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Abstract

Nowadays, gradient-based methods are one of the most widely used tools in aircraft Multidisci-
plinary Design Optimization. However, these methods require the computation of the sensitivities of
the interest functions with respect to the design variables, representing one of the most computationally
expensive steps in the optimization process, since these are frequently obtained by approximation
methods that are highly dependent on the number of design variables. Therefore, the main objective of
this work is to develop an efficient optimization tool for wing preliminary design, using exact gradient
information. Firstly, a survey on the existent sensitivity analysis methods is conducted, with the
application to a beam design problem modeled with finite elements, providing valuable insight in the
implementation process and advantages of each method. Subsequently, a tool to represent a 3D wing
structure is adapted into three blocks and the correspondent modules for sensitivity computation
are developed, with the application of the automatic differentiation, the symbolic derivative and the
adjoint methods. A parametric study is presented for a reference wing case and the total sensitivities
are computed with the developed framework and verified with the finite difference method. Lastly,
structural optimization tests, using the reference case as the initial design point, are performed.
The objective of minimizing the wing mass is achieved with a remarkable increase in computational
efficiency in the optimization process, translated in a reduction of the computational time to, roughly,
half and one third, when compared to the forward and central difference methods, respectively.
Keywords: Structural optimization, Gradient-based methods, Sensitivity analysis, Adjoint method,

Automatic differentiation, Finite element method

1. Introduction

Over the past century, a remarkable progress in the
history of aviation was observed and many differ-
ent configurations of aircraft were developed. The
aeronautical market is experiencing a growing trend
and, in the next 15 years, the air traffic is expected
to double. Therefore new aircraft need to be intro-
duced with more efficient technology.

In order to improve global aircraft design, sev-
eral disciplines must be simultaneously taken into
account as a coupled Multidisciplinary Design Op-
timization (MDO) problem, using mathematical
models dependent on a set of parameters that char-
acterize a certain design. By varying these pa-
rameters, different concepts are generated and the
main goal is to establish a compromise among the
disciplines to generate better concepts. According
to Sobieszczanski [1], there has been a rising in-
terest in MDO applications in aerospace systems,
but many challenges still exist concerning computa-
tional expense and organizational complexity. One
of the possible solutions to accelerate optimization
processes is to use gradient-based algorithms with

highly efficient sensitivity computation methods, in
order to lead the optimizer to an optimum design
point, fast and accurately. The adjoint method is
a good example of an efficient approach for gradi-
ent calculation, being the computational time prac-
tically independent on the number of design vari-
ables, and has been topic of research in many ar-
eas such as wing structural design, aerodynamic
drag reduction, composite manufacturing and aero-
structural problems.

Almeida [2] developed an aeroelastic tool that
included a static aero-structural mode, which was
used to perform test optimizations to minimize the
wing’s total mass for a given baseline configuration.
Even though an optimal solution was obtained, the
optimization was proven to be quite inefficient since
the forward finite difference method was used to es-
timate the gradient information, requiring the eval-
uation of the entire aero-structural code multiple
times per iteration.

The main objective of this work is to develop an
efficient optimization tool for the structural prob-
lem in the aero-structural framework, relying on



gradient-based information to find the best solu-
tion. An adjoint structural solver must be included
in this framework and other alternative sensitivity
analysis methods must be studied and compared.
The sensitivity framework must be validated and
tested for wing optimization cases.

2. Optimization Methods

Optimization can be defined as the act of obtaining
the best result under given circumstances, and has a
direct application in engineering problems. Accord-
ing to Belegundu [3], most engineering optimization
problems can be mathematically expressed as non-
linear programming (NLP) problems,

minimize fobj (%)

w.r.t x € R"

subject to  g;(x) <0, ji=1,..,¢ (1)
and he(x) =0, k=1,...m

and xl<x< XU,

where fop;(x) is the objective function, which corre-
sponds to a criterion for evaluating different designs
dependent on the design vector x = (1, 2, ..., )7
of n design variables, which is limited by lower and
upper bound vectors x” and xY, respectively. The
optimization problem is subjected to ¢ inequality
constraints, g;(x), and to m equality constraints,
hi(x). The term feasible design is used to describe a
set of design variables that satisfies the constraints.
In general, these problems can be divided in either
gradient-based or gradient-free methods, depending
on, whether or not, information on the derivatives
of the objective and constraint functions is required.

Gradient-based methods are applied in de-
sign problems which have smooth objective func-
tions and constraints, using gradient information
to find an optimal solution. Most of the gradient-
based algorithms comprise two subproblems:

1. Establishing the search direction.

2. Minimizing along that direction (or one-

dimensional line search).

The main advantages of these methods are the
rapid convergence to the optimum solution by ex-
ploiting gradient information and the possibility
to establish a clear convergence criterion, assuring
that the step size is under a certain order of mag-
nitude and allowing local optimum identification.
The main disadvantages include failing when noisy
or discontinuous objective functions are considered
and also tending to find a local optimum instead
of guaranteeing a global optimum. Furthermore,
the solution may be influenced by the initial design
point choice, since different starting points may lead
to different search directions.

The necessary optimality conditions can be de-
rived for the nonlinear constrained optimization

problems, based on the definition of the Lagrangian
function (£):

l m
LN = Fx)+ D pigi(x) + Y Mehi(x), (2)
j=1 k=1

where \; and p; > 0, are Lagrange multipliers de-
fined for each constraint hy = 0 and g; < 0, respec-
tively. It is assumed that fo;, A and g; are con-
tinuously differentiable over R™. If x* is an optimal
solution of the optimization problem, then there ex-
ist Lagrange multipliers p* and A* that satisfy the
Karush-Kuhn-Tucker (KKT) optimality conditions:

! m
VoL =0= ix:;{+;uj‘g’;j+ > )\k% —0
(3a)
9; <0, i=1,..,¢ (3b)
hy=0, j=1,..m (3c)
pi >0, i=1,..,¢ (3d)
wigi =0, i=1,..,m. (3e)

Some examples of gradient-based methods that
rely on these conditions are the Gradient Projection
Method, the Feasible Directions Method or The Se-
quential Quadratic Programming (SQP).

Gradient-free methods are optimization ap-
proaches that do not require derivative information
to find a solution and are based solely on the value
of the objective function. An advantage in gradient-
free methods the non requirement of a strong set
of assumptions or global properties on the opti-
mization problem and no necessity in calculating
sensitivity information. Besides that, several algo-
rithms are able to solve discrete optimization prob-
lems, usually tolerate noise in the objective function
and are able to find a global optimum, instead of
a local optimum. The main disadvantages concern
the sensitivity to the dimension of the problems,
increasing the computational cost due to the need
of evaluating the objective function multiple times.
It may also be difficult to establish an ending cri-
terion. An example of gradient-free algorithms are
the so-called "population based" algorithms, which
engage a set of solutions (instead of a single solu-
tion) that are updated at every iteration, simulating
the evolution or behavior of a population. Some ex-
amples of population based methods are: Genetic
Algorithms, Particle Swarm Optimization and Ant
Colony Methods.

Based on the overview of gradient-based and
gradient-free methods presented, it is necessary to
select one of the approaches to be applied to the
structural framework. Since a highly efficient op-
timization is required, a high convergence speed
method with clear convergence criteria seems to be



the best choice. Furthermore, the structural model
to be used is well established and the parameters
to be treated as design variables are considered to
be continuous. Methods that are dependent on the
dimension of the problem shall be avoided, since
if a high number of design variables is chosen, the
optimization process will require a high number of
evaluations to determine an optimum design. For
all the reasons stated above, gradient-based meth-
ods will be used in this thesis. Note that in theory,
these methods do not depend directly on the dimen-
sion of the problem. However, the method used to
compute the sensitivities may (or not) be dependent
on the number of design variables.

3. Sensitivity Analysis

Design sensitivity analysis consists in the computa-
tion of the dependence of an interest function (f),
which can be either an objective function or a con-
straint, with respect to the design variables (z) and
is considered one of the most computational expen-
sive steps in the gradient-based optimization pro-
cess. Sensitivity analysis methods can be divided in
approximation and analytic methods. The former
include finite difference and complex step methods
which yield approximate result of the interest func-
tion’s sensitivity. The latter exploits differential cal-
culus concepts, such as symbolic differentiation and
the chain rule, to obtain the true sensitivity values,
being only affected by computational errors.

3.1. Symbolic Differentiation

The first analytical method to evaluate the sensitiv-
ity of a function is the symbolic differentiation. A
function f is said to be differentiable with respect
to z, if the following limit exists:

f(z+ Az) — f(z)
Azx

(4)

The limit represented in Equation (4) is known
for several functions, allowing an explicit deriva-
tion of the function’s sensitivity. Nevertheless, it
is restricted to explicit functions and may become
computationally expensive or even impracticable to
calculate in high dimensionality problems.

3.2. Finite Difference Method

The finite difference method allows sensitivity esti-
mation by approximating the derivative of a func-
tion with a quotient of differences and can be de-
rived from a Taylor series expansion. The forward
finite difference expression, whose truncation error

is O(Ax), is given by

A e+ An) - @)
de Az

+0(Az). (5

If a second-order estimation is desired, the central-
difference formula may be used:

df  flzx+Az) — f(z — Ax)
dz 2 Ax (6)

The main advantages in finite difference meth-
ods is the simplicity in implementation. However,
for the multivariable case, it may become computa-
tionally expensive if many design variables are in-
volved. Furthermore, there is the need to choose a
small step-size to minimize truncation error, but at
the same time guaranteeing that subtractive can-
cellation errors do not become dominant, making
the task of choosing a design perturbation step-size
a challenge.

+ 0[(Az)?).

3.3. Complex Step Method

The complex step method [4] uses a complex step
perturbation i{Ax to calculate the sensitivity of an
interest function, arising as a solution to overcome
the problem of subtractive cancellation in the finite
difference methods and leading to accurate and ro-
bust results. The sensitivity expression is calculated
as

df(x)
dz

Im[f(z + iAx)] 9
= RS oaw?, ()
where O[(Ax)?] represents the second-order trunca-
tion error. As in the finite difference case, the cost
of estimating a sensitivity is directly proportional to
the number of design variables n, becoming a dis-
advantage in using this method for problems with
a great number of design variables. Furthermore,
it may increase the computational cost and may be
necessary to redefine some functions in the com-
puter language to allow complex arguments.

3.4. Alternative Analytic Methods

According to Martins [5], alternative analytic ap-
proaches such as the adjoint and direct methods
are the most efficient and accurate in sensitivity
analysis. However, these methods require previous
knowledge on the governing equations, which is a
drawback when compared to other sensitivity anal-
ysis methods. For a general physical system, the
governing equations can be represented in residual

form,

where x,, is the design vector and y; is the state
variable vector. Using the chain rule to capture
both explicit and implicit contributions of x,,, it is
obtained:

df _ 9f

dz, - oz,

of dy;
8% d-rn’

(9)

where the partial derivative terms are given by dif-
ferentiating the explicit terms in the interest func-
tion’s expression. In order to solve the second term



on the right-hand side, two approaches are found:
the direct and the adjoint sensitivity methods.

3.4.1 Direct Sensitivity Method

The first approach to evaluate a function of inter-
est’s sensitivity corresponds to the direct method.
Since the governing Equation (8) must always be
satisfied, it is a necessary condition that the total
derivative of the residuals with respect to any de-
sign variable is always equal to zero, meaning that

dx,

Using Equation (10), the total derivative of the
state variables with respect to design variables
(gzyn) is directly obtained and all the necessary in-
formation to solve Equation (9) is supplied.

Note that, by using the direct sensitivity method,
Equation (10) has to be solved n times due to the
term on the right hand side. Thus, the computa-
tional cost of using the direct method will depend
considerably on the number of design variables.

3.4.2 Adjoint Sensitivity Method

The second approach to evaluate a function of inter-
est’s sensitivity uses the adjoint formulation. Com-
bining Equations (9) and (10), results

-1
df of o [673} OR an

dz, B oz, 3% 6yi 0xy .
wT

An auxiliary adjoint vector v is defined and can
be determined by solving the adjoint equation:

& o=l
y; 9y '

Note that, with this method, the calculation of
the adjoint vector is independent on the number of
design variables, depending only on the number of
interest functions, and the total sensitivity with re-
spect to the design can be evaluated with a small
additional computational cost. Thus, this method

is preferable if the number of design variables ex-
ceeds the number of interest functions.

(12)

3.5. Automatic Differentiation

Automatic differentiation [6] is an exact method
that calculates sensitivities by applying the dif-
ferentiation chain rule of Calculus systematically
throughout the computer code, at elementary func-
tions levels. This approach avoids approximation
errors that exist in the finite difference method, and
can be generated automatically, without the need
of hand-coding, representing an advantage with re-
spect to the alternative analytic methods. If major

modifications need to be performed in the main pro-
gram, a new updated version of the derivative com-
putation is generated quickly. According to Berland
[7], the procedure to implement an automatic dif-
ferentiation algorithm comprises three steps:

1. Identify the intrinsic functions, based on the

original source code;

2. Evaluate the derivatives of intrinsic functions;

3. Use the chain rule to obtain the desired deriva-

tive.

Any program may be decomposed into m ele-
mentary functions T3, with ¢ = 1,...,m, and t; =
T;(t1,...,t;—1) correspond to the elementary vari-
ables. The chain rule of differentiation for a generic

g?’; can be written as
J

i—1 or; 0ty
Oty 8tj ’

ot;
37251' =0;j + (13)

k=j
where §;; is the Kronecker delta. Two modes may
be used to propagate the derivatives throughout the
chain rule: the forward mode, in which the bottom
index j is chosen and kept fixed, varying the in-
dex 7 from j until the desired derivative (ultimately
to m), or the reverse mode, in which the i index
is fixed, varying the index j, in a descendant or-
der, from ¢ until the desired quantity (ultimately
down to 1). One sweep of forward mode, deter-
mines one column vector of the Jacobian matrix
and one sweep on the reverse mode calculates one
row vector, meaning that the reverse mode is desir-
able if there are more variables than functions, and
the forward mode is best suited if the number of
functions is greater than the number of variables.
However, the reverse mode requires more memory
since the code is run once forward, storing all the
intermediate variables, and once backward to apply
the backwards chain rule.

The implementation of the forward automatic dif-
ferentiation can be performed either by source code
transformation, in which the original source code
is analyzed, parsed and code associated with the
derivative calculation is added; or by operator over-
loading, in which operators are redefined for dual
numbers, being the first part of the number asso-
ciated to the function’s value and the dual part of
the number containing the derivative information.
The former approach will be used in this work with
a tool called ADiMat.[8]

3.6. Benchmark

As a first approach to the implementation of sen-
sitivity analysis methods to structural problems, a
rectangular cantilevered Euler-Bernoulli beam with
constant width b and heights h; and hy on the first
and second halves of its length L was considered
with a point load (P) applied at the tip, as repre-
sented in Figure 1.
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Figure 1: Cantilevered beam representation.

To describe the structural behavior of the beam,
the Finite Element Method (FEM) [9] was chosen,
which is a numerical method that is used to solve
real world problems with complex physics, geome-
try and boundary conditions by dividing the over-
all problem’s domain in many subdomains, and ap-
proximating the solution of the governing equation
within each subdomain with simplified functions.

After developing the finite element code, a refer-
ence beam was chosen with b = 25mm, hA; = 35mm,
ho = 30mm, corresponding to the design variables
(z), and P = 100N and L = 2m. The Young’s
modulus of the material used was £ = 70x GPa.
Two functions of interest are considered: the verti-
cal tip displacement (f;) and the bending moment
at the built in end (f2). The latter function is only
used to verify code implementation, since the mo-
ment applied at the root is independent of the de-
sign variables, yielding a zero sensitivity.

The sensitivities were computed with the forward
difference (FD) and central difference (CD) meth-
ods, by using Equations (5) and (6); the complex
method (CM), by using Equation (7); the forward
algorithmic differentiation, by using ADiMat and
the alternative analytical methods (direct and ad-
joint). The last two used the direct equation,

dy; 0Ky .
; - =———; 14
M Az, oz, vio (14)
and the adjoint equation,
of
K; = , 15
k Yk o (15)

respectively, where Kj; represents the reduced stiff-
ness matrix, ¢; the solution for the considered de-
sign point and 1, the adjoint vector. The sensitiv-
ities obtained with the adjoint method were used
as reference. According to Table 1, it is observable
that an increase of b, hy or hs, leads to a decrease
in the tip deflection (f1), since the sensitivity val-
ues are negative for the three cases, being the hq
the variable with the highest influence. The sensi-
tivities relative to fo were omitted since these were
verified to be approximately zero.

In Figure 2, the relative error of the tip displace-
ment sensitivity with respect to the beam cross-
sectional width is presented in a logarithmic scale.

e dfi dfi dfi
Sensitivity O [-] T [] T [-]
Value -1.83134E-05 -3.19867E-05 -8.46561E-06

Table 1: Sensitivity analysis results with the adjoint
method.

For the FD, linear convergence is verified and a rel-
ative optimum step of 2.5 x 10~2 is observed. For
the CD quadratic convergence is obtained and a rel-
ative optimum step of 7.94 x 1076 is verified. For
the CM quadratic convergence is observed and the
error converges for steps lower than 10~°. For the
optimal steps, CM presented the lowest sensitivity
errors, followed by CD and FD.

forward difference central difference complex step

Figure 2: Logarithmic plot of 5(%) as a function
of the relative step size.

For the values of the sensitivities obtained it was
verified that FD and CD presented relative errors
in the order of 10~® and 1071°, respectively, for
optimal steps. For the complex step, automatic
differentiation, direct and adjoint methods similar
sensitivities were obtained, with relative errors in
the order of 10714, Thus, the method to be used
in the wing structural problem must result from a
trade-off between the complexity in implementing
and execution time.

4. Structural Framework

In order to assess the structural behavior of a 3D
aircraft wing, a framework was developed compris-
ing the following three modules: the equivalent
cross-sectional properties; the equivalent beam el-
ement properties; and the finite element model.

4.1. Equivalent cross-sectional properties

The first module determines the cross-sectional
properties at a certain position along the wing span,
using a thin-wall wingbox approximation model
(Figure 3) and will be utilized to evaluate the cross-
sectional properties at the nodes locations.

The inputs of each cross-section are the chord
length (¢), the front and rear spars location (z1/c,
x9/c), the wingbox segment’s thicknesses (¢4, t5,
tc and tp), the Young’s modulus (F) and the ma-
terial density (p). The outputs correspond to the
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Figure 3: Thin-wall wingbox approximation of a
NACAQ015 airfoil, in the airfoil’s reference frame.

shear center location (SC,, SC,), the axial stiff-
ness FA, the bending stiffnesses Fl,, and El,,
and torsional rigidity G.J. The steps to obtain these
properties are the following:

e Characterize the airfoil and generate the wing-
box based on the input parameters;

e Determine the centroidal axis and compute the
moments of area contributions of each wingbox
segment relative to the centroid;

e Calculate the shear center location, corre-
sponding to the point where shear loads pro-
duce no twist;

e Determine axial and bending stiffness relative
to the shear center;

e Compute the torsional stiffness with the Bradt-
Batho Shear Flow Theory;

e Calculate the linear density (p;) of the cross-
section.

4.2. Equivalent Beam Element Properties

The second module performs a weighted average of
the structural properties between two sections of
the wing, and will be used to determine each beam
element’s properties. The inputs correspond to the
structural properties (EA, El,,, Fl,,, GJ and p;)
at the boundaries (nodes). The outputs are the av-
erage area (Ag,), average moments of inertia (I4,)
and average polar moment of inertia (J,,), which
are calculated as

AL+ VAL Ay + Ay

Ay = 3 , (16a)
o L4+ BL+ VL L+ LI+ 1L (16b)
av — 5 .

The expression for Jy, is the same as in Equation
(16b). The indexes 1 and 2, correspond to the prop-
erties on the limits of the considered element. The
average linear density (p;,,) is also obtained as an
output and is simply given by the arithmetic mean
value at the boundaries.

4.3. Finite Element Model

The third module generates the finite element
model of the wing and evaluates its structural re-
sponse to an aerodynamic loading. The low fidelity
3D beam finite element (Figure 4) is chosen since
it allows fast generation of concepts in preliminary
design stages and assesses important structural re-
sponses. This corresponds to a unidimensional fi-
nite element model, delimited by two nodes with six

degrees of freedom each: three displacement com-
ponents (ug, Uy, u;) and three rotation components

(0, 0y, 0.).

00 T

0.1 T
u Our % n Oy
20 2,J
T Uy,1 A Y T Uy,j 7
T l
Sl g, 7 x Uy g (%}
Node I Node J

Figure 4: 3D-beam element representation.

This general beam element results from the con-
jugation of an axial bar element, two bending beam
elements and a torsion bar element, whose govern-
ing equations are given, respectively, by:

d du,
— | EA—= = 1
d:c( dx>+b(x) 0, (17)
d? dZUZ/
d:v2 (Elyy/zz de y) - q(l‘) =0 ) (18)
d df,
—_— =0. 1
. (GJ ) +m(z) =0 (19)

The variables FA, EI and GJ represent axial,
bending and torsional rigidity, respectively, and the
variables b(z), ¢(z) and m(z) correspond to dis-
tributed axial, bending and twisting loads.

In order to formulate the stiffness matrix, it is
necessary to establish the shape function and orga-
nize them in a matrix [IV]. The axial displacement
(u,) and torsion (6, ) are modeled with linear shape
functions and for the transverse displacements (u,
and wu.), cubic shape functions along x were uti-
lized. The full displacement field for a 3D beam
element can be determined using

u=[Nly, (20)
where u is the vector of displacements and y is the
vector of nodal displacements.

The derivation of the stiffness matrix can
be performed by using the concept of po-
tential energy [2]. For a general finite ele-
ment, the potential energy can be defined as

D][B]dQ -y / N)" £,7dQ

T7ds .

(21)
where ) corresponds to the element domain, S to
the element’s surface, f, to the volume forces and
fs to the surface forces. In this case, the stress
vector, the elasticity matrix and the strain vector
are slightly modified, to represent the axial force,
bending moment in both planes and the torsional



moment, as

N, EA 0 0 0 ()
M| |0 EL. 0 0])r(2)| _
M=o 0 EL, o|s( " Pl (22)

M, 0 0 0

Note that the modified strain vector includes the
axial strain, curvatures and twist angle. The mod-
ified strain-displacement relation is given by

o
T2 0 o
e=Bly=|, % » ,|WNy. @
oz?
0 0 0 5

The stiffness matrix of the element is identified
from Equation (21) and is computed as
K= [T,
In general, the local reference frame of the finite
element is different from the global frame and it
may be useful to represent the results in the global
frame. The relation between the element coordi-
nates and the global coordinates is given by
ye =Ty, (25)
where y, corresponds to the vector of displacements
in the element Cartesian coordinates and y rep-
resents the vector of displacements in the global
Cartesian coordinates. The element stiffness ma-
trix in the global reference frame ([K¢]) may be
calculated as
(K] = [Tr]" [K§) [Tr] - (26)
After defining the element stiffness matrices in
the global reference frame and assemble the global
matrix, it is necessary to determine the global force
vector containing the aerodynamic information to
be applied at the nodes of the beam finite elements.
The aerodynamic analysis is performed by using an
incompressible potential flow panel method code
developed in MATLAB®. The pressures are as-
sumed to be constant within each panel and the
resultant forces applied at each panel’s collocation
point may be estimated by multiplying the area of
each panel by the dynamic pressure 0.5pV2, where
p represents the density of the fluid and V, the free
stream velocity. To transfer the forces in the pan-
els to the structural nodes, each collocation point
force (f;) is decomposed into the respective global
reference frame components, and the equivalent mo-
ments relative to the structural node are calculated
using an auxiliary orientation vector (r;) defined
from the structural point to the considered colloca-
tion point as

m; =r; X fi . (27)

Note that the collocation points are located in the
same cross-sectional plane as the structural nodes
to simplify load transfer.

Having the global stiffness matrix and force vec-
tor, the reduced system of equations shall be ob-
tained from applying the essential boundary con-
ditions. The wing is modeled as a clamped beam,
meaning that the first six degrees of freedom are
fixed corresponding to the node of the first element,
that is located at the wing root section. Thus, the
reduced stiffness matrix is obtained by eliminat-
ing the first six rows and columns from the global
stiffness matrix. The corresponding first six en-
tries of the external force vector are removed, as
well. Hence, all the conditions required to obtain
the static structural solution of the problem are ful-
filled.

5. Structural Framework

After defining the structural framework, parametric
studies were carried out to verify how output func-
tions are influenced by changing some parameters
from the baseline configuration. Only internal ge-
ometric parameters and material properties will be
considered in these studies. The external shape is
not changed, in order to obtain a constant external
aerodynamic loading. The baseline external and in-
ternal wing geometries, the material properties and
the flight condition are summarized in Table 2.

Internal Geometric Parameters

0.25
0.75

External Geometric Parameters

Half-wing spanwise length (L) 7m
Root chord (¢root) 1m

Front spar location (z1/c)
Rear spar location (x3/c)

Angle of attack («) 2 Front spar thickness (t4) 20 mm
Sweep (A) 0 Upper skin thickness (t3) 5 mm

Dihedral (I') 0° Front spar thickness (t¢) 20 mm
Taper ratio (\) 1 Lower skin thickness (¢p) 5 mm

Twist at the tip (d4;p) 0

Material Properties Flight Condition

Density (p) 2800 kg/m? | Altitude (h) 1370 m
Young’s modulus (E) 75 GPa Air density (pair) 1 kg/m?
Shear modulus (G) 30 GPa Freestream velocity (Vi) 75 m/s

Table 2: Reference wing baseline parameters.

Four interest functions are considered in this
parametric study: the total wing mass (Muying),
which is given by the sum of the linear density times
the length of each finite element and is often desired
to be minimized in aircraft design, to achieve bet-
ter performance; the wing tip vertical displacement
(04ip), which is directly obtained from the finite el-
ement solution vector y and may be used as a con-
straint to assure that the tip displacement does not
surpass a predefined maximum allowable value; the
tip rotation (), which is also obtained directly
from y and may be used as a constraint; and the
maximum stress at the wing root, which only con-
siders the direct axial stress plus the absolute val-
ues of both axial stress components originated from



bending as

N, M.
Oy = —— Y

A I..

Myd.

Iyy

; (28)

where d,, corresponds to the distance from the shear
center to the considered spar, and d, corresponds
to half the length of that spar. Since there are two
spars in this wingbox model, Equation (28) has to
be evaluated twice for a corner point of each spar.
Afterwards, it must be checked which of the two
cases presents the highest stress value to be defined
as the maximum axial stress (Gmaz)-

The influence of the spars’ location along the air-
foil is the first case that is assessed, as represented
in Figure 5. A specific example is presented in Fig-
ure 6, where it is observable that the total mass of
the wing decreases when moving the front spar (A)
in the rear direction. This occurs because an in-
crease in x1/c leads to a reduction of the upper and
lower wingbox segment’s lengths. Thus, the linear
density of the cross-section will be lower than in
the reference case, since there is less material per
cross-section segment, resulting in an overall mass
reduction. The reverse happens when moving the
rear spar (C) in the rearwards direction.

y

(x/c)

Figure 5: Wing box configurations by changing the
spars locations.

Total Wing Mass (kg)

\ ~— Front Spar (A)
\ ——— Rear Spar (C)
\ ®  Baseline point

0 02 04 06 08 1
Spar Relative Location (-)

Figure 6: Influence of the spars locations in the

wing mass.

The thickness of the wingbox segments (Figure
7) is also considered in the parametric studies. An
example is illustrated in Figure 8, where it is verified
that an increase of the thickness of any section of
the wingbox leads to a decrease in the vertical tip
displacement. This occurs due to an increase in
bending stiffness. Out of the three cases presented

Figure 7: Representation of the thicknesses of the
wingbox segments.

Front Spar (A)
" ~ = Rear Spar (C)
~ — — Upper and Lower Skins (B+D)
10 ®  Baseline Point

Vertical Displacement at the Wing Tip (m)

0 001 002 003 004 005
Thickness (m)

Figure 8: Influence of the wingbox segment’s thick-
ness in the tip vertical displacement and rotation.

in Figure 8, the thickness of the front spar has the
greatest impact in the vertical tip displacement.

Similar tests performed for the material prop-
erties including the material density, the Young’s
modulus and the shear modulus.

The results obtained with the parametric study
are summarized in Table 3. Note that "\" corre-
sponds to a decrease in the output function with
an increase in the variable’s value. Similarly, " "'
represents an increase and "—" means that no in-
fluence is verified. These results are valid in the
neighborhood of the baseline point.

Increase in ‘ Maing 6tip etip Omax
Front spar location (x1/c) N N N
Rear spar location (z2/c) a S e
Front spar thickness ({4) ya N\ N
Skin thickness (tpp) a NN S
Rear spar thickness (¢¢) N N N
Density (p) N - - -
Young’s modulus (E) - N - -
Shear modulus (G) - - N -

Table 3: Effect of the parameters studied on the
output functions.

6. Sensitivity Analysis Framework

After evaluating how the parameters influence the
output functions, three auxiliary modules are in-
troduced in the framework to compute the exact
derivative information: the automatic differentia-
tion, the explicit derivative and the adjoint method,
represented in dashed boxes in Figure 9. The de-
sign vector d corresponds to a vector of dimension
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Figure 9: Structural optimization framework.

5(nfe + 1), where ny. represents the number of fi-
nite elements, containing the parametrized internal
structure configuration at each node location, being
organized as

d=[z1/cxa/ctatpp tC]?7 (29)

withi=1,...,np + 1.

The cross-section properties information vector ¢
represents a vector of dimension 6(n .+ 1) contain-
ing the cross-section properties at the nodes loca-
tions, calculated in the shear center frame, as well as
the shear center chordwise coordinate, represented
in the airfoil frame, being written as

c=cyUcpUc3g = [EAC EI.. Ely,, GJC]T U [SC:. ], Ulpie) (30)

where ¢y, co and c3 represent segments of the vec-
tor c.

The vector x, of dimension 6ny¢., contains the
average material properties of each finite element
and the shear center location at the end node of
the finite element (SC;) as

x =x1Uxp Uxg = [EAEL. ElL,, GJ|] U[SC, |, U[p];, (31)

with j =1,...,nf

For a general interest function f, the calculation
of its sensitivity with respect to the design variables
can be written as

g_ﬂ.dx dc

= _— 32
dd dx dc dd’ (32)

where:
° g—g is computed with automatic differentiation;

° 3—’; is obtained by using explicit differentiation;

. % is found by applying the adjoint method.
Note that for each module, the most suitable exact
method was chosen. For the first module, symbolic
differentiation was not applicable due to the com-
plexity of the problem and the alternative analytic
sensitivity were not suitable since the finite element
solution is not involved in this part of the pro-
gram, leaving the automatic differentiation as the
only possible approach. For the second module, the
explicit expressions were available and due to their
low complexity symbolic differentiation was a suit-
able approach. For the third module, the adjoint
method was chosen, being the most efficient exact

method available, since the number of intermediate
design variables (x) was greater than the number of
interest functions dependent on the structural solu-
tion. The first and third methods were validated
with the forward finite difference method. The sec-
ond method required no benchmark due to its sim-
plicity of implementation.

Also notice that, depending on the interest func-
tion f, it may not be necessary to run all the mod-
ules in the optimization chain.

If the cross-sectional geometric configuration are
forced to be equal at every cross-section, the to-
tal sensitivity is obtained by summing the contri-
butions of each individual cross-section dj. Thus a
new design vector (v) is defined as

v =[z1/c xa/c ta tBD tC]T . (33)

The total sensitivity results are presented in Ta-
ble 4. The signs of the sensitivities may be verified
with the qualitative analysis performed in Table 3.
This may also be confirmed by analyzing the slopes
of the lines tangent to the curves at the baseline
points represented in the parametric studies figures:
the sign of the slope corresponds to the sign of the
correspondent sensitivity. Also, the higher the mag-
nitude of the derivative, the steeper the slope of the
line tangent to the curve at the baseline point.

) dnlwing détip datip dUIrLtL:U
! dv dv dv dv
z1/c -1.7T140E+02 -1.0187E-03  5.7000E-03  4.7191E+405
zo/c  9.0828E+01  5.3706E-03  2.1334E-03  2.4783E+06
ta 2.8943E403 -1.4764E-01 -2.3479E-02 -7.1689E+4-07
tgp  1.9646E+04 -4.3310E-02 -2.4537E-01 -2.8343E407
tc  1.5475E+03 -T7.8937E-02  1.4222E-02 -3.7224E407

Table 4: Sensitivity of the interest functions with
respect to the geometrical wing parameters.

The respective verification of the total sensitivity
analysis framework was performed with the forward
finite difference method. The results of the relative
errors obtained for the finite difference case, using
the total sensitivity calculated with this framework
as reference, shown relative differences smaller than
0.0143%, proving the correct implementation of the
framework.

7. Wing Structural Optimization

The final stage of this project corresponds to use the
sensitivity analysis framework in a structural opti-
mization problem of an aircraft wing. The function
fmincon from MATLAB® Optimization Toolbox
was used to solve nonlinear constrained multivari-
able optimization problems, using the Sequential
Quadratic Programing algorithm. The optimiza-
tion problem is given by Equation (34) where the
objective is to minimize wing mass, with a set of



constraints in the vertical tip displacement, tip ro-
tation and maximum stress at the root. The initial
design and respective upper and lower bounds are
described in Table 5.

minimize Maing (V)
v
subject to  dyip(v) —0.06m < 0,

Htip(v) — 10 S 0 5
Omaz (V) — 322GPa < 0,

ngvng

Upper bound (vV)

0.40
0.80
30.00
8.00
30.00

Lower bound (v%)

0.20
0.60
1.00
1.00
1.00

Initial design
0.25
0.75
20.00
5.00
20.00

Design vector (v) (vo)

z1/c [
za/c [
ta [mm]
tpp [mm]
te [mm]

Table 5: Inital values and bounds of the design vari-
ables.

The initial and final results in the optimization
problems are summarized in Table 6. It can be ob-
served that the wing mass decreased from 187.006
kg to 16.795 kg. The vertical tip displacement and
tip rotation have tended to the upper limits of the
constraint, being equal to the defined maximum val-
ues. The maximum stress falls below the maximum
stress limit. In the new wing configuration, the rear
spar was moved to the lower bound and the front
spar was shifted towards the trailing edge. All the
specified thicknesses decreased and the skin thick-
ness was equal to the lower bound.

Initial

187.066
4.748 50.000
0.0809 1.000

2.320E+06  2.38634E+07

Design variables Initial
o1/c H 0.25
za/c H 0.75
ta [mm)] 20

tpp [mm] 5
tc [mm] 20

Optimized
16.795

Optimized | Output functions

0.3856
0.60
2.1199
1
1.0324

Muing [ke]
S15p [mm)
Buip [°]

Omaz [Pa)

Table 6: Initial and optimized results.

The results obtained using the sensitivity frame-
work were benchmarked with the forward and cen-
tral finite difference methods (Table 7). The opti-
mal configurations were the same in the three cases,
however, the sensitivity framework was proven to be
the most efficient, requiring almost half of the time
when compared to the forward finite difference and
roughly one third of the time when compared to the
central finite difference.

Gradient calculation method Time [s] No. iterations Function evaluations
Sensitivity framework 16.58 9 10
Forward finite difference 28.21 9 60
Central finite difference 46.78 9 110

Table 7: Excecution time, iterations and function
evaluations for three different sensitivity calculation
methods.
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8. Conclusions

With this work, an efficient optimization tool for
wing structural design was developed, relying on
gradient-based information to find the best solu-
tion. The most expensive step found in these meth-
ods, concerning the sensitivity computation with
the usage of approximation methods that are highly
dependent on the number of design variables, was
overcome by developing an exact sensitivity analy-
sis framework comprising the algorithmic differen-
tiation, the explicit differentiation and the adjoint
methods. Ultimately this framework was linked to
an optimizer and structural optimization examples
demonstrated not only convergence to better de-
signs, in terms of objective function values, but also
improvements in terms of efficiency, clearly notice-
able with the reduction of the computational time
for almost half, when using the forward finite dif-
ferences, and for roughly a third, when using the
central differences.

References

[1] J. Sobieszczanski-Sobieski and R. T. Haftka.
Multidisciplinary aerospace design optimiza-
tion: survey of recent developments. Structural
Optimization, 14(1):1-23, 1997.

Joao Almeida. Structural dynamics for aeroe-
lastic analysis. Master’s thesis, Técnico Lisboa,
October 2015.

Ashok D. Belegundu. Optimization Concepts
and Applications in Engineering. Cambridge
University Press, 2"¢ edition, 2011.

J. N. Lyness. Numerical algorithms based on
the theory of complex variable. In Proceedings
of the 22nd ACM National Meeting, 1967.

Joaquim R. R. A. Martins. A Coupled-Adjoint
Method for High Fidelity Aero-structural Opti-
mazation. PhD thesis, Stanford University, Oc-
tober 2002.

Christian Bischof, Paul Hovland, and Boyana
Norris. On the implementation of automatic dif-
ferentiation tools. Higher-Order and Symbolic
Computation, 21(3):311-331, 2008.

Harvard Berland. Automatic differentiation.
Department of Mathematical Sciences, NTNU,
September 2006.

H. Martin Biicker. Combining source trans-
formation and operator overloading techniques
to compute derivatives for MATLAB programs.
IEEE Computer Society.

J.N. Reddy. An Introduction to the Finite Ele-
ment Method. McGraw-Hill Education, 3rd edi-
tion, 2005.



