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Abstract

The most efficient algorithms for solving the single-criterion {0,1}-knapsack problem are
based on the concept of core, i.e., a small number of relevant variables. But this concept
goes unnoticed when more than one criterion is taken into account. The main purpose of
the paper is to check whether or not such a set of variables is present in bi-criteria {0-1}-
knapsack instances. Extensive numerical experiments have been performed considering five
types of {0,1}-knapsack instances. The results are presented for supported, non-supported
and for the entire set of efficient solutions.
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1 Introduction

The {0,1}-knapsack problem is about selecting a set of items such that the sum of their values
is maximized and the sum of their weights does not exceed the capacity of the knapsack. The
{0,1}-knapack problem can be mathematically formulated as follows:

max p(x) = p(x1, ..., xj , ..., xn) =
nP

j=1
pjxj

s.t. :
nP

j=1
wjxj ≤W

xj ∈ {0, 1}, j = 1, ..., n

(1)

where, n is the set of available items, pj is the value of item j (j = 1, ..., n), wj is the weight
of item j, W is the knapsack capacity, xj = 1 if item j is selected and xj = 0, otherwise.

Dantzig (1957) showed that an optimal solution for the continuous {0,1}-knapsack problem
can be obtained by sorting the items according to non-increasing profit-to-weight ratios (also
called efficiencies), and including them until the knapsack capacity is full. At the end there is
just one item which cannot be wholly included. This item, b, is called the break or critical item

and it is such that
b−1P
j=1
wj ≤W <

bP
j=1
wj .

With the items ordered such that

p1

w1
≥ ... ≥ pj

wj
≥ ... ≥ pn

wn
(2)

the optimal solution of the continuous {0,1}-knapsack, x, also called in this paper Dantzig
solution, is thus:

xj =


1 j < b

W −
b−1P
t=1
wt

wb
j = b

0 j > b

, j = 1, ..., n (3)

Balas and Zemel (1980) observed that for randomly generated instances the optimal solution
for (1) is very similar to the Dantzig solution. This similarity lead us to introduce the concept
of core. Assuming that x∗ is an optimal solution of problem (1), the core is C = {j1, ..., j2} ,
where j1 = min

n
j : x∗j = 0, j = 1, ..., n

o
and j2 = max

n
j : x∗j = 1, j = 1, ..., n

o
.

The core is thus a subset of items, with efficiencies similar to the efficiency of the break
item, that must be considered to determine the exact solution, thereby defining the so-called
core problem. Results for large size instances showed that the size of the core is a very small
proportion of the total number of items, and it increases very slowly with the latter (Balas and
Zemel, 1980), which supports the existence of a small, but relevant problem. The concept of core
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was the foundation for the development of the most efficient known algorithms for the {0,1}-
knapsack: Fayard and Plateau (1982), Martello and Toth (1988), and Pisinger (1995). The first
two approaches used an approximation of the core and set the values of all the variables outside
the core to 1 and 0. The original problem was thus reduced to comprise only the items that
pertained to the core. The use of the concept of core evolved (see Martello et al., 1999 for a
description of the use of the core in the construction of knapsack algorithms) and Pisinger (1997)
showed that the core could be determined when running the algorithm, during the determination
of the optimal solution, thus avoiding guessing the core.

In the single criterion {0,1}-knapsack problems the concept of core is quite important because
the complete sorting of the items required for deriving better upper and lower bounds is not
necessary. As Balas and Zemel (1980) note, it absorbs a very significant part of the total
computational time. It is also important because the solution of the core problem can further
be used to provide improved lower bounds for the optimal solution of the original problem, thus
making it possible to fix the value of a significant number of variables at their optimal value.

Despite the importance of the concept of core it passes unnoticed in the study of multiple
criteria {0,1}-knapsack problems, i.e., when several conflicting criteria are considered.

The paper sets out to investigate the presence of the features pointed out by Balas and Zemel
(1980), i.e., the structure of the core, in bi-criteria problem solutions:

max z1(x) =
nP

j=1
c1jxj

max z2(x) =
nP

j=1
c2jxj

s.t . :
nP

j=1
wjxj ≤W

xj ∈ {0, 1}, j = 1, ..., n

(4)

where, cij represents the value of item j on criterion i, i = 1, 2. We assume that c1j , c
2
j ,W

and wj are positive integers and that wj ≤ W j = 1, ..., n with
nP

j=1
wj > W . Constraints

nP
j=1
wjxj ≤ W and xj ∈ {0, 1}, j = 1, ..., n, define the feasible region in the decision space, and

their image when using the criteria functions z1 (x) and z2 (x) define the feasible region in the
criterion space - the spaces in which the solutions and their images under the criteria functions
z1(x) and z2(x) are contained. A feasible solution, x, is said to be efficient if and only if there
is no feasible solution, y, such that zi (y) ≥ zi (x) , i = 1, 2 and zi (y) > zi (x) for at least one i.
The image of an efficient solution in the criterion space is called a non-dominated solution.

In this paper, solving problem (4) consists of determining the set of all the efficient/non-
dominated solutions. Figure 1 shows the set of non-dominated solutions of an instance with 100
items, and with the coefficients randomly generated from an uniform distribution.

Certain efficient/non-dominated solutions can be obtained by maximizing weighted-sums of
the criteria, called supported efficient/non-dominated solutions, but there is a set of solutions,
called non-supported efficient/non-dominated solutions, that cannot be obtained in this way,
because despite being efficient/non-dominated, they are convex dominated by weighted-sums
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Figure 1: Non-dominated solutions of a random instance

of the criteria. The non-supported non-dominated solutions are located in the dual gaps of
consecutive supported non-dominated solutions (Steuer, 1986).

The process of solving the bi-criteria problem can benefit considerably from the developments
proposed for solving the single criterion one. In fact, solving (4) can be summarized as the
computation of solutions which maximize weighted-sum functions (supported efficient solutions),
i.e., single criterion problems, and the computation of solutions that are in the way of those
maximizations, just before reaching their optima, i.e., approximate solutions of single criterion
optimizations. Consequently, for the supported efficient solutions the available results for the
single criterion {0,1}-knapsack problem are valid. As far as we are aware there has been no
study on the non-supported efficient solutions.

Despite the similarities between problems (1) and (4) the known algorithms for solving (4)
(Ulungu et al., 1997; Visée et al., 1998; Captivo et al., 2003) are limited in comparison with
those proposed for solving the single criterion {0,1}-knapsack, in terms of both computational
time and the number of instances which can be solved. Even the approximate methods raise too
many problems relative to the quality of the approximation (Gandibleux et al., 2001; Gomes da
Silva et al., 2006, 2004a).

The presence of similar features in the set of efficient solutions of (4), as reported by Balas
and Zemel (1980), could pave the way for the development of better approximate and exact
algorithms concerning computational time and the quality of the approximation. This is the
main focus of research of the present paper.

The rest of the paper is organized as follows: Section 2 presents the concept of bi-criteria
core. Section 3 describes the computational experiments on the size of the bi-criteria core.
Finally, Section 4 points out the main conclusions and lines for future research.
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2 Bi-criteria cores

In multiple criteria problems there is no a single function and the objective functions of the
problems can be aggregated into just one in several ways. In the bi-criteria case an aggregation
function may be expressed by p(x,λ) = λz1 (x) + (1− λ) z2 (x) with 0 ≤ λ ≤ 1. Let = be a
family of weighted-sum functions p(x,λ). We propose the following definition of core given an
efficient solution x :

Definition 1 Given the family of weighted-sum functions, =, the bi-criteria core of an efficient
solution, x, of (4) is the smallest core, when each function of = is considered individually.

Thus, considering the existence of p efficient solutions and q functions, the core associated
with an efficient solution xt, taking into account the function p(x,λk), is Ck,t =

n
jk,t
1 , ..., jk,t

2

o
,

where jk,t
1 = min

n
j : xt

j = 0, j = 1, ..., n
o

and jk,t
2 = max

n
j : xt

j = 1, j = 1, ..., n
o

¡
if jt

1 > j
t
2 we assume that C

t = ∅¢ , where the items are ordered by non-increasing values of
the ratio

λkc1j +
¡
1− λk

¢
c2j

wj
, j = 1, ..., n. The bi-criteria core of xt is Ck∗,t = arg min

k=1,...,q

©¯̄
Ck,t

¯̄ª
.

According to Definition 1, determining the bi-criteria core of an efficient solution requires
the analyzis of all the functions p (x,λ) of =. In order to obtain the smallest cores it is best to
identify the most favourable function for determining the core of a given efficient solution. This
means that we must answer the question: what is the value of λ that produces the smallest
core?

When determining the core of an efficient solution, the items must be sorted by non-increasing
values of the efficiency ratios:

ej (λ) =
λc1j + (1− λ) c2j

wj
=
c2j
wj

+
c1j − c2j
wj

λ, 0 ≤ λ ≤ 1 (5)

The efficiency ratios ej (λ) are functions of λ. Due to the dependence of the value of λ, it is
said that the efficiency ratios are not well defined. The ratios are, however, bounded from below

and above: min

(
c1j
wj
,
c2j
wj

)
≤ ej (λ) ≤ max

(
c1j
wj
,
c2j
wj

)
.

For a given λ0 the items can be ordered such that:

el1

¡
λ0
¢ ≥ el2

¡
λ0
¢ ≥ .... ≥ eln

¡
λ0
¢

(6)

where, {l1, l2, ...., ln} = {1, 2, ...., n} .

As λ changes within [0, 1] the ordering (6) is not stable. Suppose that we are given the order
el1

¡
λ0
¢ ≥ ... ≥ elj

¡
λ0
¢ ≥ elj+1

¡
λ0
¢ ≥ ... ≥ eln

¡
λ0
¢
. It is kept constant for λmin ≤ λ ≤ λmax,

where λmax is given by the optimal solution of the following linear problem,

5



Max λ
s.t. :
elj (λ) ≥ elj+1 (λ) , j = 1, ..., n− 1
λ ≤ 1,λ ≥ 0

(7)

Considering the expressions for elj (λ) , j = 1, ..., n, the optimal solution of (7) is given by

λ∗ = min


c2lj+1

wlj+1

−
c2lj
wlj

c1lj − c2lj
wlj

−
c1lj+1

− c2lj+1

wlj+1

:
c1lj − c2lj
wlj

−
c1lj+1

− c2lj+1

wlj+1

< 0, j = 1, ..., n− 1

 (8)

For a λ > λ∗ a different ordering is defined. This new ordering can be easily obtained from
the previous one simply by swaping the positions of the items pertaining to the set B (λ∗) =©

(lj , lj+1) : elj (λ∗) = elj+1 (λ∗)
ª
.

Starting from the ordering associated with λ = 0, and systematically determining the max-
imum value of λ according to (8), which preserves the different ordering until λ∗ ≥ 1, the
range [0, 1] is partitioned into sub-ranges, each of them corresponding to a different ordering.
Consequently, we have established the following:

Proposition 1 The number of different orderings (6) is equal to the number of sub-ranges for
λ ∈ [0, 1] obtained by solving sequences of problem (7) until λ ≥ 1, starting from the ordering
corresponding to λ = 0.

Once the possible orders of the items are identified, the bi-criteria core can finally be com-
puted.

Example 1 Let us consider the following instance of the bi-criteria {0,1}-knapsack problem.

max z1 (x) = 85x1 + 31x2 + 33x3 + 25x4 + 28x5 + 15x6 + 29x7

max z2 (x) = 72x1 + 17x2 + 47x3 + 83x4 + 49x5 + 88x6 + 78x7

s.t. :
98x1 + 74x2 + 94x3 + 91x4 + 51x5 + 57x6 + 57x7 ≤ 261
xj ∈ {0, 1} , j = 1, ..., 7

Figure 2 gives the efficiency of the items in accordance with (5), and the points where the
efficiency is equal. The vertical lines separate the sub-regions where the order of the items
changed. The bold line is explained in Example 3. As may be seen in this instance, 14 possible
orders like (6) can be defined. The sub-regions correspond to the following ranges of λ :

[0; 0.230379] , [0.230379; 0.415288] ; [0.415288; 0.416667] ; [0.416667; 0.572514] ;
[0.572514; 0.638643] ; [0.638643; 0.671021] ; [0.671021; 0.799320] ; [0.799320; 0.825548] ;
[0.825548; 0.843705] ; [0.843705; 0.894032] ; [0.894032; 0.910138] ; [0.910138; 0.922328] ;
[0.922328; 0.982020] ; [0.982020; 1] .
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Figure 2: Efficiency functions of the items

When solving the bi-criteria problem by applying an exact method, 7 efficient solutions were
found: x1 = (0001111) , x2 = (1001001) , x3 = (1010001) , x4 = (0010111) , x5 = (1001010) , x6 =
(1000011) , x7 = (1000101) . Solutions x1, x2 and x3 are supported efficient solutions while
x4, x5, x6 and x7 are non-supported efficient solutions. In the criteria space, the images are z1 =
(97, 298) , z2 = (139, 233) , z3 = (147, 197) , z4 = (105, 262) , z5 = (125, 243) , z6 = (129, 238) and
z7 = (142, 199) .
Comparing the composition of each efficient solution with each order, Oj , j = 1, ..., 14, and

computing the size of the corresponding core we obtain the results presented in Table 1. For
example, with the items ordered according to O4, solution x1 has a core with size 3.

The bi-criteria cores of efficient solutions, according to Definition 1, are 0, 3, 4, 3, 4, 0
and 0, obtained with λ belonging to [0; 0.230379] , [0.572514; 0.8255483] , [0.572514; 0.7993203] ∪

¯̄
Ck,t

¯̄
O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14

x1 0 2 3 3 4 5 5 5 6 7 7 7 7 7
x2 5 5 5 4 3 3 3 3 4 5 5 6 6 5
x3 6 6 6 5 4 4 4 5 5 4 4 5 4 4
x4 3 3 4 4 5 6 6 7 7 6 6 6 6 7
x5 4 4 4 5 5 4 4 4 5 6 6 6 6 6
x6 3 2 0 0 0 0 2 2 2 2 3 4 5 6
x7 5 4 4 3 2 2 0 0 0 0 0 0 0 0

Table 1: Size of the cores for efficient solutions in the different orders of the items
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[0.8437054; 0.9101383] ∪ [0.9223284; 1] , [0; 0.4152883] , [0; 0.416663] ∪ [0.6386434; 0.799320] ,
[0.416667; 0.825548] and [0.671021; 1] , respectively, once they correspond to the smallest possible
core.

If for an efficient solution xt the ordering (6) corresponds to a sequence of 1’s followed by
a sequence of 0’s this means that xt can be obtained using the greedy procedure proposed by
Dantzig (1957), which leads to the minimum core (the one with cardinality 0). This ordering
given by the optimal solution of the following linear program.

Max α1 − α2

s.t. :

α1 ≤
λc1j + (1− λ) c2j

wj
, j ∈ N t

1

α2 ≥
λc1j + (1− λ) c2j

wj
, j ∈ N t

0

λ ≤ 1
α1,α2,λ ≥ 0

(9)

where N t
1 =

n
j : xt

j = 1
o
and N t

0 =
n
j : xt

j = 0
o
.

Let α∗1,α∗2, λ
∗ be the optimal solution of problem (9), then the following results hold.

Proposition 2 If α∗1 − α∗2 ≥ 0 then xt = bxc with x an optimal solution of

max

(
p(x,λ∗) :

nP
j=1
wjxj ≤W,xj ∈ [0, 1] , j = 1, ..., n

)
, where p(x,λ∗) = λ∗z1 (x)+(1− λ∗) z2 (x).

In this case, the cardinality of the corresponding core is 0.

As Example 1 shows, this can happen either with a supported or non-supported efficient
solution.

Corollary 1 If α∗1 − α∗2 < 0 then it is not possible to define a function of the type p(x,λ) =
λz1 (x) + (1− λ) z2 (x) such that xt = bxc. In this case the core has at least two items.

Example 2 Consider the efficient solution x1 = (0001111) from Example 1. The optimal solu-
tion for problem (9) is α∗1 − α∗2 = 0.17739409 and λ∗ = 0. Ordering the items according to their
efficiency using p(x,λ∗) the sequence of items 6,7,5,4,1,3,2 is obtained which corresponds to the
sequence of variables values 1111000. Thus, x1 can be obtained by applying the Dantzig (1957)
rule to the function p(x,λ∗), and rounding down the correspondent solution.

If x2 = (1001001) is considered, the optimal solution for problem (9) is α∗1−α∗2 = −0.2000774
and λ∗ = 0.67102149. As α∗1 − α∗2 < 0, x2 cannot be obtained by rounding down the solution
using the Dantzig rule with any function p(x,λ) since there is no λ that can define efficiency
ratios for all variables with value 1 greater than those from the variables with value 0. Ordering
the items according to their efficiency ratios using p(x,λ∗) the sequence of items 1,7,5,6,4,3,2 is
obtained which corresponds to the following sequence of variables’ values: 1100100.
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In bi-criteria {0,1}-knapsack problems there are several Dantzig solutions. The number of
such solutions is however bounded from above by the value mentioned in Proposition 1, and the
folowing result also holds:

Proposition 3 The number of Dantzig solutions of a bi-criteria {0,1}-knapsack problem is equal
to the number of extreme efficient solutions of the linear relaxation of that problem.

The Dantzig solutions can be determined by using the bi-criteria simplex method with
bounded variables, as explained in Gomes da Silva et al. (2003). A step-by-step graphical
explanation of this method is given below (Figure 1 illustrates what follows):

Step 1 Consider the graphical representation of the efficiency ratios functions (5) and start
with λ = 0;

Step 2 Apply the Dantzig rule with p (x,λ) , obtain the Dantzig solution and identify the break
item (graphically this solution is kept the same until the point where the efficiency line of
the break item intercept another line);

Step 3 Identify the item and the value of λ, which efficiency line intercepts the one of the break
item;

Step 4 If λ ≥ 1 stop, all the Dantzig solutions have been determined;

Step 5 The following situations can occur: a) the break item is kept the same, but the identified
item is removed from the knapsack; b) the identified item becomes the new break item,
and the break item is inserted in the knapsack; c) the identified item becomes the new
break item and the previous break item is removed from the knapsack;

Step 6 Return to step 3.

Example 3 When applying the above procedure to the bi-criteria instance of Example 1, five
Dantzig solutions can be seen in Figure 1. They are associated with the intervals of λ [0; 0.230379] ,
[0.23037; 0.415288] , [0.415288, 0.671021] , [0.671021, 0.894032] , [0.894032, 1] , respectively. In Fig-
ure 1, the bold line represents the efficiency of the break item of each Dantzig solution. These
break items are 1,1,5,6 and 2, respectively.

Computing the bi-criteria core requires more than finding the Dantzig solutions since the
items can have many other orders which may be associated with a smaller core size. Using only
the orders corresponding to the Dantzig solutions, therefore, means that the results for the core
size may be overestimated. This is a specificity when more than one criterion is considered.

3 Numerical experiments on the size of the bi-criteria core

This section is devoted to the computational experiments on the size of the bi-criteria core. Five
types of instances are considered:

Type 1: c1j , c
2
j , wj ∼ U(1, 100), j = 1, ..., n (uncorrelated instances, with small coefficients);

Type 2: c1j , c
2
j , wj ∼ U(1, 10000), j = 1, ..., n (uncorrelated instances, with large coefficients);
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Type 3: c1j , c
2
j ∼ U(1, 100), wj = 100, j = 1, ..., n (uncorrelated criteria functions, with small

coefficients and constant weight);

Type 4: c1j , wj ∼ U(1, 100), c2j = wj + 10, j = 1, ..., n (uncorrelated and strongly correlated
criterion and weight-sum functions, with small coefficients);

Type 5: c1j , wj ∼ U(1, 100), c2j = 101 − c1j , j = 1, ..., n (uncorrelated criterion and weight
functions and strongly correlated criteria functions, with small coefficients).

where, U(1, a) signifies an integer value not greater than a, randomly generated from an
uniform distribution.

These instances differ in the way the coefficients are generated and in the range of the
coefficients. They are inspired by the types considered by Martello and Toth (1990), Kellerer
et al. (2004): uncorrelated instances with small and large coefficients and strongly correlated
instances.

In all the instances the knapsack capacity remains constant and equal to 50% of the sum
of the weights, which generally leads to the highest number of efficient solutions (Visée et al.,
1998).

In order to evaluate the size of the bi-criteria core of exact efficient solutions in the bi-
criteria {0,1}-knapsack problem, we proceed as follows: 1) generate the entire set of efficient
solutions (an implementation of the exact method proposed by Visée et al., 1998 was used); 2)
all the possible orders like (2) are generated; 3) the bi-criteria core is computed for each efficient
solution.

In the experiments, the number of variables changes depending on the instances types due
to the different difficulty of solving them. Type 4 and 5 instances are extremely difficult for
the branch-and-bound method by Visée et al. (1998). For this reason only small instances are
considered.

Tables 3-6 summarize the efficient solutions sets: the average number of extreme efficient
solutions (T ), the average percentage of supported solutions (SS) and non-supported solutions
(NSS), and the average number of SS and NSS that are equal to the rounded Dantzig solutions
(DSS and DNSS). The average number of efficient solutions varies significantly: instances type
4 and 5 have a very low number of efficient solutions and a huge number of efficient solutions,
respectively. The performance of types 1-2 instances are in the middle. For types 1-3 instances,
the percentage of supported efficient solutions is considerably greater than the percentage of
non-supported efficient solutions. This gap increases as the number of items (n) increases.
Type 4-5 instances have a balanced number of supported and nonsupported efficient solutions.
The average number of Dantzig solutions is very low, but it is slightly greater for supported
solutions. In type 3 instances all the supported solutions are Dantzig solutions, because of
the mathematical characteristics of these instances (Gomes da Silva et al., 2004b). None of
non-supported solutions is a Dantzig one. These instances have the highest number of Dantzig
solutions.
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Type of Solutions Rounded Dantzig solutions
n # instances T SS (%) NSS (%) DSS DNSS

100 30 124.9 15.2 84.8 2.8 1.7
300 30 769.5 7.1 92.9 4 2.4
500 10 1754.6 4.9 95.1 4.3 4.1

Table 2: Characterization of efficient solutions: Type 1 instances

Type of Solutions Rounded Dantzig solutions
n # instances T SS (%) NSS (%) DSS DNSS

100 30 148.7 13.5 86.5 3.2 1.5
300 30 1100 4.8 95.2 3.4 3.6
500 10 2698.1 3.3 96.7 4.2 4.0

Table 3: Characterization of efficient solutions: Type 2 instances

Type of Solutions Rounded Dantzig solutions
n # instances T SS (%) NSS (%) DSS DNSS

100 30 326.5 10.6 89.4 34.0 0
300 30 2213.2 5.5 94.5 98.2 0
500 10 5894.4 3.3 96.7 189.3 0

Table 4: Characterization of efficient solutions: Type 3 instances

Type of Solutions Rounded Dantzig solutions
n # instances T SS (%) NSS (%) DSS DNSS
60 30 10.2 59.1 40.9 0.8 0.4
70 30 12.2 58.1 41.9 0.6 0.4
80 30 12 59.2 40.8 0.6 0.7

Table 5: Characterization of efficient solutions: Type 4 instances

Type of Solutions Rounded Dantzig solutions
n # instances T SS (%) NSS (%) DSS DNSS
40 15 3183.7 49.1 50.9 5.5 1.9
50 15 5102.2 35.3 64.7 6.1 2.1
60 10 16163.6 33.4 66.6 7.3 4.1

Table 6: Characterization of efficient solutions: Type 5 instances
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Type of Solutions
Supported Non-Supported Overall

n T 1
2T

3
4T C Range 1

2T
3
4T C Range 1

2T
3
4T C Range

100 3748 4 7 5.2 0-38 8 11 9.6 0-56 8 11 8.9 0-56
300 23084 2 2.7 2.3 0-32 3.7 5 4.5 0-49.7 3.7 4.7 4.4 0-49.7
500 17546 1.4 2 2.1 0-26.2 2.6 3.6 3.5 0-39.6 2.6 3.6 3.4 0-39.6

Table 7: Bi-criteria core results: Type 1 instances

Type of Solutions
Supported Non-Supported Overall

n T 1
2T

3
4T C Range 1

2T
3
4T C Range 1

2T
3
4T C Range

100 4460 4 6 5.3 0-42 9 12 10.1 0-65 8 11 9.5 0-65
300 33001 2 3 2.5 0-27.3 4 5.3 4.8 0-59.7 4 5 4.7 0-59.7
500 26981 1.4 2 1.7 0-28.8 2.8 3.6 3.6 0-64.4 2.6 3.6 3.5 0-64.4

Table 8: Bi-criteria core results: Type 2 instances

The results for the size of the bi-criteria core by instance type are presented in Tables 7-11.
The tables give the total number of efficient solutions (T ), the percentage size of the core for
the supported solutions, non-supported solutions and for the entire set of efficient solutions.
Columns 1

2T,
3
4T , C and Range, mean the maximum percentage core of 50% of the total efficient

solutions, the maximum percentage core of 75% of the total efficient solutions, the average
percentage core, and the range of the percentage core, respectively.

The findings show that, on average, the bi-criteria core is a very small percentage of the total
number of items, with type 5 instances being an exception to this issue. Observing columns
1
2T and 3

4T it can be said that 50% and 75% of solutions can be found by exploring small
neighborhoods around the break items of weighted-sum functions. Supported solutions are
easier to find in this exploration, as revealed by the smaller bi-criteria cores. This feature is
observed in all instances types. It is interesting to note that the average size of the bi-criteria
core falls in terms of relative size as the problem size increases. These results are very similar to
those obtained in single criterion problems. Inversely correlated instances, concerning criteria
functions (type 5 instances), are associated with the highest core size, while solutions for type
3 instances have the smallest bi-criteria core size. These are the most favourable instances for
the application of the core concept.

An observation should be made regarding the range of bi-criteria core sizes: the maximum
observed size is considerably greater than the average size. However, a detailed analyzis reveals

Type of Solutions
Supported Non-Supported Overall

n T 1
2T

3
4T C Range 1

2T
3
4T C Range 1

2T
3
4T C Range

100 9794 0 0 0 0-0 5 6 5.1 0-16 5 6 4.6 0-16
300 66395 0 0 0 0-0 2 2.7 2.1 0-7 3 2.7 2.0 0-7
500 58944 0 0 0 0-0 1.4 1.8 1.5 0-4.2 1.4 1.5 1.4 0-4.2

Table 9: Bi-criteria core results: Type 3 instances
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Type of Solutions
Supported Non-Supported Overall

n T 1
2T

3
4T C Range 1

2T
3
4T C Range 1

2T
3
4T C Range

60 299 8.3 11.2 8.1 0-35 11.2 15 11.5 0-30 10 13.3 9.5 0-35
70 366 7.1 10 7.3 0-21.4 10 14.3 10 0-30 8.6 11.4 8.5 0-30
80 371 7.5 8.8 6.7 0-16.3 7.5 11.3 8.1 0-26.3 7.5 8.8 7.3 0-26.3

Table 10: Bi-criteria core results: Type 4 instances

Type of Solutions
Supported Non-Supported Overall

n T 1
2T

3
4T C Range 1

2T
3
4T C Range 1

2T
3
4T C Range

40 47755 30 35 30.2 0-67.5 32.5 37.5 31.5 0-75 30 35 30.6 0-75
50 76533 28 32 23.3 0-54 28 32 28 0-76 26 30 26.4 0-76
60 161636 21.7 26.7 22.7 0-61.7 26.7 31.7 26.9 0-73.3 25 30 25.8 0-73.3

Table 11: Bi-criteria core results: Type 5 instances

that, despite the fact that the size of the bi-criteria core is large, the number of variables
belonging to it which assume a value different from the corresponding continuous solution may
be very small. To illustrate these results we have taken into account the instances with the
highest core from type 1 instances. In Table 12 the size of the core, |C| , is presented as well
as the number of variables with a different value from the continuous solution, |C−| , and the
percentage of items changed with respect to the size of the bi-criteria core.

The sharpest conclusion from the above experiments concerns the consequences of the “com-
pactness” of the bi-criteria core size which is a most promising path for the development of an
effective exact or approximate method for solving the {0,1}-knapsack problem more efficiently.
The “compactness” reveals the existence of a privileged region in the decision space for a pri-
oritary search for efficient solutions. The percentages found mean that a significant number of
efficient solutions are found in those small regions.

Figures 3-6 show the distribution of the percentage size of the bi-criteria core corresponding
to supported, non-supported and to all the efficient solutions of instances types 1, 3, 4 and 5,
with the highest number of items. The horizontal axes of the figures have the same scale in
order to make comparision of the distributions easier. As can be seen, the distributions are
biased, and very compact, especially for supported efficient solutions. The distribution pattern
is similar both for supported and non-supported solutions.

n |C| |C−| |C−| / |C| × 100

100 56 2 3.57%
300 149 40 26.85%
500 198 7 3.54%

Table 12: Items changed in the bi-criteria core
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Figure 3: Type 1 instances
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Figure 4: Type 3 instances
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Figure 5: Type 4 instances
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Figure 6: Type 5 instances

4 Conclusions

In this paper, the concept of core was extended to the bi-criteria {0,1}-knapsack domain. This
extension was, however, not trivial. The computational experiments conducted with the five
types of instances revealed that the characteristics found in the single criterion case were also
found in the bi-criteria instances, i.e., small sized cores, with a small increase, according to the
dimension of the problem. This is due to the hidden similarities when solving problems (1) and
(4). It was also noticed that for the worst cases of bi-criteria core size, very few variables of the
continuous solution were changed. Supported on these results, the construction of an exact or
approximate methods based on the core itself is a promising line of research for solving efficiently
the bi-criteria {0,1}-knapsack problem.
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