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A SURVEY ON STOCHASTIC MULTICRITERIA ACCEPTABILITY
ANALYSIS METHODS

Abstract

Stochastic Multicriteria Acceptability Analysis (SMAA) comprises a family of mul-
tiple criteria decision aiding (MCDA) methods for problemsincluding incomplete,
imprecise, and uncertain information. Methods of the family allow solving MCDA
problems of various types. Even though the methods have beenapplied in the past in
various real-life decision-making situations, the structure of a unified SMAA frame-
work has not been studied. In this paper we describe the methods of the family and
define a unified SMAA framework. We also point out the key points in the methodol-
ogy for future research.

Keywords: Stochastic Multicriteria Acceptability Analysis (SMAA);Multiple Crite-
ria Decision Aiding (MCDA); Simulation.
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1 Introduction

Stochastic Multicriteria Acceptability Analysis (SMAA) is a recently developed family of Mul-
tiple Criteria Decision Aiding (MCDA) methods. The different SMAA methods can be used to
handle the three main MCDA problem statements (Figueira et al., 2005): choosing, ranking, and
sorting. The methodology considers these problem statements in a wider sense; for example, in-
stead of resulting in a ranking, the SMAA-2 method provides probabilities for alternatives to obtain
certain ranks. The methodology is based on an inverse analysis of the space of feasible parame-
ter values. It allows ignorance on criteria measurements and preferences. One of the advantages
of SMAA over most other MCDA methodologies is that it can be used without any preference
information if such is not available.

We define ignorance divided into three subcategories: incompleteness, imprecision, and un-
certainty (Smets, 1991). Incomplete information means that the value is missing. Imprecise infor-
mation means that we have a value for the variable, but not with the required precision. These two
subtypes are of objective type. Uncertainty instead is a subjective form of ignorance appearing
when the observer is taken into account, and means that the observer gives complete and precise
information, but is unreliable itself.

In this survey, we describe the methods and extensions of theSMAA family, and provide
recommendations on which method to use in different MCDA contexts. We find the key points of
the methodology by defining the SMAA framework. We describe some of the published SMAA
applications for demonstrating real-world applicabilityand the practices involved in application
of the methodology.

The rest of this paper is organized as follows: Section 2 describes the origins of the method-
ology. Section 3 contains a description of SMAA and SMAA-2, the methods that form a basis for
the whole family. The extensions are presented in Section 4.The simulation technique used in the
SMAA computations is described in Section 5. In Section 6 we briefly present three applications
of SMAA, and provide references to other applications. The SMAA framework is defined and
discussed in Section 7. We end this paper with conclusions inSection 8.

2 Origins of SMAA

There exists numerous MCDA methods that apply different approaches for tackling the difficul-
ties encountered in real-life decision-making problems. One of the oldest and the most succesful
ones is the utility function based approach. In this approach, the alternatives are evaluated based
on utility scores that are derived using a function. The utility function based approach has been
researched intensively and applied in various models (see,for example Figueira et al., 2005). Al-
though the approach has a history of succesful applications, it had become apparent that the exact
parameter values required by earlier methods of the approach were not sufficient in all decision-
making situations. In some, the decision makers (DMs) mightnot want to reveal their preference
model, and in others, the alternatives might have uncertainof imprecise values for criteria mea-
surements. Therefore, new advances were needed for the approach to maintain its usefulness.
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One way to overcome these weaknesses in the utility functionbased approach is to apply an
inverse method. This means that instead of asking parametervalues and giving an answer to the
problem in question, the values resulting in different outcomes are described. The inverse method
of SMAA includes computing multidimensional integrals over feasible parameter spaces in order
to provide DMs with such descriptive measures. The method solves various problems encoun-
tered in the traditional approach by allowing to use parameters with ignorance on the values. For
example, usually different weight elicitation techniquesproduce different values, and therefore
deterministic weights are harder to justify than, for example weight intervals.

Before SMAA there were other inverse MCDA methods. Two the most important ones for the
development of SMAA are the comparative hypervolume criterion and the overall compromise
criterion.

2.1 Comparative hypervolume criterion

The first advance considered important for the SMAA methodology was the one by Charnetski
(1973) and Charnetski and Soland (1978), who introduced thecomparative hypervolume crite-
rion. This method is based on computing, for each alternative, the volume of the multi-dimensional
weight space that makes each alternative the most preferredone. It can handle preference infor-
mation in form of linear constraints for weights, but is restricted to deterministic criteria mea-
surements and an additive utility function. Rietveld (1980) and Rietveld and Ouwersloot (1992)
presented similar methods for problems with ordinal criteria and ordinal preference information.

2.2 Overall compromise criterion

The overall compromise criterion by Bana e Costa (1986) is a method containing ideas that gave
birth to the SMAA methodology. The method consists of calculating the amount of conflict be-
tween the preferences of different DMs in order to define a joint probability density function for
the weight space. Although in theory it is very useful, in practice this method is rather limited
as it can handle only 3 criteria. Nevertheless, it was an important background work for SMAA
methods as the computation included the idea of integrationover the weight space.

3 SMAA and SMAA-2

The discrete decision-making problem is defined to consist of a set ofm alternatives (or ac-
tions in general)X = {x1, . . . , xi, . . . , xm}, that are evaluated on the basis of a set ofn crite-
ria {g1, . . . , gj , . . . , gn}. The evaluation of actionxi on criteriongj is denoted bygj(xi). The
model considers multiple DMs, each having a preference structure representable with an indi-
vidual weight vectorw and a real-valued utility or value functionu(xi, w) that has a commonly
accepted shape. The most commonly used value function is thelinear one:

u(xi, w) =

n
∑

j=1

gj(xi)wj . (1)
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The weights are considered to be non-negative and normalized, therefore defining the feasible
weight space:

W =

{

w ∈ Rn : w ≥ 0 and
n

∑

j=1

wj = 1

}

. (2)

The feasible weight space of a 3-criteria problem with no preference information is illustrated in
Figure 1.

Figure 1: The feasible weight space of a 3-criteria problem.

The SMAA methods are developed for situations where neithercriteria values nor weights
or other parameters of the model are precisely known. Uncertain or imprecise criteria values
are represented by stochastic variablesξij (corresponding to the deterministic evaluationsgj(xi))
with assumed or estimated joint probability function distribution and density functionfχ(ξ) in the
spaceχ ⊆ Rm×n. Similarly, the DMs unknown or partially known preferencesare represented by
a weight distribution with a joint density functionfW (w) in the feasible weight spaceW . Total
lack of preference information on the weights is represented by a uniform weight distribution in
W , that is:

fW (w) = 1/vol(W ). (3)

As for the utility or value function based approaches, it should be noted here, that the weights are
defined in the meaning of scale factors; the weights rescale the values of partial utility functions
in such a way, that the full swing in the scaled function indicates the importance of the criterion
(see Belton and Stewart, 2002, Sect. 5.4).
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3.1 SMAA

The fundamental idea of SMAA is to calculate descriptive measures based on multidimensional
integrals over stochastic parameter spaces. The original SMAA (Lahdelma et al., 1998) introduced
three such measures: the acceptability index, the central weight vector, and the confidence factor.
For this purpose, the set of favourable weightsWi(ξ) is defined as follows:

Wi(ξ) = {w ∈ W : u(ξi, w) ≥ u(ξk, w),∀k = 1, . . . ,m}. (4)

Any weight w ∈ Wi(ξ) makes the overall utility ofxi greater than or equal to the utility of all
other alternatives.

The descriptive measures of SMAA are computed based on MonteCarlo simulation. This
means that they might contain errors, but the error margins are so small, that due to the nature of
the problem they do not have to be taken into account (when thenumber of Monte Carlo iterations
is large enough, see Section 5).

3.1.1 Acceptability index

Acceptability index describes the share of different weight valuations making an alternative the
most preferred one. It is computed as a multidimensional integral over the criteria distributions
and the favourable weight space as

ai =

∫

ξ∈χ

fχ(ξ)

∫

w∈Wi(ξ)
fW (w) dw dξ. (5)

Acceptability indices can be used for classifying the alternatives into stochastically efficient
(ai >> 0) and inefficient ones (ai zero or near-zero). A zero acceptability index means that
an alternative is never considered the best with the assumedpreference model. For stochastically
efficient alternatives, the index measures the strength of the efficiency considering simultaneously
the ignorance on the criteria measurements and the DMs’ preferences.

Scaling of the criteria affects the acceptability indices.Scaling must therefore not be done
abritrarily when trying to classify the alternatives on thebasis of acceptability indices (Lahdelma
and Salminen, 2001). For example, if the minimum and maximumcriterion values are chosen as
the corresponding scaling points, the possible introduction of a new alternative might change these
values and therefore also the acceptability indices to a large extent (Bana e Costa, 1988).

3.1.2 Central weight vector

The central weight vectorwc
i is defined as the expected center of gravity of the favourableweight

space. It is computed as a multidimensional integral over the criteria and weight distributions as

wc
i =

∫

ξ∈χ

fχ(ξ)

∫

w∈Wi(ξ)
fW (w)w dw dξ/ai. (6)
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The central weight vector describes the preferences of a typical DM supporting this alternative
with the assumed preference model. By presenting the central weight vectors to the DMs, an
inverse approach for decision support can be applied: instead of eliciting preferences and building
a solution to the problem, the DMs can learn what kind of preferences lead into which actions
without providing any preference information.

3.1.3 Confidence factor

The confidence factorpc
i is defined as the probability for an alternative to be the preferred one

with the preferences expressed by its central weight vector. It is computed as a multidimensional
integral over the criteria distributions as follows,

pc
i =

∫

ξ∈χ:u(ξi,w
c
i )≥u(ξk ,wc

i )
fχ(ξ) dξ. (7)

Confidence factors can be calculated similarly for any givenweight vectors. The confidence fac-
tors measure whether the criteria measurements are accurate enough to discern the efficient al-
ternatives. If the problem formulation is to choose an alternative to realize, the ones with low
confidence factors should not be chosen. If they are deemed asattractive ones, more accurate
criteria data should be collected in order to make a reliabledecision.

3.2 SMAA-2

The acceptability index of the original SMAA method was not designed for ranking of the alter-
natives, but instead for classifying them as more and less acceptable ones, from which the earlier
ones should be taken into future consideration. SMAA-2 (Lahdelma and Salminen, 2001) extends
SMAA by taking into account all ranks and provides five new descriptive measures: the rank ac-
ceptability index, three k-best rank-type measures, and the holistic acceptability index. These new
measures provide DMs with more insight with the decision making problem. For defining the new
measures, a ranking function is defined as follows:

rank(i, ξ, w) = 1 +

m
∑

k=1

ρ

(

u(ξk, w) > u(ξi, w)

)

, (8)

whereρ(true) = 1 andρ(false) = 0. Let us also define the sets of favourable rank weights
W r

i (ξ) as follows,
W r

i (ξ) = {w ∈ W : rank(i, ξ, w) = r}. (9)

3.2.1 Rank acceptability index

Rank acceptability index is defined similarly to the acceptability index in (5), extending it to take
into account the acceptability for a certain rank. The rank acceptability indexbr

i describes the
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share of parameter values granting alternativexi rank r. It is computed as a multidimensional
integral over the criteria distributions and the favourable rank weights as follows,

br
i =

∫

ξ∈χ

fχ(ξ)

∫

w∈W r
i (ξ)

fW (w) dw dξ. (10)

The most acceptable (best) alternatives are those with highacceptabilities for the best ranks. Ev-
idently, the rank acceptability indices are within the range [0,1], where 0 indicates that the alter-
native will never obtain a given rank and 1 indicates that it will obtain the given rank always with
any choice of weights. The first rank acceptability indexb1

i is equal to the acceptability indexai.

3.2.2 k-best rank indices

Rank acceptability indices are main indicators for the performance of alternatives. When the
number of alternatives is large, it is sometimes appropriate to aggregate them in the early phase of
the decision-making process tok-best ranks (kbr) acceptabilitiesas

ak
i =

k
∑

r=1

br
i . (11)

The kbr acceptabilities can be used in an iterative process in whichthe weak alternatives are
eliminated until a small group of alternatives reach sufficient acceptabilities.

The central weight vectors can also be extended in a similar way, to define thecentral kbr
weight vectorwk

i as

wk
i =

∫

ξ∈χ

fχ(ξ)

k
∑

r=1

∫

w∈W r
i (ξ)

fW (w)w dw dξ/ai. (12)

Thekbr weight vector describes the preferences of a typical DM thatassigns an alternative to one
of the ranks from 1 tok. Also the confidence factors can be extended similarly, to define thekbr
confidence factorpk

i as

pk
i =

∫

ξ∈χ:rank(i,ξ,wk
i )≥k

fχ(ξ) dξ. (13)

3.2.3 Holistic acceptability index

The problem of comparing the alternatives in terms of their rank acceptabilities can be seen as a
“second-order” multiple criteria decision aiding problem(Lahdelma and Salminen, 2001). The
DMs attitude towards risk define the required magnitude of confidence factors and acceptability
indices. The rank acceptability indices can be aggregated into holistic acceptability indicesah

i as

ah
i =

∑

r

αrbr
i , (14)
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whereαr are the so-called metaweights. There are numerous possibleways of choosing the
metaweights (see Lahdelma and Salminen, 2001), the only constraints being that they should be
non-negative, normalized and non-increasing when the rankincreases. Using the holistic accept-
ability indices in the decision-making has its limitations, however. This “second-order” decision-
making problem imposes an additional level of complexity tothe indicators, and adds assumptions
which the DMs might not realize.

In our opinion the holistic acceptability indices should only be used when there is no analyst
available or when SMAA is used as an automated decision-making tool. However, in these cases
it should be questioned if SMAA was an appropriate method to apply in the first place. The most
appropriate use of the holistic acceptability indices could be in problems with a large amount of
alternatives, to filter out alternatives that do not deserveattention from the DMs. Although in this
type of problems thekbr acceptability indices might be more adequate.

3.3 Preference information

In most decision-making problems it is possible to elicit some, though probably imprecise and
uncertain, preference information from the DMs. Although SMAA allows preference information
to be represented with an arbitrary density function, usually it is easier to elicit the preferences as
constraints for the weight space. Then the density functionis defined with a uniform distribution
in the restricted weight spaceW ′ as

fW ′(w) =

{

1/vol(W ′), if w ∈ W ′,

0, if w ∈ W \ W ′.
(15)

In particular, SMAA-2 introduces the following types of constraints:

1. Intervals for weights (wj ∈ [wmin
j , wmax

j ]).

2. Intervals for weight ratios (trade-offs) (wj/wk ∈ [wmin
jk , wmax

jk ]).

3. Linear inequality constraints for weights (Aw ≤ c).

4. Nonlinear inequality constraints for weights (f(w) ≤ 0).

5. Partial or complete ranking of the weights (wj > wk).

Figure 2 illustrates the feasible weight space of a 3-criteria problem with interval constraints for
weight w1. Figure 3 illustrates the feasible weight space of a 3-criteria problem with complete
ranking of the weights.

When there are multiple DMs, the constraints have to be aggregated before applying. Possi-
ble non-interactive aggregation techniques include mathematical union, intersection, of averaging
densities of the functions defining preferences of different DMs. There exists also a technique
based on belief functions for eliciting and aggregating thepreference information, see Tervonen
et al. (2004b,c).
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Figure 2: The feasible weight space of a 3-criteria problem with constraints onw1.

Figure 3: The feasible weight space of a 3-criteria problem with complete ranking of the weights.

4 Extensions

In this section we will describe the most important SMAA extensions for ordinal criteria measure-
ments, dependent criteria, cross confidence factors, and those based on the outranking approach.
There is also a variant of SMAA based on data envelopment analysis (SMAA-D). For description
of it, we refer to Lahdelma and Salminen (2006b).
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4.1 Ordinal criteria (SMAA-O)

SMAA-O (Lahdelma et al., 2003) extends SMAA to consider ordinal criteria measurements,
meaning that the DMs have ranked the alternatives accordingto each (ordinal) criterion. In
SMAA-O, the ordinal information is mapped to cardinal without forcing any specific mapping.
This means that nothing is assumed about the weights of criteria ranks in the piecewise linear
mapping.

The possibility of using ordinal measurements has its advantages. Usually the experts defining
the criteria measurements can rank the alternatives with respect to each criterion faster than they
can define cardinal measurements. Therefore, if ordinal measurements provide sufficient accuracy
for the decision-making problem in question, savings can beobtained.

The ordinal criteria are measured by assigning for each alternative a rank level numberrj =
1, . . . , jmax, where 1 is the best andjmax the worst rank level. Alternatives considered equally
good are placed on the same rank level and the rank levels are numbered consecutively. On an
ordinal scale, the scale intervals do not contain any information, and should be therefore treated
as such without imposing any extra assumptions. However, some mapping can be assumed to
underlie the ordinal information. In SMAA-O, all mappings that are consistent with the ordinal
information are simulated numerically during the Monte Carlo iterations. This means generating
random cardinal values for the corresponding ordinal criteria measurements in a way that preserves
the ordinal rank information. Figure 4 illustrates a samplemapping generated in this way.

Figure 4: An sample ordinal to cardinal mapping of SMAA-O.

The SMAA methods can be used with any kind of value function jointly accepted by the DMs,
but if we have an additive value function, the shape of the function can be considered unknown. In
this case, the DMs partial value functions are simulated in the same way as the ordinal to cardinal
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mappings. However, the simulation is not necessary for the ordinal criteria, because the simulated
cardinal values can be interpreted directly as partial values on a linear scale. Therefore, if the DMs
accept an additive value function, it is not necessary for the DMs to agree on a common shape of
the partial value functions for the ordinal criteria.

SMAA-O has been combined with the so-called SWOT methodology in the work of Kan-
gas et al. (2003b). For an alternative technique for applying ordinal criteria in simulation-based
approaches, see Leskinen et al. (2004).

4.2 Handling dependent criteria

In many real-life applications of SMAA the criteria measurements as well as their uncertainties
are dependent, and by not considering them as such the results will contain bias (Lahdelma et al.,
2004). SMAA allows using external sampling as a source for criteria measurements. This tech-
nique implicitly takes into account the dependencies. Another technique reported in the literature
(Lahdelma et al., 2006) is to model the criteria with a multivariate Gaussian distribution. The mul-
tivariate Gaussian distribution between a vector of stochastic variables[λ1, . . . , λL]⊥ is defined by
the joint probability density function

f(λ1, . . . , λL) =
1

√

(2π)L det(Λ)
e

1

2
(λ−λ̄)⊥Λ−1(λ−λ̄), (16)

whereλ̄ is the vector of the expected values of the stochastic variables andΛ is theL × L covari-
ance matrix,

Λ =











cov(λ1, λ1) cov(λ1, λ2) · · · cov(λ1, λL)
cov(λ2, λ1) cov(λ2, λ2) · · · cov(λ2, λL)

...
. . .

cov(λL, λ1) cov(λL, λ2) · · · cov(λL, λL)











, where (17)

cov(λj , λk) = E
(

(λj − λ̄j)(λk − λ̄k)
)

. (18)

Although the covariance matrix is reasonably compact presentation of the imprecision and de-
pendancy information, it is more convenient to separate these two types into a vector of standard
deviationsσ and to anL × L correlation matrixρ. The correlation matrix is computed from the
covariance matrix with

ρjk =
cov(λj , λk)

σ(λj)σ(λk)
. (19)

The correlation coefficients are within the range[−1, 1] and measure how well a linear model
λj = aλk + b explains the dependancy of the variables.

Although it may be possible to determine the correlation of the variables “by hand”, in practice
in most applications it is too time consuming or even impossible. The multivariate Gaussian
model is more suitable in applications, where there exists asimulation model or real-life process
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producing values for the criteria measurements (see Section 6.3). The mean of each criterion
measurement is estimated from the sampleyij by the sample mean with

ξ̄ij
∼= ˆ̄yij =

K
∑

k=1

xk
ij/K. (20)

An unbiased estimator for the covariance is calculated as the sample covariance with

cov(ξij , ξi′j′) ∼=
K

∑

k=1

(yk
ij − ˆ̄yij)(y

k
i′j′ − ˆ̄yi′j′)/(K − 1). (21)

The sample standard deviation is the square root of the sample variance:

σ(λij) ∼= σ̂(yij) =

√

√

√

√

K
∑

k=1

(yk
ij − ˆ̄yij)2/(K − 1). (22)

Standard error of the sample mean, caused by the finite size ofthe sample, is calculated as

σ(ˆ̄yij)/
√

K. (23)

The sample correlation matrix is obtained by dividing the rows and columns of the sample covari-
ance matrix by the sample standard deviations.

4.3 Cross confidence factors

SMAA has been developed for problems with ignorance on both the preferences and the criteria
measurements. When the information is very imprecise, problems emerge because a large set
of alternatives might seem acceptable as indicated by the acceptability indices. In this kind of
situations, it would be desirable to obtain more precise information on the preferences of the DMs
and on the criteria measurements, but it is not always possible due to limits with time and money.

One technique for improving the discrimination of a large set of efficient alternatives is to
usecross confidence factors(Lahdelma and Salminen, 2006a). These descriptive measures are
confidence factors computed for each alternative using eachother’s central weight vectors. The
cross confidence factor for alternativexi with respect to alternativexk is computed as

pk
i =

∫

ξ∈χ:wc
k
∈W 1

i (ξ)
fχ(ξ) dξ, (24)

defined when the target alternative is efficient (and therefore has a central weight vector defined).
The cross confidence factor is a probability for an alternative to obtain the first rank (considering
the ignorance on the criteria measurements) when the central weight vector of the target alternative
is chosen.
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The cross confidence factors provide additional information in form of telling why the dis-
crimination of alternatives is weak: an alternative that obtains a high cross confidence factor with
respect to another is similar and because of that poorly discriminated. For identifying such alter-
natives the model defines reference sets, that are ordered stochastic sets of pairs< a, pk

i >:

{< i(k, r), pk
i(k,r) > |r = 1, . . . ,m(k)}, (25)

wherem(k) ≤ m determines the number of elements in the reference set and the index function
i(k, r) orders the elements by their cross confidence factors into descending order. This ordering
makes it easy to quickly identify the most poorly discriminated alternatives. The reference sets
can be visualized as column charts as shown in Figure 5.

Figure 5: Sample cross confidence factors of alternative x2 in a 3-alternative problem.

4.4 Reference point approaches

Although the SMAA methods can be used without any information on the weights, it is preferable
to try to elicit some information from the DMs. Rather than using weights, a more straightforward
technique for representing the preferences is through reference points. With reference points,
the DMs specify desirable or preferable values for each criterion instead of specifying trade-offs
between criteria. Reference points model satisfying behaviour instead of trying to find optimal
solutions, and can thus be more suitable in some decision-making contexts. There exists two
reference-point based SMAA methods that we will describe next: SMAA-P and Ref-SMAA.
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4.4.1 Prospect theory based variant (SMAA-P)

Prospect theory evaluates alternatives performances withrespect to deviations from a reference
alternative. This reference alternative is considered to be a 0-point in valuations of the DM. The
gains with respect to the reference alternative are considered to be more important than the losses,
and therefore the partial value functions are commonly S-shaped. In the part above the reference
alternative (gain) the value function is concave (risk averse), and in the part under the reference
alternative (loss) convex (risk seeking). Therefore when the desirable values represented by the
reference point are reached, the DM is considered to be satisfied and further increases are accord-
ing to risk-averse behaviour.

Prospect theory has its difficulties in finding the DMs’ reference alternative, quantifying the
tradeoffs for gains and losses, and combining preferences if there are multiple DMs. SMAA-
P (Lahdelma and Salminen, 2003) tries to overcome these weaknesses by analyzing the sets of
feasible values for the parameters defining the model. The DM’s preferences are represented with
additive piecewise linear difference functions as in prospect theory. This requires two separate
weight sets to be defined: one for gains (w+) and another for losses (w−). Then the piecewise
linear difference function for evaluating alternativexi with respect to the reference alternativexr

is defined as

d(xi, xr, w
+, w−) =

n
∑

j=1

dj(xij, xrj , w
+
j , w−

j ), (26)

where the partial difference functions are

dj(xij , xrj , w
+
j , w−

j ) = w+
j max {xij − xrj, 0} + w−

j min {xij − xrj, 0}. (27)

To be consistent with the intuition that losses are at least as important as equal gains, the weights
are constrained with

0 ≤ w+ ≤ w−. (28)

Loss and gain weights can be replaced by representing the preferences in terms of importance
weightswj and coefficients of loss aversionsj ≥ 1. This is the ratio between the loss and gain
weights:

sj = w−
j /w+

j . (29)

The loss and gain weights are defined based on the loss aversion coefficient symmetrically around
the importance weights as:

wj =
√

w+
j · w−

j . (30)

The original utility or value function is replaced in SMAA-Pwith a piecewise linear difference
function including all preference information:

u(xi, v) = d(xi, w, xr, s), (31)

wherev = [w, xr, s] is thepreference information vector. The feasible preference information
spaceV is defined as

V = W × XR × S = {v = [w, xr, s]|w ∈ W,xr ∈ XR, s ∈ S}, (32)
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whereW is the feasible weight space,XR is the feasible reference alternative space (should be
defined to include at least all possible reference alternatives), andS is the feasible loss aversion
coefficient space. The joint probability distribution of the preference information vector is defined
as

fV (v) = fW (w)fXR
(xr)fS(s). (33)

The new value function (31) is used to map the stochastic criteria and preference distributions into
value distributions as in SMAA-2. The stochastic sets of favourable rank weights are redefined to
be stochastic sets of favourable rank preferences as

W r
i (ξ) = {v ∈ V |rank(i, ξ, v) = r}. (34)

The rank acceptability indices and the central weight vectors are computed as in SMAA-2, with
the only difference being that the inner integration is doneover the feasible preference information
space instead of the feasible weight space. SMAA-P also defines additional descriptive measures.
For more details on these, we refer to Lahdelma and Salminen (2003).

4.4.2 Reference point approach (Ref-SMAA)

The Ref-SMAA method (Lahdelma et al., 2005) (also called SMAA-A) allows to use reference
points with multiple DMs by providing descriptive information about the sets of reference points
that favour each alternative. An identical method (although with a simpler simulation model) has
been presented by Durbach (2006).

Achievement functions are used for overcoming some weaknesses of the traditional goal pro-
gramming, and used in Ref-SMAA for characterizing non-dominated solutions. These are solu-
tions where none of the components can be improved without lowering the score of at least one
of the others. An achievement function is a functionsx̌ : X → R, wherex̌ ∈ Rk is an arbitrary
reference point. The achievement function of Ref-SMAA can be selected in various ways, as for
example:

sx̌(xi) = min
i=1,...,k

[

wi(xi − x̌i)
]

+ µ

k
∑

i=1

wi(xi − x̌i), (35)

whereµ is a sufficiently small scalar andw is a fixed positive scaling vector. Usually,wi is set to
be equal to the inverse of the difference between the best andthe worst value for each criterion.

Ref-SMAA operates on the basis of a set of favourable reference points for each alternative
xi, defined as:

X̌i(ξ) = {x̌ ∈ X̌|sx̌(ξi) ≥ sx̌(ξj), j = 1, . . . ,m}. (36)

Any reference poinťx ∈ X̌i(ξ) makes the overall preference ofxi greater than or equal to the
preference of any other alternative. The feasible reference point spacěXi can be defined according
to needs, for example as a convex combination of the reference points of all DMs. Similarly to
the acceptability index (5), Ref-SMAA defines the referenceacceptability indexri, computed as
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a multidimensional integral over the criteria value distributions and the favourable reference point
space as

ri =

∫

ξ∈χ

fχ(ξ)

∫

x̌i∈X̌i(ξ)
(ξ)f(x̌) dx̌dξ. (37)

Thecentral reference poinťxi is defined as the expected centre of gravity of the set of favourable
reference points, computed as a multidimensional integralof the reference point vectořx over the
criteria value distributions and the favourable referencepoint space as

x̌i =

∫

ξ∈χ

fχ(ξ)

∫

x̌i∈X̌i(ξ)
f(x̌)x̌ dx̌dξ/ri. (38)

All the descriptive measures of Ref-SMAA are related to reference points, and therefore the mea-
sures as well as the original alternatives all belong to the criterion space. For some decision makers
this type of model might be easier to understand, as no artificial concepts such as weights are used.

4.5 Outranking based SMAA approaches

SMAA has been extended for using instead of value function (1) an outranking-based aggregation
procedure for defining ranking of the alternatives. This andanother approaches described in this
section are based on using ELECTRE type pseudo-criteria. The pseudo-criteria are defined by
using thresholds that are denoted as follows:

• qj(gj(·)) is theindifference thresholdfor the criteriongj ,

• pj(gj(·)) is thepreference thresholdfor the criteriongj , and

• vj(gj(·)) is theveto thresholdfor the criteriongj .

By using these thresholds aconcordance indexis defined. It is computed by considering in-
dividually for each criteriongj the support it provides for the assertion of the outrankingaSjb,
“alternativea is at least as good as alternativeb”. The partial concordance index is a fuzzy index
computed as follows, for allj = 1, . . . , n:

cj(a, b) =























1, if gj(a) ≥ gj(b) − qj(gj(b)),

0, if gj(a) < gj(b) − pj(gj(b)),

gj(a)+pj

(

gj(b)
)

−gj(b)

pj

(

gj(b)
)

−qj

(

gj(b)
) , otherwise.

(39)

After computing the partial concordance indices, the comprehensive concordance index is calcu-
lated as follows,

c(a, b) =
∑

j∈J

wjcj(a, b). (40)

If the veto thresholds are used, also adiscordance indexcan be defined. For more information on
pseudo-criteria based models, see Roy and Bouyssou (1993).
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4.5.1 Outranking aggregation procedure (SMAA-3)

SMAA-3 (Hokkanen et al., 1998) method is a variant of the original SMAA that applies, instead
of the value function, ELECTRE type pseudo-criteria and “min in favor” choice procedure. Ac-
cording to this procedure, an alternative becomes the preferred one (not necessary unique) if the
following set of constraints hold:

min
l=1,...,m,l 6=i

c(xi, xl) ≥ min
l=1,...,m,l 6=k

c(xk, xl),

k = 1, . . . ,m,k 6= i.
(41)

Based on this the favourable weights of an alternative (4) are redefined as

Wi = {w ∈ W : min
l=1,...,m,l 6=i

n
∑

j=1

wjcj(xi, xl)

≥ min
l=1,...,m,l 6=k

n
∑

j=1

wjcj(xk, xl),

k = 1, . . . , k, k 6= i}.

(42)

The rest of the analysis is done as in SMAA, with the exceptionthat the criteria measurements are
considered to be deterministic (no integration overχ is done), and therefore no confidence factors
are computed. It should be noted, that now the central weightvector can lie outside the space
of favourable weights of an alternative, because this preference model is non-linear. Therefore,
in this kind of (easily detectable) situations a favourableweight vector is chosen with a minimal
distance to the central weight vector.

In the literature there exists simulation-tests of SMAA against SMAA-3, and in these tests
the results of SMAA-3 were found to be quite unstable with respect to the indifference threshold
(Lahdelma and Salminen, 2002). Therefore, when SMAA-3 is applied in practice, great care
should be put into choosing the thresholds.

There exists also a variant of SMAA which applies the complete ELECTRE III procedure for
producing a ranking. For more details on it, see Tervonen et al. (2004a).

4.5.2 SMAA-TRI

All the SMAA variants described until here are for ranking orchoosing problem statements.
ELECTRE TRI (Yu, 1992) is a method for sorting problem statements, and SMAA-TRI (Ter-
vonen et al., 2005) extends it to allow ignorance on the parameter values.

ELECTRE TRI uses concordance and discordance indices for sorting the alternatives into pre-
defined and ordered categories. Let us denote byC = {C1, . . . , Ch, . . . , Ck} the set of categories
in ascending preference order (C1 is the “worst” category). These categories are defined by upper
and lower profiles, that are computationally equivalent to alternatives. The profiles are denoted as
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p1, . . . , ph, . . . , pk−1. Profileph is the upper limit of categoryCh and the lower limit of category
Ch+1. Notice that the profiles are strictly ordered, that is they have to satisfy

p1 ∆ p2 ∆ . . . ∆ pk−2 ∆ pk−1, (43)

where∆ is the dominance relation (p1∆p2 means thatp2 dominatesp1). This dominance relation
needs to be interpreted in a wide sense, because the domination depends not only on the values of
components of the two profiles, but also on the values of thresholds.

We will not describe the assignment procedure here, the interested reader should refer to Ter-
vonen et al. (2005). For the assignment procedure an additional technical parameter, the lambda
cutting level, has to be defined.

SMAA-TRI is developed for parameter stability analysis of ELECTRE TRI, and consists of
analyzing finite spaces of arbitrarily distributed parameter values in order to describe for each
alternative the share of parameter values that assign it to different categories. It analyzes the
stability of weights, profiles, and the cutting level.

The input for ELECTRE TRI in SMAA-TRI is denoted as follows:

1. Uncertain or imprecise profiles are represented by stochastic variablesφhj with a joint den-
sity functionfΦ(φ) in the spaceΦ ⊆ R(k−1)×n. The joint density function must be such that
all possible profile combinations satisfy (43). Usually thecategory profiles are defined to be
independently distributed, and in this case the distributions must not overlap. For example,
if the profile values for a criterion are Gaussian distributed, the distributions must have tails
cut off as shown by the horizontal lines in Figure 6.

Figure 6: Probability distribution functions for three Gaussian distributed profile values (for a sin-
gle criterion). The horizontal lines show where the tails ofthe distributions must be cut. (Tervonen
et al., 2005)

2. The lambda cutting level is represented by a stochastic variable Λ with a density function
fL(Λ) defined within the valid range [0.5,1].
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3. The weights and criteria measurements are represented asin SMAA-2.

4. The data and other parameters of ELECTRE TRI are represented by the setT =
{M, q, p, v}. These components are considered to have deterministic values.

SMAA-TRI produces category acceptability indices for all pairs of alternatives and categories.
The category acceptability indexπh

i describes the share of possible parameter values that have an
alternativexi assigned to categoryCh. Let us define acategorization functionthat evaluates the
category indexh to which an alternativexi is assigned by ELECTRE TRI:

h = K(i,Λ, φ, w, T ), (44)

and a category membership function

mh
i (λ, φ,w, T ) =

{

1, if K(i,Λ, φ, w, T ) = h,

0, otherwise,
(45)

which is applied in computing the category acceptability index numerically as a multi-dimensional
integral over the finite parameter spaces as

πh
i =

∫ 1

0.5
fL(Λ)

∫

φ∈Φ
fΦ(φ)

∫

w∈W

fW (w)mh
i (Λ, φ, w, T ) dw dφdΛ. (46)

The category acceptability index measures the stability ofthe assignment, and it can be interpreted
as a fuzzy measure or a probability for membership in the category. If the parameters are stable,
the category acceptability indices for each alternative should be 1 for one category, and 0 for the
others. In this case the assignments are said to be robust with respect to the imprecise parameters.

5 Simulation

The various distributions applied in the integrals of SMAA vary according to the application and
can be arbitrarily complex. Usually the integrals have highdimensionality as well. The analytical
integration techniques based on discretizing the distributions with respect to each dimension are
infeasible, because the required effort depends exponentially on the number of iterations. There-
fore, instead of trying to obtain exact values for the integrals, Monte Carlo simulation is applied to
obtain sufficiently accurate approximations. In this section we address the simulation technique,
accuracy of the computations, and the complexity issues. For description of the actual algorithms,
we refer to Tervonen and Lahdelma (2006).

5.1 Simulation technique

Monte Carlo simulation is applied in computation of the integrals. For all the acceptability index-
type measures, a similar technique is applied: in each iteration, measurements for the parameters
(criteria measurements, weights, ...) are drawn from theircorresponding joint distributions, and
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a ranking or a classification is built based on these values. After this, counters for corresponding
ranks or classes with respect to the alternatives are increased. After a number of iterations, the
indices are obtained by dividing the counters with the number of iterations. The central weights are
computed in a similar fashion, by adding to the “sum of weightvectors” of the alternative obtaining
the best rank the currently used weight vector. This vector is divided in the end component-wise
by the number of iterations in order to obtain the central weight vector.

The weight generation is an important part of the simulationtechnique. If there is no prefer-
ence information available, then uniform distributed weights are generated as follows: firstn− 1
independent random numbers are generated from the uniform distribution within the range[0, 1],
and sorted into ascending order (q1, . . . , qn−1). After that, 0 and 1 are inserted as the first (q0) and
last (qn) numbers, respectively. The weights are then obtained as intervals between consecutive
numbers (wj = qj − qj−1) (Tervonen and Lahdelma, 2006).

If there exists preference information, the weight generation technique must be altered. In the
case of complete ordinal preference information, the weights can simply be sorted according to the
ranking. Lower bounds for weights can be handled by using a simple transformation technique.
Let us illustrate this by re-examining Figure 2. By considering only the lower boundw1 ≥ 0.2, the
feasible weight space is re-defined as one homomorphic with the original one. The lower bounded
weights are defined by generating the random numbers from interval [0, 1− s], wheres is the sum
of all lower bounds, and adding to them the corresponding lower bounds.

Upper bounds for weights cannot be handled by using a similartechnique, but instead a simple
rejection technique is applied, in which the weight vectorsnot satisfying the upper bounds are
rejected. As can be seen in Figure 2, the tip of the simplex cutoff by the upper bounds has
relatively small area compared to the one of lower bounds. Therefore the increase in computational
complexity due to upper bounds is relatively low. In addition, lower bounds might even render
some of the upper bounds redundant. Consider for example a 3-criteria problem with lower bounds
of 0.2 for all weights. The maximum value that any weight can obtain is1− 0.2− 0.2 = 0.6, and
therefore all upper bounds higher than 0.6 are redundant. The amount of weights rejected due to
upper bounds can be estimated in the following way: if we consider all weights to have a common
upper boundwmax, the probability for the largest of the generated weights toexceed the upper
bound is

P [max{wj} > wmax)] = n(1 − wmax)n−1 −
(

n

2

)

(1 − 2wmax)n−1

+ · · · (−1)k−1

(

n

k

)

(1 − kwmax)n−1 · · · ,

(47)

where the series continues as long as1 − kwmax > 0 (David, 1970).

5.2 Accuracy of the computations

Accuracy of the computations can be calculated by considering the Monte Carlo simulations as
point estimators for the descriptive measures. To achieve accuracy ofA with 95% confidence for
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the rank acceptability indices, we need the following number of Monte Carlo iterationsK:

K =
1.962

4A2
. (48)

For example, to achieve 95% confidence on error limits of±0.01 for the rank acceptability indices,
we need to execute 9604 Monte Carlo iterations. The accuracyof confidence factors depends on
the accuracy of central weight vectors in a complicated manner (Tervonen and Lahdelma, 2006),
but if we disregard this source of error, the same equation for accuracy applies. The accuracy of the
central weight vectors depends on the acceptability indices, and the required amount of iterations
is calculated as follows:

K =
1.962

ai4A2
. (49)

It should be noted, that the accuracy of the computations does not depend on the dimensionality
of the problem, but instead only on the number of iterations.

5.3 Complexity issues

The required number of Monte Carlo iterations in typical SMAA applications is fairly high, and
therefore for having practical applicability the complexity of SMAA computations should not be
too high with respect to the number of criteria and alternatives. The complexity of SMAA-2 and
SMAA-O has been analyzed by Tervonen and Lahdelma (2006). The complexity of computing
the acceptability indices and central weight vectors with independent criteria measurements and
cardinal criteria isO(K · (n log(n) + m · n + m log(m))). The complexity of computing the
confidence factors isO(K ·m2 · n). In these formulasK is the number of Monte Carlo iterations,
m the number of alternatives, andn the number of criteria.

The usage of ordinal criteria adds to the complexity with a factor of log(m). In practice this
has very little effect (Tervonen and Lahdelma, 2006). What has a larger impact to the running
times is the handling of preference information. The formulas above suppose that there are no
constraints on the weights, which in practice is usually notthe case. As described in Section 5.1,
lower bounds for weights do not affect the complexity of the weight generation, but upper bounds
might have a great impact on the process.

6 Applications

SMAA was originally developed in conjunction with a real-life decision-making problem, and has
been since applied in a variety of real-life cases. We will briefly present three different cases for
illustrative purposes.

6.1 Infrastructure planning

In 1990, the city council of the capital of Finland, Helsinki, decided that a suburban area, Vuosaari,
needed to be reserved for a general cargo harbor. The new cityplan that contained the allocation
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of the land area was approved at 1992. After this, a planning process was initiated. According
to the Finnish laws, Environmental Impact Assessment (EIA)needs to be done in this type of
planning processes, taking into account also the opinions of residents of the affected areas. The
actual decision process began with the construction of criteria taking into account environmental,
sociological, as well as economical viewpoints. This leaded into definition of the following 11 cri-
teria: sea, ground water, emissions into air, fauna, vegetation and flora, employment, recreational
possibilities, landscape, and economy.

Different alternatives for developing the harbor area wereconstructed with different combina-
tions of the naval navigation channel, roads, and railroads. A set of 24 alternatives was constructed
in this way, and in accordance with the EIA legislation, alsoan additional alternative was added.
This alternative considered improving existing facilities without constructing a new harbor (so-
called zero-alternative). Thus, multiple criteria decision aiding was applied with a total of 25
alternative strategies.

The purpose of the EIA procedure is not to present a solution to the decision-making problem,
but instead, to describe the effects of different possible actions. For the criteria considering envi-
ronmental effects, determination of the values is usually objective and therefore uncertainties have
to be taken into account. In decision-making processes suchas this, it is often the case that the
DMs are not willing to provide preference information. The original SMAA method that allows
tackling problems with ignorance on the preference information and criteria measurements was
developed in conjunction with this decision-making process.

After SMAA analysis, the results were presented to the DMs. Many different interest groups
feared that their favourite alternative would not be among the most preferred ones, as they saw
the method “too fair”, taking into account all points of view. During the process, however, they
understood that it is possible to choose almost any alternative based on certain preferences. In the
end, the groups carried out real discussion about the valuespresent in the process. This decision-
making process leaded into a decision to build the Vuosaari harbour, and the first stone of the
harbour was placed in 2003, after a long public political discussion.

This application has been described in detail by Hokkanen etal. (1999). For other applications
of SMAA in infrastructure planning, see Hokkanen et al. (1998, 2000); Lahdelma et al. (2002).

6.2 Forest planning

Landspace ecological planning is an area where the time horizon is usually very long and the data
concerning possible alternatives uncertain and imprecise. In Finland the state-owned forests cover
nearly 9 million hectars and require landscape ecological plans. One of these plans was made
for the Kivalo forest area located in the Finnish Lapland (Kangas et al., 2003a). In this study, 10
possible development stategies for a timeframe of 10 years were evaluated in terms of 2 cardinal
and 3 ordinal criteria. The study demonstrated the applicability of SMAA-O in forest planning,
especially as mixed (both ordinal and cardinal), impreciseand uncertain criteria measurements
and vague preference information could be taken into account.

For other forest planning related studies, see Kangas and Kangas (2003); Kangas et al. (2005).
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6.3 Elevator planning

Modern elevator systems in high-rise buildings consist of groups of elevators a with centralized
control. The goal in elevator planning is to configure a suitable elevator group to be built, satisfying
minimum requirements for the quality of service. In addition, it is desirable to use the least floor
space possible and to minimize the cost of the system. Duringthe planning, the measurements
for some criteria can be estimated by experts. This is the case with, for example, price. For other
criteria this is not possible, and simulation is required todetermine the scores.

In the work by Tervonen et al. (2006), a realistic elevator planning problem of the above type
is considered. It consists of a 20-floor buiding for which oneof 10 possible elevator group con-
figurations has to be chosen. The alternative configurationswere analyzed using the KONE (one
of worlds leading elevator manufacturers) Building TrafficSimulator. Based on the output of the
simulator, the criteria values for performance-related criteria could be defined with a multivariate
Gaussian distribution. The study presents an interesting application of the SMAA methodology:
an area traditionally unconnected with MCDA is linked by using external simulation providing
parameters for the distribution to be used. In this type of commercially linked studies in which the
stakeholders are representatives of different companies,it is important that the interests of different
groups of stakeholders are identified, as well as are compromise solutions. This was accomplished
with SMAA in this case.

7 The framework

We define the SMAA framework for deciding a method to choose ona specific decision making
context. The first question to ask is whether we are dealing with a ranking or sorting problem
statements. If we are dealing with sorting problem, the onlymethod of SMAA family we can
use is SMAA-TRI. With ranking problems, we have to choose thetype of preference model we
have: whether it is based on weights or on reference points. If we have a weight-based model, we
have to choose the type of aggregation procedure: utility (or value) function or outranking method.
With the reference point approach we have to choose whether we want to use prospect theory (loss
aversion model) or achievement functions in the aggregation. With all this information, we can
choose whether to apply SMAA-2, SMAA-3, SMAA-P, or Ref-SMAAfor the ranking problem.
Depending on the method to apply, we obtain as output different descriptive measures that can
some be used to derive “second-order” aggregate measures. Choosing of the method is presented
as a decision-tree in Figure 7.

In the context of the framework, we should notice that all other methods than Ref-SMAA,
which is based on reference points, can be used with arbitrary weight information. This means
that we can apply them with no preference information at all,as well as with mixed information of
ordinal and cardinal types. In practice the most useful onesare (partial) ordinal information and
cardinal weight constraints. Complex weight constraints might be hard for the DMs to understand,
and therefore by using more complex distributions the possibility for the information to contain
uncertainty increases. If the DMs have problems understanding the underlying preference model,
the achievement function based approach (Ref-SMAA) might be more suitable.
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Figure 7: Decision-tree for choosing the SMAA variant.

The shortcoming of the utility-function based approach (SMAA-2) is that the scaling has large
effect on the results, and the meaning of the weights is basedon the scale. Therefore, if the shape
of the utility function is hard to define, it might be more suitable to use SMAA-3 instead.

Arbitrarily distributed imprecise or uncertain criteria can be applied in all methods of the
family except SMAA-3, that requires criteria measurementsto have imprecision defined by the
thresholds. It should be noted, that SMAA-O is not a stand-alone method, but rather a compu-
tational technique for handling ordinal criteria measurements. The possibility of using external
sampling and the following generalisation to use SMAA with external methods can be considered
a great advantage. For example, the approach applied in SMAA-TRI can probably be applied to
other methods as well, to use them with ignorance on the parameter values in order to analyze the
stability of the results.
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One of the unsolved questions in SMAA is how to obtain aggregated measures based on the
rank acceptability indices. The holistic acceptability indices can be used for this purpose, but they
require meta-weights to be defined. This is an artificial concept with no connection to a cognitive
decision-making process, and therefore their use is hard tojustify. It might be, that to obtain
more easily interpretable measures, we need to make models more complex. This would mean
adding more parameters or using a more complex preference model. But on the other hand, the
complexity introduced in this way brings new sources of ignorance. More research should be put
on this subject.

8 Conclusions

SMAA is a recent methodology providing a general framework that has extensions to handle
various specifities in multiple criteria decision aiding problems. In this paper, we presented the
two basic methods, SMAA and SMAA-2, and the most important extensions of the methodology.
The SMAA framework derived from these methods allows the decision analyst to choose the
specific model to apply depending on the characteristics of the problem.

The SMAA framework allows to use methodology in a broad rangeof decision making con-
texts. Nevertheless, there exists unsolved questions, themost important being if we can develop
aggregate measures that would help further in the decision making process. The holistic accept-
ability index is such, but its applicability in practice is questionable. Therefore, future research
on the methodology should address this area. Other crucial need is a user-friendly and com-
putationally efficient software implementing the methodology. There is currently available an
open-source implementation of the basic methodology (by one of the authors, downloadable from
http://monet.fe.uc.pt/thesessoftware/), but it lacks a graphical user interface. As the principles of
SMAA are quite simple though the equations for computing thedescriptive measures look com-
plicated, we believe that a software with a graphical user interface would allow the methodology
to be applied in every-day decision-aiding problems by users less adapted to the techniques of
numerical computation.
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