the whole of Denmark and Norway and turned the Danes to Christianity."

Btw: Blåtand means “of dark complexion” (not having a blue tooth…)

This could be the “original” colors of the stone.
Inscription:
“auk tani karthi kristna” (and made the Danes Christians)
Characteristics

- 2.4 GHz ISM band, 79 (23) RF channels, 1 MHz carrier spacing
 - Channel 0: 2402 MHz ... channel 78: 2480 MHz
 - G-FSK modulation, 1-100 mW transmit power
- FHSS and TDD
 - Frequency hopping with 1600 hops/s
 - Hopping sequence in a pseudo random fashion, determined by a master
 - Time division duplex for send/receive separation
- Voice link – SCO (Synchronous Connection Oriented)
 - FEC (forward error correction), no retransmission, 64 kbit/s duplex, point-to-point, circuit switched
- Data link – ACL (Asynchronous ConnectionLess)
 - Asynchronous, fast acknowledge, point-to-multipoint, up to 433.9 kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched
- Topology
 - Overlapping piconets (stars) forming a scatternet
Piconet

- Collection of devices connected in an ad hoc fashion
- One unit acts as master and the others as slaves for the lifetime of the piconet
- Master determines hopping pattern, slaves have to synchronize
- Each piconet has a unique hopping pattern
- Participation in a piconet = synchronization to hopping sequence
- Each piconet has one master and up to 7 simultaneous slaves (> 200 could be parked)
Forming a piconet

- All devices in a piconet hop together
 - Master gives slaves its clock and device ID
 - Hopping pattern: determined by device ID (48 bit, unique worldwide)
 - Phase in hopping pattern determined by clock
- Addressing
 - Active Member Address (AMA, 3 bit)
 - Parked Member Address (PMA, 8 bit)
Scatternet

- Linking of multiple co-located piconets through the sharing of common master or slave devices
 - Devices can be slave in one piconet and master of another

- Communication between piconets
 - Devices jumping back and forth between the piconets

Piconets (each with a capacity of 720 kbit/s)

M=Master
S=Slave
P=Parked
SB=Standby
Bluetooth protocol stack

Audio apps. → NW apps. → vCal/vCard → telephony apps. → mgmnt. apps.

TCP/UDP → IP → BNEP → PPP

RFCOMM (serial line interface) → Logical Link Control and Adaptation Protocol (L2CAP) → Control

AT modem commands → TCS BIN → SDP

Baseband

Radio

AT: attention sequence
OBEX: object exchange
TCS BIN: telephony control protocol specification – binary
BNEP: Bluetooth network encapsulation protocol
SDP: service discovery protocol
RFCOMM: radio frequency comm.
Frequency selection during data transmission

\[
\begin{align*}
&f_k & f_{k+1} & f_{k+2} & f_{k+3} & f_{k+4} & f_{k+5} & f_{k+6} \\
&M & S & M & S & M & S & M \\
&M & S & M & S & M & S & M
\end{align*}
\]
Baseband

- Piconet/channel definition
- Low-level packet definition
 - Access code
 - Channel, device access, e.g., derived from master
 - Packet header
 - 1/3-FEC, active member address (broadcast + 7 slaves), link type, alternating bit ARQ/SEQ, checksum

```
68(72)  54  0-2745  bits

access code  packet header  payload
```

```
4    64  (4)    3    4    1    1    1    8  bits
preamble  sync.  (trailer)  AM address  type  flow  ARQN  SEQN  HEC
```
SCO payload types

<table>
<thead>
<tr>
<th>Type</th>
<th>Payload 1</th>
<th>Payload 2</th>
<th>Payload 3</th>
<th>Payload 4</th>
<th>Payload 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV1</td>
<td>audio (10)</td>
<td>FEC (20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HV2</td>
<td>audio (20)</td>
<td></td>
<td>FEC (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HV3</td>
<td>audio (30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DV</td>
<td>audio (10)</td>
<td>header (1)</td>
<td>payload (0-9)</td>
<td>2/3 FEC</td>
<td>CRC (2)</td>
</tr>
</tbody>
</table>

(bytes)
ACL Payload types

<table>
<thead>
<tr>
<th>Type</th>
<th>Header</th>
<th>Payload</th>
<th>FEC</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM1</td>
<td>1</td>
<td>0-17</td>
<td>2/3 FEC</td>
<td>2</td>
</tr>
<tr>
<td>DH1</td>
<td>1</td>
<td>0-27</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DM3</td>
<td>2</td>
<td>0-121</td>
<td>2/3 FEC</td>
<td>2</td>
</tr>
<tr>
<td>DH3</td>
<td>2</td>
<td>0-183</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DM5</td>
<td>2</td>
<td>0-224</td>
<td>2/3 FEC</td>
<td>2</td>
</tr>
<tr>
<td>DH5</td>
<td>2</td>
<td>0-339</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>AUX1</td>
<td>1</td>
<td>0-29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Baseband data rates

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 slot</td>
<td>DM1</td>
<td>1</td>
<td>0-17</td>
<td>2/3</td>
<td>yes</td>
<td>108.8</td>
<td>108.8</td>
<td>108.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DH1</td>
<td>1</td>
<td>0-27</td>
<td>no</td>
<td>yes</td>
<td>172.8</td>
<td>172.8</td>
<td>172.8</td>
<td></td>
</tr>
<tr>
<td>3 slot</td>
<td>DM3</td>
<td>2</td>
<td>0-121</td>
<td>2/3</td>
<td>yes</td>
<td>258.1</td>
<td>387.2</td>
<td>54.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DH3</td>
<td>2</td>
<td>0-183</td>
<td>no</td>
<td>yes</td>
<td>390.4</td>
<td>585.6</td>
<td>86.4</td>
<td></td>
</tr>
<tr>
<td>5 slot</td>
<td>DM5</td>
<td>2</td>
<td>0-224</td>
<td>2/3</td>
<td>yes</td>
<td>286.7</td>
<td>477.8</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DH5</td>
<td>2</td>
<td>0-339</td>
<td>no</td>
<td>yes</td>
<td>433.9</td>
<td>723.2</td>
<td>57.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUX1</td>
<td>1</td>
<td>0-29</td>
<td>no</td>
<td>no</td>
<td>185.6</td>
<td>185.6</td>
<td>185.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HV1</td>
<td>na</td>
<td>10</td>
<td>1/3</td>
<td>no</td>
<td>64.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HV2</td>
<td>na</td>
<td>20</td>
<td>2/3</td>
<td>no</td>
<td>64.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HV3</td>
<td>na</td>
<td>30</td>
<td>no</td>
<td>no</td>
<td>64.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DV</td>
<td>1 D</td>
<td>10+(0-9) D</td>
<td>2/3 D</td>
<td>yes D</td>
<td>64.0+57.6 D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Medium/High rate, High-quality Voice, Data and Voice
Baseband link types

- **Polling-based TDD packet transmission**
 - 625µs slots, master polls slaves
- **SCO (Synchronous Connection Oriented) – Voice**
 - Periodic single slot packet assignment, 64 kbit/s full-duplex, point-to-point
- **ACL (Asynchronous ConnectionLess) – Data**
 - Variable packet size (1, 3, 5 slots), asymmetric bandwidth, point-to-multipoint
Robustness

- Slow frequency hopping with hopping patterns determined by a master
 - Protection from interference on certain frequencies
 - Separation from other piconets (FH-CDMA)
- Retransmission
 - ACL only, very fast
- Forward Error Correction
 - SCO and ACL

![Diagram showing data transmission and error handling]

Error in payload (not header!)

- NAK
- ACK

Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Baseband states of a Bluetooth device

- **Standby**: do nothing
- **Inquire**: search for other devices
- **Page**: connect to a specific device
- **Connected**: participate in a piconet
- **Park**: release AMA, get PMA
- **Sniff**: listen periodically, not each slot
- **Hold**: stop ACL, SCO still possible, possibly participate in another piconet
Example: Power consumption/CSR
BlueCore2

• **Typical Average Current Consumption**
 1
 • VDD=1.8V Temperature = 20°C
 • **Mode**
 • SCO connection HV3 (1s interval Sniff Mode) (Slave) 26.0 mA
 • SCO connection HV3 (1s interval Sniff Mode) (Master) 26.0 mA
 • SCO connection HV1 (Slave) 53.0 mA
 • SCO connection HV1 (Master) 53.0 mA
 • ACL data transfer 115.2kbps UART (Master) 15.5 mA
 • ACL data transfer 720kbps USB (Slave) 53.0 mA
 • ACL data transfer 720kbps USB (Master) 53.0 mA
 • ACL connection, Sniff Mode 40ms interval, 38.4kbps UART 4.0 mA
 • ACL connection, Sniff Mode 1.28s interval, 38.4kbps UART 0.5 mA
 • Parked Slave, 1.28s beacon interval, 38.4kbps UART 0.6 mA
 • Standby Mode (Connected to host, no RF activity) 47.0 μA
 • Deep Sleep Mode
 • **Notes:**
 1 Current consumption is the sum of both BC212015A and the flash.
 2 Current consumption is for the BC212015A device only.
Example: Bluetooth/USB adapter (2002: 50€, today: some cents if integrated)
L2CAP - Logical Link Control and Adaptation Protocol

- Simple data link protocol on top of baseband
- Connection oriented, connectionless, and signaling channels
- Protocol multiplexing
 - RFCOMM, SDP, telephony control
- Segmentation & reassembly
 - Up to 64kbyte user data, 16 bit CRC used from baseband
- QoS flow specification per channel
 - Follows RFC 1363, specifies delay, jitter, bursts, bandwidth
- Group abstraction
 - Create/close group, add/remove member
L2CAP logical channels

Slave

L2CAP
baseband

Master

L2CAP
baseband

Slave

L2CAP
baseband

signalling
ACL connectionless connection-oriented

Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
L2CAP packet formats

Connectionless PDU

<table>
<thead>
<tr>
<th>length</th>
<th>CID=2</th>
<th>PSM</th>
<th>payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>≥2</td>
<td>0-65533</td>
</tr>
</tbody>
</table>

Connection-oriented PDU

<table>
<thead>
<tr>
<th>length</th>
<th>CID</th>
<th>payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>0-65535</td>
</tr>
</tbody>
</table>

Signalling command PDU

<table>
<thead>
<tr>
<th>length</th>
<th>CID=1</th>
<th>One or more commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>code</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥0</td>
</tr>
</tbody>
</table>
Security

PIN (1-16 byte) → E_2 → link key (128 bit) → E_3 → encryption key (128 bit) → Keystream generator → payload key → Cipher data → Data

User input (initialization) → Pairing

Authentication key generation (possibly permanent storage) → Authentication

Encryption key generation (temporary storage) → Encryption

Encryption key (128 bit) → E_2 → PIN (1-16 byte)

Payload key → Data

Ciphering

Keystream generator → Encryption key (128 bit)
SDP – Service Discovery Protocol

- Inquiry/response protocol for discovering services
 - Searching for and browsing services in radio proximity
 - Adapted to the highly dynamic environment
 - Can be complemented by others like SLP, Jini, Salutation, ...
 - Defines discovery only, not the usage of services
 - Caching of discovered services
 - Gradual discovery

- Service record format
 - Information about services provided by attributes
 - Attributes are composed of an 16 bit ID (name) and a value
 - values may be derived from 128 bit Universally Unique Identifiers (UUID)
Additional protocols to support legacy protocols/apps.

- RFCOMM
 - Emulation of a serial port (supports a large base of legacy applications)
 - Allows multiple ports over a single physical channel

- Telephony Control Protocol Specification (TCS)
 - Call control (setup, release)
 - Group management

- OBEX
 - Exchange of objects, IrDA replacement

- WAP
 - Interacting with applications on cellular phones
Profiles

- Represent default solutions for a certain usage model
 - Vertical slice through the protocol stack
 - Basis for interoperability
- Generic Access Profile
- Service Discovery Application Profile
- Cordless Telephony Profile
- Intercom Profile
- Serial Port Profile
- Headset Profile
- Dial-up Networking Profile
- Fax Profile
- LAN Access Profile
- Generic Object Exchange Profile
- Object Push Profile
- File Transfer Profile
- Synchronization Profile

Additional Profiles
- Advanced Audio Distribution
- PAN
- Audio Video Remote Control
- Basic Printing
- Basic Imaging
- Extended Service Discovery
- Generic Audio Video Distribution
- Hands Free
- Hardcopy Cable Replacement
Bluetooth versions

- **Bluetooth 1.1**
 - also IEEE Standard 802.15.1-2002
 - initial stable commercial standard
- **Bluetooth 1.2**
 - also IEEE Standard 802.15.1-2005
 - eSCO (extended SCO): higher, variable bitrates, retransmission for SCO
 - AFH (adaptive frequency hopping) to avoid interference
- **Bluetooth 2.0 + EDR (2004, no more IEEE)**
 - EDR (enhanced date rate) of 3.0 Mbit/s for ACL and eSCO
 - lower power consumption due to shorter duty cycle
- **Bluetooth 2.1 + EDR (2007)**
 - better pairing support, e.g. using NFC
 - improved security
- **Bluetooth 3.0 + HS (2009)**
 - Bluetooth 2.1 + EDR + IEEE 802.11a/g = 54 Mbit/s
WPAN: IEEE 802.15.1 – Bluetooth

- **Data rate**
 - Synchronous, connection-oriented: 64 kbit/s
 - Asynchronous, connectionless
 - 433.9 kbit/s symmetric
 - 723.2 / 57.6 kbit/s asymmetric

- **Transmission range**
 - POS (Personal Operating Space) up to 10 m
 - with special transceivers up to 100 m

- **Frequency**
 - Free 2.4 GHz ISM-band

- **Security**
 - Challenge/response (SAFER+), hopping sequence

- **Availability**
 - Integrated into many products, several vendors

- **Connection set-up time**
 - Depends on power-mode
 - Max. 2.56s, avg. 0.64s

- **Quality of Service**
 - Guarantees, ARQ/FEC

- **Manageability**
 - Public/private keys needed, key management not specified, simple system integration

- **Special Advantages/Disadvantages**
 - Advantage: already integrated into several products, available worldwide, free ISM-band, several vendors, simple system, simple ad-hoc networking, peer to peer, scatternets
 - Disadvantage: interference on ISM-band, limited range, max. 8 active devices/network, high set-up latency
WPAN: IEEE 802.15 – future developments

• **802.15.2: Coexistence**
 - Coexistence of Wireless Personal Area Networks (802.15) and Wireless Local Area Networks (802.11), quantify the mutual interference

• **802.15.3: High-Rate**
 - Standard for high-rate (20Mbit/s or greater) WPANs, while still low-power/low-cost
 - Data Rates: 11, 22, 33, 44, 55 Mbit/s
 - Quality of Service isochronous protocol
 - Ad hoc peer-to-peer networking
 - Security
 - Low power consumption
 - Low cost
 - Designed to meet the demanding requirements of portable consumer imaging and multimedia applications
WPAN: IEEE 802.15 – future developments 2

• Several working groups extend the 802.15.3 standard

• 802.15.3a: - withdrawn -
 • Alternative PHY with higher data rate as extension to 802.15.3
 • Applications: multimedia, picture transmission

• 802.15.3b:
 • Enhanced interoperability of MAC
 • Correction of errors and ambiguities in the standard

• 802.15.3c:
 • Alternative PHY at 57-64 GHz
 • Goal: data rates above 2 Gbit/s

• Not all these working groups really create a standard, not all standards will be found in products later ...
WPAN: IEEE 802.15 – future developments

- **802.15.4: Low-Rate, Very Low-Power**
 - Low data rate solution with multi-month to multi-year battery life and very low complexity
 - Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation
 - Data rates of 20-250 kbit/s, latency down to 15 ms
 - Master-Slave or Peer-to-Peer operation
 - Up to 254 devices or 64516 simpler nodes
 - Support for critical latency devices, such as joysticks
 - CSMA/CA channel access (data centric), slotted (beacon) or unslotted
 - Automatic network establishment by the PAN coordinator
 - Dynamic device addressing, flexible addressing format
 - Fully handshaked protocol for transfer reliability
 - Power management to ensure low power consumption
 - 16 channels in the 2.4 GHz ISM band, 10 channels in the 915 MHz US ISM band and one channel in the European 868 MHz band

- **Basis of the ZigBee technology – www.zigbee.org**
ZigBee

- Relation to 802.15.4 similar to Bluetooth / 802.15.1

- Pushed by Chipcon (now TI), ember, freescale (Motorola), Honeywell, Mitsubishi, Motorola, Philips, Samsung...

- More than 260 members
 - about 15 promoters, 133 participants, 111 adopters
 - must be member to commercially use ZigBee spec

- ZigBee platforms comprise
 - IEEE 802.15.4 for layers 1 and 2
 - ZigBee protocol stack up to the applications
WPAN: IEEE 802.15 – future developments 4

- **802.15.4a:**
 - Alternative PHY with lower data rate as extension to 802.15.4
 - Properties: precise localization (< 1m precision), extremely low power consumption, longer range
 - Two PHY alternatives
 - UWB (Ultra Wideband): ultra short pulses, communication and localization
 - CSS (Chirp Spread Spectrum): communication only

- **802.15.4b, c, d, e, f, g:**
 - Extensions, corrections, and clarifications regarding 802.15.4
 - Usage of new bands, more flexible security mechanisms
 - RFID, smart utility neighborhood (high scalability)

- **802.15.5: Mesh Networking**
 - Partial meshes, full meshes
 - Range extension, more robustness, longer battery live

- **802.15.6: Body Area Networks**
 - Low power networks e.g. for medical or entertainment use

- **802.15.7: Visible Light Communication**

- Not all these working groups really create a standard, not all standards will be found in products later ...