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A SURVEY ON STOCHASTIC MULTICRITERIA ACCEPTABILITY
ANALYSIS METHODS

Abstract

Stochastic Multicriteria Acceptability Analysis (SMAApmprises a family of mul-
tiple criteria decision aiding (MCDA) methods for problenmgluding incomplete,
imprecise, and uncertain information. Methods of the fgrallow solving MCDA

problems of various types. Even though the methods havedgaied in the past in
various real-life decision-making situations, the stuoetof a unified SMAA frame-
work has not been studied. In this paper we describe the miethiothe family and
define a unified SMAA framework. We also point out the key pointthe methodol-
ogy for future research.

Keywords: Stochastic Multicriteria Acceptability Analysis (SMAAJultiple Crite-
ria Decision Aiding (MCDA); Simulation.



1 Introduction

Stochastic Multicriteria Acceptability Analysis (SMAA} ia recently developed family of Mul-
tiple Criteria Decision Aiding (MCDA) methods. The diffeleSMAA methods can be used to
handle the three main MCDA problem statements (Figueird ,e2@05): choosing, ranking, and
sorting. The methodology considers these problem statisnrea wider sense; for example, in-
stead of resulting in a ranking, the SMAA-2 method providexbpbilities for alternatives to obtain
certain ranks. The methodology is based on an inverse amaifythe space of feasible parame-
ter values. It allows ignorance on criteria measurementispagferences. One of the advantages
of SMAA over most other MCDA methodologies is that it can bedisvithout any preference
information if such is not available.

We define ignorance divided into three subcategories: ipbet@ness, imprecision, and un-
certainty (Smets, 1991). Incomplete information meanstti@value is missing. Imprecise infor-
mation means that we have a value for the variable, but nbttwé required precision. These two
subtypes are of objective type. Uncertainty instead is gestitbe form of ignorance appearing
when the observer is taken into account, and means that #es\waly gives complete and precise
information, but is unreliable itself.

In this survey, we describe the methods and extensions ocBMAA family, and provide
recommendations on which method to use in different MCDAexts. We find the key points of
the methodology by defining the SMAA framework. We describme of the published SMAA
applications for demonstrating real-world applicabilétgd the practices involved in application
of the methodology.

The rest of this paper is organized as follows: Section 2rde=c the origins of the method-
ology. Section 3 contains a description of SMAA and SMAAHE tnethods that form a basis for
the whole family. The extensions are presented in Sectidind.simulation technique used in the
SMAA computations is described in Section 5. In Section 6 viefly present three applications
of SMAA, and provide references to other applications. TMAS framework is defined and
discussed in Section 7. We end this paper with conclusio&&ation 8.

2 Origins of SMAA

There exists numerous MCDA methods that apply different@gghes for tackling the difficul-
ties encountered in real-life decision-making problemee ©f the oldest and the most succesful
ones is the utility function based approach. In this apgrp#te alternatives are evaluated based
on utility scores that are derived using a function. Thetutflunction based approach has been
researched intensively and applied in various models {seexample Figueira et al., 2005). Al-
though the approach has a history of succesful applicatibhad become apparent that the exact
parameter values required by earlier methods of the appraace not sufficient in all decision-
making situations. In some, the decision makers (DMs) nmgltwvant to reveal their preference
model, and in others, the alternatives might have uncedbimprecise values for criteria mea-
surements. Therefore, new advances were needed for theaapo maintain its usefulness.



One way to overcome these weaknesses in the utility funttésed approach is to apply an
inverse method. This means that instead of asking paraweezs and giving an answer to the
problem in question, the values resulting in different outes are described. The inverse method
of SMAA includes computing multidimensional integrals ofeasible parameter spaces in order
to provide DMs with such descriptive measures. The methbgesovarious problems encoun-
tered in the traditional approach by allowing to use paransewith ignorance on the values. For
example, usually different weight elicitation techniqu@sduce different values, and therefore
deterministic weights are harder to justify than, for exénweight intervals.

Before SMAA there were other inverse MCDA methods. Two thesniportant ones for the
development of SMAA are the comparative hypervolume dateand the overall compromise
criterion.

2.1 Comparative hypervolume criterion

The first advance considered important for the SMAA methoglplwas the one by Charnetski
(1973) and Charnetski and Soland (1978), who introduced:timeparative hypervolume crite-
rion. This method is based on computing, for each alteraeatie volume of the multi-dimensional
weight space that makes each alternative the most prefenedIt can handle preference infor-
mation in form of linear constraints for weights, but is riedeéd to deterministic criteria mea-
surements and an additive utility function. Rietveld (1980d Rietveld and Ouwersloot (1992)
presented similar methods for problems with ordinal ddtand ordinal preference information.

2.2 Overall compromise criterion

The overall compromise criterion by Bana e Costa (1986) isthad containing ideas that gave
birth to the SMAA methodology. The method consists of cating the amount of conflict be-
tween the preferences of different DMs in order to define @t jprobability density function for
the weight space. Although in theory it is very useful, ingbi@e this method is rather limited
as it can handle only 3 criteria. Nevertheless, it was an mapb background work for SMAA
methods as the computation included the idea of integratien the weight space.

3 SMAA and SMAA-2

The discrete decision-making problem is defined to condist set of m alternatives (or ac-
tions in general)X = {z1,...,x;,...,x,}, that are evaluated on the basis of a set afrite-
ria {g1,...,9;j,...,9»}. The evaluation of actiom; on criteriong; is denoted byy;(xz;). The
model considers multiple DMs, each having a preferencectsirel representable with an indi-
vidual weight vectorw and a real-valued utility or value functianx;, w) that has a commonly
accepted shape. The most commonly used value function isdas one:

u(wi, w) =Y gj(a)w;. 1)
=1



The weights are considered to be non-negative and norrdaltherefore defining the feasible
weight space:

W:{weR”:wEOandijzl}. (2)
j=1

The feasible weight space of a 3-criteria problem with ndgwesce information is illustrated in
Figure 1.

Figure 1: The feasible weight space of a 3-criteria problem.

The SMAA methods are developed for situations where neithiegria values nor weights
or other parameters of the model are precisely known. Uaicedr imprecise criteria values
are represented by stochastic variatflggcorresponding to the deterministic evaluatign;))
with assumed or estimated joint probability function disition and density functiorf, (§) in the
spacey C R™*". Similarly, the DMs unknown or partially known preferen@es represented by
a weight distribution with a joint density functiofi;(w) in the feasible weight spadé’. Total
lack of preference information on the weights is represkbiea uniform weight distribution in
W, that is:

Jw (w) = 1/vol(W). @3)

As for the utility or value function based approaches, itidtidoe noted here, that the weights are
defined in the meaning of scale factors; the weights reshal@dlues of partial utility functions
in such a way, that the full swing in the scaled function iats the importance of the criterion
(see Belton and Stewart, 2002, Sect. 5.4).



3.1 SMAA

The fundamental idea of SMAA is to calculate descriptive suees based on multidimensional
integrals over stochastic parameter spaces. The origMAKS(Lahdelma et al., 1998) introduced
three such measures: the acceptability index, the cengiglhivvector, and the confidence factor.
For this purpose, the set of favourable weightg ¢) is defined as follows:

Wi(€) ={w e W : u(&,w) > u(,w),Vk =1,...,m}. (4)

Any weightw € W;(£) makes the overall utility of:; greater than or equal to the utility of all
other alternatives.

The descriptive measures of SMAA are computed based on Moat® simulation. This
means that they might contain errors, but the error margms@asmall, that due to the nature of
the problem they do not have to be taken into account (whenuh®er of Monte Carlo iterations
is large enough, see Section 5).

3.1.1 Acceptability index

Acceptability index describes the share of different weiggduations making an alternative the
most preferred one. It is computed as a multidimensionagnat over the criteria distributions
and the favourable weight space as

NG / fov(w) dw dé. 5)
£ex weW; (&)

Acceptability indices can be used for classifying the aliives into stochastically efficient
(a; >> 0) and inefficient onesaf zero or near-zero). A zero acceptability index means that
an alternative is never considered the best with the asspneéerence model. For stochastically
efficient alternatives, the index measures the strengtheoéfficiency considering simultaneously
the ignorance on the criteria measurements and the DM£aetes.

Scaling of the criteria affects the acceptability indic&caling must therefore not be done
abritrarily when trying to classify the alternatives on thasis of acceptability indices (Lahdelma
and Salminen, 2001). For example, if the minimum and maxinatitarion values are chosen as
the corresponding scaling points, the possible introdaatif a new alternative might change these
values and therefore also the acceptability indices togelaextent (Bana e Costa, 1988).

3.1.2 Central weight vector

The central weight vectary is defined as the expected center of gravity of the favounablight
space. Itis computed as a multidimensional integral ovectheria and weight distributions as

N / fow (w)w duw d€ Ja;. ®)
£ex weW;(€)



The central weight vector describes the preferences of iaalypM supporting this alternative
with the assumed preference model. By presenting the ¢temtiight vectors to the DMs, an
inverse approach for decision support can be applied:ddstéeliciting preferences and building
a solution to the problem, the DMs can learn what kind of pefees lead into which actions
without providing any preference information.

3.1.3 Confidence factor

The confidence factop! is defined as the probability for an alternative to be thegretl one
with the preferences expressed by its central weight velitir computed as a multidimensional
integral over the criteria distributions as follows,

vi= £ul©) de. @
sexu(&,wi) >u(r,ws)

Confidence factors can be calculated similarly for any giweight vectors. The confidence fac-

tors measure whether the criteria measurements are az@matigh to discern the efficient al-

ternatives. If the problem formulation is to choose an ahéve to realize, the ones with low

confidence factors should not be chosen. If they are deemaettrastive ones, more accurate

criteria data should be collected in order to make a relidbfsion.

3.2 SMAA-2

The acceptability index of the original SMAA method was nesigined for ranking of the alter-
natives, but instead for classifying them as more and lesspaable ones, from which the earlier
ones should be taken into future consideration. SMAA-2 {ledima and Salminen, 2001) extends
SMAA by taking into account all ranks and provides five newatligsive measures: the rank ac-
ceptability index, three k-best rank-type measures, aathdtistic acceptability index. These new
measures provide DMs with more insight with the decision imgikroblem. For defining the new
measures, a ranking function is defined as follows:

rank(i =1+ Z ( (&g, w) > U(fi,w)>, (8)

wherep(true) = 1 andp(false) = 0. Let us also define the sets of favourable rank weights
W/ (&) as follows,
Wi () ={weW :rank(i,§,w) =r}. 9)

3.2.1 Rank acceptability index

Rank acceptability index is defined similarly to the accbiiitst index in (5), extending it to take
into account the acceptability for a certain rank. The rao&eatability indexb] describes the



share of parameter values granting alternatiyeank . It is computed as a multidimensional
integral over the criteria distributions and the favoueataink weights as follows,

= / fow(w) duw dé. (10)
cex wEWT (€)

The most acceptable (best) alternatives are those withdugbptabilities for the best ranks. Ev-
idently, the rank acceptability indices are within the raf@,1], where 0 indicates that the alter-
native will never obtain a given rank and 1 indicates thatilit @btain the given rank always with
any choice of weights. The first rank acceptability indgxs equal to the acceptability indes.

3.2.2 k-bestrank indices

Rank acceptability indices are main indicators for the grenbince of alternatives. When the
number of alternatives is large, it is sometimes approptiatiggregate them in the early phase of
the decision-making processhkebest ranks (kbr) acceptabilitiess

k
ai = b, (11)
r=1

The kbr acceptabilities can be used in an iterative process in wthiehweak alternatives are
eliminated until a small group of alternatives reach sudfitiacceptabilities.

The central weight vectors can also be extended in a simiggs;, %o define thecentral kbr
weight vectorw? as

k
k= 2
w; - (& Z::/ewr(g) (w)w dw d€/ a;. (12)

Thekbr weight vector describes the preferences of a typical DMdkaigns an alternative to one
of the ranks from 1 té. Also the confidence factors can be extended similarly, fmeehekbr
confidence factop? as

k

Pk = Fr(&) €. (13)

/eex:mnk(z‘,s,wf)zk

3.2.3 Holistic acceptability index

The problem of comparing the alternatives in terms of thamkracceptabilities can be seen as a
“second-order” multiple criteria decision aiding problébahdelma and Salminen, 2001). The
DMs attitude towards risk define the required magnitude offidence factors and acceptability
indices. The rank acceptability indices can be aggregatediolistic acceptability indice@? as

aff = a'tf, (14)



wherea” are the so-called metaweights. There are numerous posgéys of choosing the
metaweights (see Lahdelma and Salminen, 2001), the onktradmts being that they should be
non-negative, normalized and non-increasing when the irammkases. Using the holistic accept-
ability indices in the decision-making has its limitatiph®wever. This “second-order” decision-
making problem imposes an additional level of complexittheindicators, and adds assumptions
which the DMs might not realize.

In our opinion the holistic acceptability indices shouldyobe used when there is no analyst
available or when SMAA is used as an automated decisionsgakiol. However, in these cases
it should be questioned if SMAA was an appropriate methodmyain the first place. The most
appropriate use of the holistic acceptability indices ddag in problems with a large amount of
alternatives, to filter out alternatives that do not desattention from the DMs. Although in this
type of problems th&br acceptability indices might be more adequate.

3.3 Preference information

In most decision-making problems it is possible to elicingg though probably imprecise and
uncertain, preference information from the DMs. AlthoudW/A allows preference information
to be represented with an arbitrary density function, Uglitals easier to elicit the preferences as
constraints for the weight space. Then the density funétiatefined with a uniform distribution
in the restricted weight spad&”’ as

1/vol(W'), if we W,

15
0, if we W\ W, (13)

Jw(w) Z{

In particular, SMAA-2 introduces the following types of atraints:
1. Intervals for weightsu; € [w}"", w}"*"]).

Intervals for weight ratios (trade-offspf/wy, € [wfi™, w}**]).

Linear inequality constraints for weightd¢ < c).

Nonlinear inequality constraints for weight§{) < 0).

a c N

Partial or complete ranking of the weights; (> wy,).

Figure 2 illustrates the feasible weight space of a 3-daitproblem with interval constraints for
weight wy. Figure 3 illustrates the feasible weight space of a 3+taitproblem with complete
ranking of the weights.

When there are multiple DMs, the constraints have to be gatgd before applying. Possi-
ble non-interactive aggregation techniques include nmastieal union, intersection, of averaging
densities of the functions defining preferences of diffef@hls. There exists also a technique
based on belief functions for eliciting and aggregatinggheference information, see Tervonen
et al. (2004b,c).



Figure 3: The feasible weight space of a 3-criteria problath womplete ranking of the weights.

4 Extensions

In this section we will describe the most important SMAA ediens for ordinal criteria measure-
ments, dependent criteria, cross confidence factors, ase thased on the outranking approach.
There is also a variant of SMAA based on data envelopmenysisgiSMAA-D). For description

of it, we refer to Lahdelma and Salminen (2006b).



4.1 Ordinal criteria (SMAA-O)

SMAA-O (Lahdelma et al., 2003) extends SMAA to consider oatlicriteria measurements,
meaning that the DMs have ranked the alternatives accorirgach (ordinal) criterion. In
SMAA-O, the ordinal information is mapped to cardinal withhdorcing any specific mapping.
This means that nothing is assumed about the weights ofiaritenks in the piecewise linear
mapping.

The possibility of using ordinal measurements has its adgges. Usually the experts defining
the criteria measurements can rank the alternatives wiéiet to each criterion faster than they
can define cardinal measurements. Therefore, if ordinaburements provide sufficient accuracy
for the decision-making problem in question, savings caaliiained.

The ordinal criteria are measured by assigning for eachnaltee a rank level number; =
1,...,j™* where 1 is the best and'** the worst rank level. Alternatives considered equally
good are placed on the same rank level and the rank levelsuanbared consecutively. On an
ordinal scale, the scale intervals do not contain any inédiom, and should be therefore treated
as such without imposing any extra assumptions. Howevengsmapping can be assumed to
underlie the ordinal information. In SMAA-O, all mappindsat are consistent with the ordinal
information are simulated numerically during the Montel@dterations. This means generating
random cardinal values for the corresponding ordinal Gaiteeasurements in a way that preserves
the ordinal rank information. Figure 4 illustrates a sampbpping generated in this way.
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Figure 4: An sample ordinal to cardinal mapping of SMAA-O.
The SMAA methods can be used with any kind of value functiantip accepted by the DMs,

but if we have an additive value function, the shape of thetion can be considered unknown. In
this case, the DMs patrtial value functions are simulatetiénsime way as the ordinal to cardinal



mappings. However, the simulation is not necessary for ttmal criteria, because the simulated
cardinal values can be interpreted directly as partialestn a linear scale. Therefore, if the DMs
accept an additive value function, it is not necessary fef@Ms to agree on a common shape of
the partial value functions for the ordinal criteria.

SMAA-O has been combined with the so-called SWOT methodolagthe work of Kan-
gas et al. (2003b). For an alternative technique for apglgirdinal criteria in simulation-based
approaches, see Leskinen et al. (2004).

4.2 Handling dependent criteria

In many real-life applications of SMAA the criteria measuents as well as their uncertainties
are dependent, and by not considering them as such thesreslliicontain bias (Lahdelma et al.,
2004). SMAA allows using external sampling as a source fiteria measurements. This tech-
nique implicitly takes into account the dependencies. Aeotechnique reported in the literature
(Lahdelma et al., 2006) is to model the criteria with a maltiste Gaussian distribution. The mul-
tivariate Gaussian distribution between a vector of stethaariableg)y, ..., A.]* is defined by
the joint probability density function

1

1 Y)LA—1 by
M, ) = ——— 3 (ANTATIAN) 16
T2 = o) (19)

where) is the vector of the expected values of the stochastic esamndA is the L x L covari-
ance matrix,

COV(A1, A1) COV(A1,A2) -+ COV(A1,Ar)

A COV()\:Q, A1) cov(Az, A9) cov(Aa, A\L) where a7)
cov()\'L, A1) cov(Ap,A2) - cov(Arp, Ar)

cov(A;, Ak) = E((N = A) (A — Aw))- (18)

Although the covariance matrix is reasonably compact ptasien of the imprecision and de-
pendancy information, it is more convenient to separatsetit@o types into a vector of standard
deviationse and to anL, x L correlation matrixp. The correlation matrix is computed from the
covariance matrix with
coV(Ay, M)
Pik = T vy
o(Aj)o(Ak)

The correlation coefficients are within the rangel, 1] and measure how well a linear model
Aj = a\ + b explains the dependancy of the variables.

Although it may be possible to determine the correlatiorhefariables “by hand”, in practice
in most applications it is too time consuming or even impassi The multivariate Gaussian
model is more suitable in applications, where there exisisnallation model or real-life process

(19)

10



producing values for the criteria measurements (see $e6t®). The mean of each criterion
measurement is estimated from the samp|eoy the sample mean with

K
i =i =Y _ah/K. (20)
k=1

An unbiased estimator for the covariance is calculated@sdmple covariance with

K

cov(&ij, &irjr) = Z(yzkg — Ui (Wl — Yuyr) /(K = 1). (21)
=1

The sample standard deviation is the square root of the savaphnce:

K

o(Nig) =6 (yis) = \| Dl — i)/ (K = 1). (22)
k=1

Standard error of the sample mean, caused by the finite sibe shmple, is calculated as
o (Uij)/ VK. (23)

The sample correlation matrix is obtained by dividing th&s@nd columns of the sample covari-
ance matrix by the sample standard deviations.

4.3 Cross confidence factors

SMAA has been developed for problems with ignorance on butpteferences and the criteria
measurements. When the information is very imprecise, lpnad emerge because a large set
of alternatives might seem acceptable as indicated by tbepgability indices. In this kind of
situations, it would be desirable to obtain more precisermtion on the preferences of the DMs
and on the criteria measurements, but it is not always plesdite to limits with time and money.

One technique for improving the discrimination of a largé aeefficient alternatives is to
usecross confidence factodahdelma and Salminen, 2006a). These descriptive measuee
confidence factors computed for each alternative using eti@r’'s central weight vectors. The
cross confidence factor for alternativewith respect to alternative;, is computed as

k

pi = fx (&) dg, (24)

/fex:wf;EWil )

defined when the target alternative is efficient (and theedfias a central weight vector defined).
The cross confidence factor is a probability for an altemeatid obtain the first rank (considering
the ignorance on the criteria measurements) when the temtight vector of the target alternative
is chosen.

11



The cross confidence factors provide additional infornmatioform of telling why the dis-
crimination of alternatives is weak: an alternative thabots a high cross confidence factor with
respect to another is similar and because of that poorlyidistated. For identifying such alter-
natives the model defines reference sets, that are ordethstic sets of pairs a, p¥ >:

)

(< ik )Py > Ir = 1 m(k)}, (25)

wherem(k) < m determines the number of elements in the reference set ariddbx function
i(k,r) orders the elements by their cross confidence factors irgoetieling order. This ordering
makes it easy to quickly identify the most poorly discrimethalternatives. The reference sets
can be visualized as column charts as shown in Figure 5.

X2

- B

x2 x3

Figure 5: Sample cross confidence factors of alternative x23-alternative problem.

4.4 Reference point approaches

Although the SMAA methods can be used without any infornratio the weights, it is preferable
to try to elicit some information from the DMs. Rather thaingsweights, a more straightforward
technique for representing the preferences is throughremte points. With reference points,
the DMs specify desirable or preferable values for eaclerioit instead of specifying trade-offs
between criteria. Reference points model satisfying hienaunstead of trying to find optimal
solutions, and can thus be more suitable in some decisikingpaontexts. There exists two
reference-point based SMAA methods that we will describe: @MAA-P and Ref-SMAA.

12



4.4.1 Prospect theory based variant (SMAA-P)

Prospect theory evaluates alternatives performancesrestiect to deviations from a reference
alternative. This reference alternative is consideredeta B-point in valuations of the DM. The
gains with respect to the reference alternative are coreside be more important than the losses,
and therefore the partial value functions are commonly &petl. In the part above the reference
alternative (gain) the value function is concave (risk aggrand in the part under the reference
alternative (loss) convex (risk seeking). Therefore whHendesirable values represented by the
reference point are reached, the DM is considered to bdisdtand further increases are accord-
ing to risk-averse behaviour.

Prospect theory has its difficulties in finding the DMs’ refece alternative, quantifying the
tradeoffs for gains and losses, and combining preferericiberie are multiple DMs. SMAA-
P (Lahdelma and Salminen, 2003) tries to overcome thesengsa&s by analyzing the sets of
feasible values for the parameters defining the model. Thé&sPMferences are represented with
additive piecewise linear difference functions as in peasgheory. This requires two separate
weight sets to be defined: one for gains™) and another for lossesv(). Then the piecewise
linear difference function for evaluating alternativewith respect to the reference alternative
is defined as

d(xiaxryw+7w_) :Zd](l'ZJ?:CT]aw;r?w;)? (26)
j=1
where the partial difference functions are
dj(z4j, xrj, wj, w]_) = w;' max {z;; — z,5,0} + w; min {xij — xrj,0}. (27)

To be consistent with the intuition that losses are at le;gn@ortant as equal gains, the weights
are constrained with

0<wt<w . (28)
Loss and gain weights can be replaced by representing tliergmees in terms of importance
weightsw; and coefficients of loss aversien > 1. This is the ratio between the loss and gain
weights:

sj = w;/w;r (29)
The loss and gain weights are defined based on the loss avemtficient symmetrically around
the importance weights as:

wj = w;-r w; (30)

The original utility or value function is replaced in SMAAWth a piecewise linear difference
function including all preference information:

U(JZ‘Z‘,'U) = d($i7w>$7‘78)7 (31)

wherev = [w, z,, s| is the preference information vectorThe feasible preference information
spaceV is defined as

V=WxXrx8§={v=[w,z,s]lwe Wz € Xg,seS} (32)

13



whereW is the feasible weight spac&r is the feasible reference alternative space (should be
defined to include at least all possible reference alteresiti andS is the feasible loss aversion
coefficient space. The joint probability distribution oétpreference information vector is defined
as

fv(v) = fw(w) fxp(2r) fs(s). (33)

The new value function (31) is used to map the stochastier@iand preference distributions into
value distributions as in SMAA-2. The stochastic sets obfaable rank weights are redefined to
be stochastic sets of favourable rank preferences as

W (€) = {v € Vlranki, &, v) = r}. (34)

The rank acceptability indices and the central weight vscéme computed as in SMAA-2, with
the only difference being that the inner integration is dower the feasible preference information
space instead of the feasible weight space. SMAA-P alsoateéidditional descriptive measures.
For more details on these, we refer to Lahdelma and SalmRz@d8].

4.4.2 Reference point approach (Ref-SMAA)

The Ref-SMAA method (Lahdelma et al., 2005) (also called WA allows to use reference
points with multiple DMs by providing descriptive informan about the sets of reference points
that favour each alternative. An identical method (althougth a simpler simulation model) has
been presented by Durbach (2006).

Achievement functions are used for overcoming some weakssesf the traditional goal pro-
gramming, and used in Ref-SMAA for characterizing non-duated solutions. These are solu-
tions where none of the components can be improved withevgriog the score of at least one
of the others. An achievement function is a functign: X — R, wherez € R* is an arbitrary
reference point. The achievement function of Ref-SMAA carsblected in various ways, as for
example:

=1,...,

k
sp(w;) = min [wi(z; — &)] + MZ’LUZ‘(ZCZ‘ — &), (35)
i=1

wherey is a sufficiently small scalar and is a fixed positive scaling vector. Usually; is set to
be equal to the inverse of the difference between the beghandgorst value for each criterion.

Ref-SMAA operates on the basis of a set of favourable retergroints for each alternative
x;, defined as:

Any reference point: € X;(¢) makes the overall preference of greater than or equal to the
preference of any other alternative. The feasible referg@aint spaceX; can be defined according
to needs, for example as a convex combination of the referpomts of all DMs. Similarly to
the acceptability index (5), Ref-SMAA defines the refereaceeptability index:;, computed as

14



a multidimensional integral over the criteria value diitions and the favourable reference point

space as
i = ) did€. 37
r /SGX Ix(§) /@-e _i(g)(g)f(l") xdg (37)

Thecentral reference pointz; is defined as the expected centre of gravity of the set of fame
reference points, computed as a multidimensional integrtie reference point vectarover the
criteria value distributions and the favourable referepomt space as

s= [ R© [ f@adidgn, (38)
£ex T,€X(8)

All the descriptive measures of Ref-SMAA are related tonafee points, and therefore the mea-
sures as well as the original alternatives all belong totterion space. For some decision makers
this type of model might be easier to understand, as no @tifioncepts such as weights are used.

4.5 Outranking based SMAA approaches

SMAA has been extended for using instead of value functi@mfloutranking-based aggregation
procedure for defining ranking of the alternatives. This andther approaches described in this
section are based on using ELECTRE type pseudo-criteri@ pBleudo-criteria are defined by
using thresholds that are denoted as follows:

e ¢;(g;(-)) is theindifference thresholdor the criteriong;,
e p;(g;(-)) is thepreference thresholtbr the criteriong;, and
e v;(g;(+)) is theveto thresholdor the criteriong;.

By using these thresholds @mncordance indexis defined. It is computed by considering in-
dividually for each criteriony; the support it provides for the assertion of the outrankisgp,
“alternativeq is at least as good as alternati/e The partial concordance index is a fuzzy index
computed as follows, forall = 1,...,n:

L, if gj(a) > g;(b) — q;(g; (b)),
ei(ab) = 4 O F9i(@) < ;(b) —pilg; (b)), )

g;(a)+p; (gj(b)) —g5(b)
Pj (gj(b)) —q; (gj(b))

, otherwise.

After computing the partial concordance indices, the ca&hensive concordance index is calcu-
lated as follows,

c(a,b) = ijcj(a, b). (40)
jeJ
If the veto thresholds are used, alsdiscordance indegan be defined. For more information on
pseudo-criteria based models, see Roy and Bouyssou (1993).

15



4.5.1 Outranking aggregation procedure (SMAA-3)

SMAA-3 (Hokkanen et al., 1998) method is a variant of the ioa SMAA that applies, instead
of the value function, ELECTRE type pseudo-criteria andriim favor” choice procedure. Ac-
cording to this procedure, an alternative becomes the peef@ne (not necessary unique) if the
following set of constraints hold:

min  c(z;,x;) >  min c(xp,x
R oo ) 2, min o, @), 1)

k=1,...,mk#i.

Based on this the favourable weights of an alternative @)edefined as

={weW: mln g wjcj (4, z7)

(42)
mlﬂ? o Z wjc;(xy, 1),

k:,”whk¢@

The rest of the analysis is done as in SMAA, with the exceptian the criteria measurements are
considered to be deterministic (no integration oyes done), and therefore no confidence factors
are computed. It should be noted, that now the central weigtitor can lie outside the space
of favourable weights of an alternative, because this peefee model is non-linear. Therefore,
in this kind of (easily detectable) situations a favouralkEght vector is chosen with a minimal
distance to the central weight vector.

In the literature there exists simulation-tests of SMAAiagaSMAA-3, and in these tests
the results of SMAA-3 were found to be quite unstable witlpees to the indifference threshold
(Lahdelma and Salminen, 2002). Therefore, when SMAA-3 @liag in practice, great care
should be put into choosing the thresholds.

There exists also a variant of SMAA which applies the congplet ECTRE Il procedure for
producing a ranking. For more details on it, see Tervoneh €@04a).

4.5.2 SMAA-TRI

All the SMAA variants described until here are for ranking aroosing problem statements.
ELECTRE TRI (Yu, 1992) is a method for sorting problem statais, and SMAA-TRI (Ter-
vonen et al., 2005) extends it to allow ignorance on the patanvalues.

ELECTRE TRI uses concordance and discordance indices fitngdhe alternatives into pre-
defined and ordered categories. Let us denot€'by {C1,...,C},...,Cy} the set of categories
in ascending preference ordér,(is the “worst” category). These categories are defined bgupp
and lower profiles, that are computationally equivalentiteraatives. The profiles are denoted as
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P1,---5Ph,---,PE—1. Profilep;, is the upper limit of categoryg’;, and the lower limit of category
Ch+1. Notice that the profiles are strictly ordered, that is thayehto satisfy

PLADPIA ... App_oApp_q, (43)

whereA is the dominance relatiom{Ap> means thap, dominateg,). This dominance relation
needs to be interpreted in a wide sense, because the daminafpends not only on the values of
components of the two profiles, but also on the values of tinlds.

We will not describe the assignment procedure here, theeistied reader should refer to Ter-
vonen et al. (2005). For the assignment procedure an adalittechnical parameter, the lambda
cutting level, has to be defined.

SMAA-TRI is developed for parameter stability analysis &fEECTRE TRI, and consists of
analyzing finite spaces of arbitrarily distributed paragnetalues in order to describe for each
alternative the share of parameter values that assign iiffereht categories. It analyzes the
stability of weights, profiles, and the cutting level.

The input for ELECTRE TRI in SMAA-TRI is denoted as follows:

1. Uncertain or imprecise profiles are represented by sstichaariablesp,,; with a joint den-
sity function f5(¢) in the spac& C R(*~1x"_ The joint density function must be such that
all possible profile combinations satisfy (43). Usually tiaegory profiles are defined to be
independently distributed, and in this case the distrimgimust not overlap. For example,
if the profile values for a criterion are Gaussian distridytie distributions must have tails
cut off as shown by the horizontal lines in Figure 6.

fx)]

Pi %,

Q3

X
Figure 6: Probability distribution functions for three Gaian distributed profile values (for a sin-

gle criterion). The horizontal lines show where the tailshef distributions must be cut. (Tervonen
et al., 2005)

2. The lambda cutting level is represented by a stochastiabla A with a density function
fr(A) defined within the valid range [0.5,1].
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3. The weights and criteria measurements are represente GAAA-2.

4. The data and other parameters of ELECTRE TRI are repexbdmy the setl’ =
{M, q,p,v}. These components are considered to have deterministiesal

SMAA-TRI produces category acceptability indices for alirp of alternatives and categories.
The category acceptability index describes the share of possible parameter values that have a
alternativex; assigned to categoyy;,. Let us define aategorization functiorthat evaluates the
category index: to which an alternative;; is assigned by ELECTRE TRI:

h=K(,A,¢,w,T), (44)
and a category membership function

1. if K(7,A T)=h
m?(A,¢,w,T>={ LA 0w T) = e (45)

0, otherwise,

which is applied in computing the category acceptabiligexnumerically as a multi-dimensional
integral over the finite parameter spaces as

1

wh= [ 5 [ e [ fwtwiml (86w T)dwds da. (46)
0.5 ped weWw

The category acceptability index measures the stabilith@assignment, and it can be interpreted

as a fuzzy measure or a probability for membership in thegosye If the parameters are stable,

the category acceptability indices for each alternativeukhbe 1 for one category, and 0 for the

others. In this case the assignments are said to be robimstesjpect to the imprecise parameters.

5 Simulation

The various distributions applied in the integrals of SMAZty according to the application and
can be arbitrarily complex. Usually the integrals have tdghensionality as well. The analytical
integration techniques based on discretizing the digidba with respect to each dimension are
infeasible, because the required effort depends expatigndin the number of iterations. There-
fore, instead of trying to obtain exact values for the inddgirMonte Carlo simulation is applied to
obtain sufficiently accurate approximations. In this sective address the simulation technique,
accuracy of the computations, and the complexity issuesdéscription of the actual algorithms,
we refer to Tervonen and Lahdelma (2006).

5.1 Simulation technique

Monte Carlo simulation is applied in computation of the grds. For all the acceptability index-
type measures, a similar technique is applied: in eachiib@raneasurements for the parameters
(criteria measurements, weights, ...) are drawn from tb@&iresponding joint distributions, and
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a ranking or a classification is built based on these valudtgr gis, counters for corresponding
ranks or classes with respect to the alternatives are isedeaAfter a number of iterations, the
indices are obtained by dividing the counters with the nurobierations. The central weights are
computed in a similar fashion, by adding to the “sum of weigdttors” of the alternative obtaining
the best rank the currently used weight vector. This ve&taliided in the end component-wise
by the number of iterations in order to obtain the centralghevector.

The weight generation is an important part of the simulatemhnique. If there is no prefer-
ence information available, theuniform distributed weights are generated as follows: first1
independent random numbers are generated from the unifistribdtion within the rangg0, 1],
and sorted into ascending ordes . . ., g,_1). After that, 0 and 1 are inserted as the firg) @nd
last (g,) numbers, respectively. The weights are then obtainedtes/als between consecutive
numbers{; = q; — gj—1) (Tervonen and Lahdelma, 2006).

If there exists preference information, the weight genenatechnique must be altered. In the
case of complete ordinal preference information, the wsigan simply be sorted according to the
ranking. Lower bounds for weights can be handled by usingnplsi transformation technique.
Let us illustrate this by re-examining Figure 2. By considgonly the lower boundy;, > 0.2, the
feasible weight space is re-defined as one homomorphic gtbriginal one. The lower bounded
weights are defined by generating the random numbers frenaifo, 1 — s], wheres is the sum
of all lower bounds, and adding to them the correspondingetdsounds.

Upper bounds for weights cannot be handled by using a siteitéanique, but instead a simple
rejection technique is applied, in which the weight vectoo$ satisfying the upper bounds are
rejected. As can be seen in Figure 2, the tip of the simplexoffuby the upper bounds has
relatively small area compared to the one of lower boundsrdfbre the increase in computational
complexity due to upper bounds is relatively low. In additidower bounds might even render
some of the upper bounds redundant. Consider for examptziteBa problem with lower bounds
of 0.2 for all weights. The maximum value that any weight chtam is1 — 0.2 — 0.2 = 0.6, and
therefore all upper bounds higher than 0.6 are redundard.aiffount of weights rejected due to
upper bounds can be estimated in the following way: if we rsall weights to have a common
upper boundw™4*, the probability for the largest of the generated weightexceed the upper
bound is

Plmaz{w;} > w™™)] = n(1 - w")" " - (g) (1 2gmaeyi-1
T (—1)’“—1<Z>(1 eyl )

where the series continues as long as kw™** > 0 (David, 1970).

5.2 Accuracy of the computations

Accuracy of the computations can be calculated by consigatie Monte Carlo simulations as
point estimators for the descriptive measures. To achiegaracy ofA with 95% confidence for
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the rank acceptability indices, we need the following nundiéMonte Carlo iterationds:

1967
o442

For example, to achieve 95% confidence on error limits@f)1 for the rank acceptability indices,
we need to execute 9604 Monte Carlo iterations. The accufcynfidence factors depends on
the accuracy of central weight vectors in a complicated raaifervonen and Lahdelma, 2006),
but if we disregard this source of error, the same equatioadouracy applies. The accuracy of the
central weight vectors depends on the acceptability isdiaed the required amount of iterations
is calculated as follows:

(48)

~1.96?

= A
It should be noted, that the accuracy of the computations doedepend on the dimensionality
of the problem, but instead only on the number of iterations.

(49)

5.3 Complexity issues

The required number of Monte Carlo iterations in typical SMApplications is fairly high, and
therefore for having practical applicability the comptgxdf SMAA computations should not be
too high with respect to the number of criteria and altexesti The complexity of SMAA-2 and
SMAA-O has been analyzed by Tervonen and Lahdelma (20068. cBmplexity of computing
the acceptability indices and central weight vectors wiiteppendent criteria measurements and
cardinal criteria iSO(K - (nlog(n) +m - n + mlog(m))). The complexity of computing the
confidence factors i©(K - m? - n). In these formulagy is the number of Monte Carlo iterations,
m the number of alternatives, amdthe number of criteria.

The usage of ordinal criteria adds to the complexity withadaof log(m). In practice this
has very little effect (Tervonen and Lahdelma, 2006). Wtes & larger impact to the running
times is the handling of preference information. The formsuhbove suppose that there are no
constraints on the weights, which in practice is usuallythetcase. As described in Section 5.1,
lower bounds for weights do not affect the complexity of theight generation, but upper bounds
might have a great impact on the process.

6 Applications

SMAA was originally developed in conjunction with a redkldecision-making problem, and has
been since applied in a variety of real-life cases. We wilfty present three different cases for
illustrative purposes.

6.1 Infrastructure planning

In 1990, the city council of the capital of Finland, Helsinétecided that a suburban area, Vuosaari,
needed to be reserved for a general cargo harbor. The nepwlaitythat contained the allocation
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of the land area was approved at 1992. After this, a plannioggss was initiated. According
to the Finnish laws, Environmental Impact Assessment (Ei@dds to be done in this type of
planning processes, taking into account also the opinibmesidents of the affected areas. The
actual decision process began with the construction adr@itaking into account environmental,
sociological, as well as economical viewpoints. This lebitddo definition of the following 11 cri-
teria: sea, ground water, emissions into air, fauna, véigatand flora, employment, recreational
possibilities, landscape, and economy.

Different alternatives for developing the harbor area vwemstructed with different combina-
tions of the naval navigation channel, roads, and railroAdset of 24 alternatives was constructed
in this way, and in accordance with the EIA legislation, asoadditional alternative was added.
This alternative considered improving existing facibtizithout constructing a new harbor (so-
called zero-alternative). Thus, multiple criteria demisiaiding was applied with a total of 25
alternative strategies.

The purpose of the EIA procedure is not to present a solutidhe decision-making problem,
but instead, to describe the effects of different possibte®as. For the criteria considering envi-
ronmental effects, determination of the values is usudijgdive and therefore uncertainties have
to be taken into account. In decision-making processes asithis, it is often the case that the
DMs are not willing to provide preference information. Théggmal SMAA method that allows
tackling problems with ignorance on the preference infaiomaand criteria measurements was
developed in conjunction with this decision-making preces

After SMAA analysis, the results were presented to the DManidifferent interest groups
feared that their favourite alternative would not be amdrmgyrost preferred ones, as they saw
the method “too fair”, taking into account all points of vie®uring the process, however, they
understood that it is possible to choose almost any aligenbased on certain preferences. In the
end, the groups carried out real discussion about the vahesgnt in the process. This decision-
making process leaded into a decision to build the Vuosaatidur, and the first stone of the
harbour was placed in 2003, after a long public politicatdssion.

This application has been described in detail by Hokkanah €1999). For other applications
of SMAA in infrastructure planning, see Hokkanen et al. 8,92000); Lahdelma et al. (2002).

6.2 Forest planning

Landspace ecological planning is an area where the timedrors usually very long and the data
concerning possible alternatives uncertain and impretis€inland the state-owned forests cover
nearly 9 million hectars and require landscape ecologitaig One of these plans was made
for the Kivalo forest area located in the Finnish Laplandriffas et al., 2003a). In this study, 10
possible development stategies for a timeframe of 10 years @valuated in terms of 2 cardinal
and 3 ordinal criteria. The study demonstrated the applisabf SMAA-O in forest planning,
especially as mixed (both ordinal and cardinal), impreeisd uncertain criteria measurements
and vague preference information could be taken into adcoun

For other forest planning related studies, see Kangas andd¢52003); Kangas et al. (2005).
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6.3 Elevator planning

Modern elevator systems in high-rise buildings consistrolugs of elevators a with centralized
control. The goal in elevator planning is to configure a sléalevator group to be built, satisfying
minimum requirements for the quality of service. In addifid is desirable to use the least floor
space possible and to minimize the cost of the system. Duhi@glanning, the measurements
for some criteria can be estimated by experts. This is the wéth, for example, price. For other
criteria this is not possible, and simulation is requiredétermine the scores.

In the work by Tervonen et al. (2006), a realistic elevatanping problem of the above type
is considered. It consists of a 20-floor buiding for which afd 0 possible elevator group con-
figurations has to be chosen. The alternative configuratiare analyzed using the KONE (one
of worlds leading elevator manufacturers) Building Tra8ieulator. Based on the output of the
simulator, the criteria values for performance-relatateda could be defined with a multivariate
Gaussian distribution. The study presents an interesppjcation of the SMAA methodology:
an area traditionally unconnected with MCDA is linked byngsexternal simulation providing
parameters for the distribution to be used. In this type afrmrcially linked studies in which the
stakeholders are representatives of different compaiisgmportant that the interests of different
groups of stakeholders are identified, as well as are conipeosolutions. This was accomplished
with SMAA in this case.

7 The framework

We define the SMAA framework for deciding a method to choosa specific decision making
context. The first question to ask is whether we are dealirlg siranking or sorting problem
statements. If we are dealing with sorting problem, the ongthod of SMAA family we can
use is SMAA-TRI. With ranking problems, we have to choosetype of preference model we
have: whether it is based on weights or on reference pointge have a weight-based model, we
have to choose the type of aggregation procedure: utilitygtue) function or outranking method.
With the reference point approach we have to choose wheth&ramt to use prospect theory (loss
aversion model) or achievement functions in the aggregatwith all this information, we can
choose whether to apply SMAA-2, SMAA-3, SMAA-P, or Ref-SMA#r the ranking problem.
Depending on the method to apply, we obtain as output diffedescriptive measures that can
some be used to derive “second-order” aggregate measunessiag of the method is presented
as a decision-tree in Figure 7.

In the context of the framework, we should notice that alleotmethods than Ref-SMAA,
which is based on reference points, can be used with anpivaight information. This means
that we can apply them with no preference information agallvell as with mixed information of
ordinal and cardinal types. In practice the most useful @megpartial) ordinal information and
cardinal weight constraints. Complex weight constrainightbe hard for the DMs to understand,
and therefore by using more complex distributions the |biggifor the information to contain
uncertainty increases. If the DMs have problems understgritie underlying preference model,
the achievement function based approach (Ref-SMAA) mighnbre suitable.
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Problem

Ranking Sorting
statement?

Preference Weights or scaling Reference

model? factors points

Aggregation Utility or value Outranking Loss aversion Achievement

procedure? function procedure model function

Method SMAA-2 SMAA-3 SMAA-P Ref-SMAA| |SMAA-TRI
DeSCI’iptiVC (cross) Rank . Central Central Reference Category

. - Acceptability . N - N -
measures confidence acceptability o weight reference acceptability acceptability
factors indices indices vectors points indices indices

Aggregate Holistic kbr acceptability
measures acceptability indices indices

Figure 7: Decision-tree for choosing the SMAA variant.

The shortcoming of the utility-function based approach W) is that the scaling has large
effect on the results, and the meaning of the weights is basdlde scale. Therefore, if the shape
of the utility function is hard to define, it might be more stite to use SMAA-3 instead.

Arbitrarily distributed imprecise or uncertain criteriarc be applied in all methods of the
family except SMAA-3, that requires criteria measuremeatiave imprecision defined by the
thresholds. It should be noted, that SMAA-O is not a stawtk@lmethod, but rather a compu-
tational technique for handling ordinal criteria measugata. The possibility of using external
sampling and the following generalisation to use SMAA witteenal methods can be considered
a great advantage. For example, the approach applied in SWRIAcan probably be applied to
other methods as well, to use them with ignorance on the peieaimalues in order to analyze the
stability of the results.
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One of the unsolved questions in SMAA is how to obtain aggesfjaeasures based on the
rank acceptability indices. The holistic acceptabilitdizes can be used for this purpose, but they
require meta-weights to be defined. This is an artificial ephevith no connection to a cognitive
decision-making process, and therefore their use is hajdstdy. It might be, that to obtain
more easily interpretable measures, we need to make modaeés complex. This would mean
adding more parameters or using a more complex preferendelmBut on the other hand, the
complexity introduced in this way brings new sources of igmae. More research should be put
on this subject.

8 Conclusions

SMAA is a recent methodology providing a general framewdr&t thas extensions to handle
various specifities in multiple criteria decision aidingblems. In this paper, we presented the
two basic methods, SMAA and SMAA-2, and the most importat¢esions of the methodology.
The SMAA framework derived from these methods allows theisige analyst to choose the
specific model to apply depending on the characteristickeoptoblem.

The SMAA framework allows to use methodology in a broad raoidecision making con-
texts. Nevertheless, there exists unsolved questionsndst¢ important being if we can develop
aggregate measures that would help further in the deciseking process. The holistic accept-
ability index is such, but its applicability in practice is@ptionable. Therefore, future research
on the methodology should address this area. Other crueid s a user-friendly and com-
putationally efficient software implementing the methadpyl There is currently available an
open-source implementation of the basic methodology (leyadithe authors, downloadable from
http://monet.fe.uc.pt/thesessoftware/), but it lacksapbical user interface. As the principles of
SMAA are quite simple though the equations for computingdescriptive measures look com-
plicated, we believe that a software with a graphical ustriace would allow the methodology
to be applied in every-day decision-aiding problems by sidess adapted to the techniques of
numerical computation.
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