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Abstract

Planning in Public Sector decision-making situations with a socio-econo-
mic dimension is an activity of the uttermost importance, mainly for
urban planners. The ramifications of such decisions have strong effect
on the life of populations. This paper deals with the comparison between
district maps of a territory in the context of districting problems having
a strong social-economic component. The theoretical problem context is
about comparison between two partitions in a connected, non-oriented,
and planar graph according to a certain attribute. To our best knowledge
this problem is not so common in the literature. The question how to
compare two partitions led us to the introduction of three new concepts:
compatibility, inclusion, and distance. This is the main novelty of the
paper. The proposed measures are strongly dependent on the real-world
applications we were face with. Numerical experiments were done on the
Paris region territory.

Keywords: Decision-Making, Districting Problems, Comparison In-
dices, Combinatorics.
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1 Introduction

Planning in Public Sector decision-making situations with a socio-economic dimen-
sion is an activity of the uttermost importance, mainly for urban planners. The
ramifications of such decisions have strong effect on the life of populations. The
vast broad of applications with a socio-economic nature, the wide panoply of tech-
niques, methods, and methodologies usually implemented, and the very nature of the
problem context features have strong implications in a way a decision study should
be designed and conducted. This paper deals with districting problems which have
a strong social-economic component.

On the districting problems and some practical concerns. Over the last
three decades, many researchers, academics and practitioners from distinct fields
(not necessary urban planners) have developed models, built algorithms and imple-
mented solutions concerning the so-called districting problem. It can be viewed as
a grouping process of elementary units or atoms of a territory into larger pieces of
land or zones, giving rise to a partition, also called district map.

A substantial and important growth in the application of the operations research
and decision aiding models arose in a broad scope of areas.

There are many practical questions related to districting problems: to define the
electoral districts of a country [2, 9, 11, 12]; to establish the different working zones
for a travel salesperson team [6, 10, 16, 17]; to define areas in metropolitan internet
networks to install hubs [15]; to define the areas for manufactured and consumer
goods [8]. But, the same kind of questions occur also in police districting [4]; school
districting [7]; districting of salt spreading operations [14]; defining electrical power
zones [1], defining public transportation network pricing system [13], and many other
domains. These are barely some frequent real-world decision making questions and
concerns in territory partition problems that appear mainly in Public Sector decision
making situations.

On the comparison of two partitions. Quantitative analysts had mainly con-
secrated their attention to the problem of forming political districts. Among the
most useful criteria one deserves the particular attention of the scientific commu-
nity working on this very topic: comparing and evaluating the “differences” between
an alternative proposal and the current partition (in general, the one that was im-
plemented a long time ago and for historical reasons gained some popularity).

Concerning the political districting problem, these needs come from the fact that
the question of implementing a new partition is more or less frequent in order to
regain or create a voting power balance among the set of political districts that
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forms the political district map. In such a situation, the natural objective is to
build up a new partition that “minimizes” changes with respect to the previous one.
There are two main reasons to “minimize” the differences between a new partition
and the current one. On the one hand, the main concern consists of keeping “good”
performances for the remaining criteria: compactness, socio-economic homogeneity,
integrity, etc. On the other hand, in systems using single-member electoral districts
each candidate prefer to keep his/her electoral district as it was previously defined
since he/she has now a good comprehensive knowledge about problems and needs
of his/her district [2].

The need for comparing two partitions occurs also from different fields as it is
the case of the definition of school zones. The very nature of the criterion can be
strongly different from the previous problem. The need for comparing two partitions
may occur, however. Let us consider the problem of the definition of the pricing
system of the network public transportation in a big city. It is advisable that
the users (students) of the school system should not be compelled to change and
frequent schools in a different transportation zone from their own residence zone.
Thus a comparison between the school map and the partition transportation pricing
system map is important.

Measuring the difference between two partitions. When analyzing the dif-
ferent districting problems in the literature we can identify different needs leading
to the comparison of two partitions based on a different nature.

In our study we propose to classify the needs of comparing two partitions of a
territory into three classes:

1. Compatibility. It is related to the cases where the comparison between two
partitions is made through the verification if each zone of the first partition
results from a group of zones of the second one, or if each zone along with some
other zones of the same partition define a single zone of the second partition.

2. Inclusion. This class comprises all the cases or measures where the objective
is to evaluate the differences between two partitions based on the notion of
fineness, i.e., when a partition is composed only of zones that results from a
splitting out operation or division of the zones of the second partition.

3. Distance. This measure aims to reflect (modelling) every difference between
two partitions.

Scope and purpose of the paper. The theoretical problem context is about
the comparison between two partitions in a connected, non-oriented, and planar
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graph according to a certain attribute. To our best knowledge this problem is not
so common in the literature. Only a few studies were identified and they deal with
a quite different cases. More precisely, only two works were found. Both are at-
tempts to measure the degree of similarity between partitioning political districting
problems [2, 3].

The question how to compare two partitions led us to the introduction of three
new concepts: compatibility, inclusion, and distance. This is the main novelty of the
paper. The proposed measures are strongly dependent on the real-world applications
we were faced with.

Outline of the paper Section 2 presents the main concepts and notation. Sec-
tion 3, 4, and 5 are devoted to the three measures, compatibility, inclusion, and dis-
tance, respectively. Section 6 concerns the computational experiments and results.
Section 7 is devoted to the use of the comparison indices in managerial problems.
Finally, Section 8 presents the main conclusions and avenues for future research.

2 Concepts and notation

Consider the following notation:

• A = {a1, a2, . . . , ai, . . . , an} denote a territory, where each ai represents an
indivisible elementary units;

• y = {â1, â2, . . . , âi, . . . , âL} denote a set of contiguous elementary units, called
zone;

• Y = {y1, y2, . . . , yu, . . . , yK} denote a partition (or district map) of territory
A; for each elementary unit ai there is one and only one zone yu ∈ Y such that
ai belongs to yu;

• Y = {Y ′, Y ′′, . . . , Y (m), . . . , Y (M)} denote the set of all the feasible partitions
of territory A.

For the sake of simplicity, an elementary unit of territory, ai, is also represented
by its index i. Figure 1 (a) represents a territory, composed of 16 elementary units,
divided into 4 zones, Y = {y1, y2, y3, y4}.

Given a territory A = {1, 2, . . .,i, . . . , n}, a contiguity graph is associated
to A as an undirected, connected, and planar graph G = (V, E), where V =
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(a)

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

y1 y2

y3 y4

(b)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 1: A territory and the associated contiguity graph .

{1, 2, . . . , i, . . . , n} denotes the set of vertices representing elementary territorial
units and E = {e1, e2, . . . , ek, . . . , em} ⊂ V × V denotes the set of edges, where
ek = {i, j}, represents a border between two adjacent elementary units i and j. Fig-
ure 1 (b) shows the contiguity graph G corresponding to territory, of Figure 1 (a).
In the remaining of this paper we will consider indifferently the territory A and the
set of vertices V .

Definition 2.1 (Attribute) Consider a contiguity graph G = (V, E). An at-
tribute P in V is a real-valued function defined in V , such that, for each i ∈ V ,
P (i) ≡ pi ∈ R+. The value pi is thus a non-negative real.

For any subset ȳ ⊆ V of elementary units, Pȳ =
∑

i∈ȳ pi is the overall value of
the attribute P in ȳ, and P =

∑
i∈V pi represents the overall value of attribute P ,

for the graph G (assume that Pȳ = 0 when ȳ = ∅).

Let Y = {y1, y2, . . . , yu, . . . , yK} and Y ′ = {y′
1, y

′
2, . . . , y

′
v, . . . , y

′
K ′}, denote two par-

titions, where |Y | = K and |Y ′| = K ′.

Definition 2.2 (Inclusion between two zones) Consider two zones y ∈ Y and
y′ ∈ Y ′. The zone y is included into y′, according to P (denoted y ⊆P y′), if
Py∩y′ > 0 and for all i ∈ y such that i /∈ y′ (i ∈ y \ y′), pi = 0, i.e., Py\y′ = 0.

Definition 2.3 (Equality between two zones) A zone y ∈ Y is considered equal
to y′ ∈ Y ′, according to attribute P (denoted y =P y′), if y ⊆P y′ and y′ ⊆P y.

Definition 2.4 (Reference zone) Consider two partitions Y, Y ′ ∈ Y. The func-
tion RY ′ is called reference zone function,

RY ′ : Y −→ Y ′

y 7−→ RY ′(y)
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y1 y2

y3 y4

Y

y′
1 y′

2 y′
3

y′
4 y′

5

Y ′

y′′
1 y′′

2

y′′
3 y′′

4

Y ′′

y′′′
1 y′′′

2

y′′′
3 y′′′

4

Y ′′′

Figure 2: Four different partitions, Y , Y ′, Y ′′, and Y ′.

1 1 0 1 1 1

1 1 0 1 1 1

1 1 0 1 1 1

1 1 1 1 1 10

1 1 1 1 1 1

1 1 1 1 1 1

P 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

P 2

1 1 0 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 0 0

1 1 1 1 1 0

1 1 1 1 1 1

P 3

Figure 3: Three different attributes, P 1, P 2, and P 3

where RY ′(y) ∈ Y ′ maximizes Py∩y′
v
, v = 1, . . . , K ′. And, RY ′(y) is called the

reference zone of y in Y ′.

In other words, RY ′(y) is the zone belonging to Y ′ that contains the largest quantity
of attribute P that is common to y.

Remark 2.1 It should be noticed that when Py∩y′
v

is maximal for several y′
v ∈ Y ′,

RY ′(y), is defined arbitrarily, as a zone whose index is minimal among the zones for
which Py∩y′

v
is maximal.

Figure 2 along with Figure 3 illustrates the previous definitions. Zone y′
1 is

included in y′′
1 , whatever the attribute. Considering the attribute P 1, y′′

1 is also
included in y′

1, i.e., y′′
1 ⊆P 1 y′

1. In this case, the equality between y′
1 and y′′

1 , according
to P 1, is verified. When considering P 2, the reference zone of y′′

2 in Y ′ is RY ′(y′′
2) =

y′
3. But, this does not occur when taking into account P 1. Note that, in such a case,

RY ′(y′′
2) = y′

5, because P 1
y′′
2
∩y′

5

= 10 = max
1≤u≤5

{Py′′
2
∩y′

u
}.
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y1 y2

y3

Y

y′
1

y′
2 y′

3 y′
4

Y ′

y′′
1 y′′

2

y′′
3 y′′

4 y′′
5

Y ′′

Figure 4: Compatibility example

3 Compatibility index

In this section we consider an index that evaluates the degree of compatibility be-
tween two partitions. Two partitions Y and Y ′ are said to be totally compatible if
for any pair of zones y ∈ Y and y′ ∈ Y ′ that overlap either y is included in y′ or y′

is included in y (Y and Y ′ in Figure 4 represent two totally compatible partitions).

3.1 Definition and structural properties

Definition 3.1 (Total compatibility between two partitions) Two partitions
Y and Y ′ are totally compatible, according to the attribute P (denoted Y ≡P Y ′),
if for any pair of zones {y, y′} ∈ Y × Y ′ such that Py∩y′ > 0, one of the following
inclusions occurs, y ⊆P y′ or y′ ⊆P y.

In Figure 4, Y and Y ′ are totally compatible, whatever the attribute P . However,
the total compatibility between Y and Y ′′ will depend on the attribute P .

Definition 3.2 (Overlapping pairs) A pair of zones {y, y′} ∈ Y × Y ′ for which
Py∩y′ > 0 and such that y *P y′ or y′ *P y, is called an overlapping pair.

Remark 3.1 Two factors should have to contribute for the degradation of the degree
of proximity to the total compatibility:

• The number of overlapping pairs: The distance to the total compatibility should
be greater when there is an increase of the number of the overlapping pairs;

• The way the pairs of zones overlap: In Figure 5(a) y′ is “almost” included in
y. Hence this pair of zones should not contribute too much to the compatibility
index. The same holds for Figure 5(c), as the intersection between y and y′ is
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y

y′

(a)

y

y′

(b)

y

y′

(c)

Figure 5: Overlapping pairs of zones

“almost” empty. On the contrary, Figure 5(b) depicts two overlapping zones
such that y∩y′, y \y′and y′ \y “almost” contain the same quantity of attribute
P .

Remark 3.2 Moreover, we aim at defining a compatibility index CP (Y, Y ′) that
satisfies the following properties:

1. Total compatibility: Y ≡P Y ′ iff CP (Y, Y ′) = 0;

2. Idempotence: ∀ Y ∈ Y, CP (Y, Y ) = 0;

3. Symmetry: CP (Y, Y ′) = CP (Y ′, Y ).

The meaning of the properties are as follows:

1. The first property means that the compatibility index, CP (Y, Y ′), has a max-
imum value when Y and Y ′ are totally compatible and only in this case.

2. The second means that any partition Y will be compatible with itself.

3. The last one means that this index must be symmetric.

3.2 Implementation

The proposed implementation for the compatibility index is defined, taking into
account, the minimum value between the three elements: Py\y′ , Py∩y′ and Py′\y.

CP (Y, Y ′) = 1 −
1

P

∑

y∈Y

∑

y′∈Y ′

min{Py\y′ , Py∩y′, Py′\y} (1)

Considering the examples of Figure 2, the compatibility index between Y and Y ′′

taking into account two overlapping pairs of zones, {y1, y
′′
2}, and {y4, y

′′
2}, when P =

P 2. The value of the index will be CP 2(Y, Y ′) = 1− 1
36

(min{8, 1, 9}+min{8, 1, 9}) =
1 − 2

36
= 34

36
. Concerning the partitions Y ′ and Y ′′′, there is only one overlapping

pair, {y′
5, y

′′′
2 }, then CP 2(Y ′, Y ′′′) = 1 − 1

36
min{6, 3, 9} = 33

36
. When P = P 3, Y ′ and

Y ′′′ are totally compatible, so P 3
y′
5
∩y′′′

2

= 0.
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3.3 Analysis of the index

Consider the territory A as a set, where each elementary unit is an element. It is
obvious that a partition of the territory A is also a partition of the set A, in terms
of Set Theory. It is well-known that the set Π = {y ∩ y′ 6= ∅ : y ∈ Y, y′ ∈ Y ′}
constitutes a partition of the set A, where Y and Y ′ represents two partitions of A.
Then, ∑

{y,y′}∈Y ×Y ′

Py∩y′ = P

The following proposition shows that the index CP (Y, Y ′) is bounded from above
and below.

Proposition 3.1 Consider a territory A, composed of n elementary units, an at-
tribute P defined on A, and two partitions, Y , Y ′ ∈ Y. The index CP (Y, Y ′) ∈ [0, 1]
and the minimum and maximum values for CP are 0 and 1, respectively.

Proof. Since, for any {y, y′} ∈ Y × Y ′, min{Py\y′ , Py∩y′ , Py′\y} ≤ Py∩y′ , then
1
P

∑
y∈Y

∑
y′∈Y ′ min{Py\y′ , Py∩y′, Py′\y} ≤ 1. Thus, CP (Y, Y ′) ≥ 0. Since the at-

tribute P is non-negative, the summation in CP (Y, Y ′) is non-negative. Therefore,
CP (Y, Y ′) ≤ 1.

Let us now to prove that 0 and 1 are also the minimum and maximum value of
CP (Y, Y ′). Suppose that Y and Y ′ are totally compatible. Then, when Py∩y′ > 0,
one of the inclusions, y ⊆P y′, y′ ⊆P y, is verified, i.e., when Py∩y′ > 0, either
Py\y′ = 0 or Py′\y = 0. Thus,

∑
y∈Y

∑
y′∈Y ′ min{Py\y′ , Py∩y′ , Py′\y} = 0, and, con-

sequently, CP (Y, Y ′) = 1. Now, suppose that Y , Y ′ are two partitions such that,
for any pair {y, y′} ∈ Y × Y ′, Py∩y′ = min{Py\y′ , Py∩y′ , Py′\y}, see Figure 6 and
consider attribute P 2 in Figure 3; it represents the worse case. Then CP (Y, Y ′) =
1− 1

P

∑
y∈Y

∑
y′∈Y ′ Py∩y′ = 1 − 1

P
P = 0. �

The following proposition states the properties of Section 3.1.

Proposition 3.2 Consider a territory A, composed of n elementary units, an at-
tribute P defined on A, and two partitions, Y, Y ′ ∈ Y. The index CP verifies the
following properties:

1. Total compatibility: Y ≡P Y ′ iff CP (Y, Y ′) = 1;

2. Idempotence: CP (Y, Y ) = 1;

3. Symmetry: If CP (Y, Y ′) = 1 then CP (Y ′, Y ) = 1.

8



y1

y2

y3

Y

y′
1 y′

2 y′
3 y′

4 y′
5 y′

6

Y ′

Figure 6: Totally “incompatible” partitions , Y and Y ′

Proof.

1. The implication “if Y ≡p Y ′ then CP (Y, Y ′) = 1”, was proved in Proposi-
tion 3.1.

If CP (Y, Y ′) = 1 then
∑

y∈Y

∑
y′∈Y ′ min{Py\y′ , Py∩y′ , Py′\y} = 0. Since all of

its elements are non-negative, then, for any pair {y, y′} ∈ Y × Y ′, min{Py\y′ ,
Py∩y′ , Py′\y} = 0. Therefore, if Py∩y′ > 0 then Py\y′ = 0 or Py′\y = 0, i.e.,
y ⊆P y′ or y′ ⊆P y. Thus Y ≡p Y ′.

2. Since for any two zones y, z ∈ Y , when Py∩z > 0 then y ⊆p z, z ⊆p y; therefore,
CP (Y, Y ) = 1.

3. Since the sum, intersection, and the min operator are commutative, then
CP (Y ′, Y ) = CP (Y, Y ′). �

4 Inclusion index

In this section we aim at defining an inclusion index, IP (Y, Y ′), that measures to
which extend the zones of partition Y that are included into the zones of Y ′. In
other words, we aim at evaluating the degree of “inclusion” of any zone y ∈ Y into
Y ′. This degree of inclusion of Y in Y ′ is grounded, for each zone y ∈ Y , on the
extend to which y is included in its reference zone in Y ′. The concept of inclusion
between two partitions is close to the compatibility but it differs by the fact that it
is asymmetric (the compatibility being symmetric).

9



4.1 Definition and structural properties

Definition 4.1 (Total Inclusion between two partitions) The partition Y is
totally included in Y ′, according to P (denoted, Y ⊆P Y ′), if ∀ y ∈ Y, ∃ y′ ∈
Y ′ such that y ⊆P y′.

In other words, Y ⊆P Y ′ if each zone of Y is totally included in a zone of Y ′.

In Figure 2, the partition Y ′ is totally included in Y , whatever the attribute P .
The reverse inclusion, Y ⊆P Y ′ however, is not verified when we consider attribute
P 2 (see Figure 3). But, it holds when considering P 1. It should also be remarked
that the two partitions Y ′′ and Y ′′′ are totally included in Y , according to P 3.

Remark 4.1 We aim at defining an inclusion index that verifies the following prop-
erties:

1. Total inclusion: Y ⊆P Y ′ iff IP (Y, Y ′) = 1;

2. Idempotence: ∀ Y ∈ Y, IP (Y, Y ) = 1;

3. Anti-symmetry: If IP (Y, Y ′) = 1 and Y 6= Y ′ then IP (Y ′, Y ) < 1;

4. Transitivity: If IP (Y, Y ′) = 1 and IP (Y ′, Y ′′) = 1 then IP (Y, Y ′′) = 1.

The interpretation of each property is as follows:

1. The first property means that, IP (Y, Y ′), has a maximal value when Y is totaly
included in Y ′ and only in this case.

2. The second property means that any partition Y will be contained in itself.

3. Property 3 means that, when total inclusion between two different partitions,
Y and Y ′, is verified, then the total reverse inclusion is false.

4. The last property means that when total inclusion between two partitions, Y
and Y ′, and also between the second, Y ′, and the third one, Y ′′, are verified
then the first partition, Y , is completely included in the third one, Y ′′.

10



4.2 Implementation

The proposed index to evaluate the inclusion of Y into Y ′, IP (Y, Y ′), measures the
inclusion of Y in Y ′ and it is modelled as follows:

IP (Y, Y ′) =
1

P

∑

y∈Y

Py∩RY ′ (y)

Thus IP (Y, Y ′), is the proportion of the sum, for each zone y, of the quantity Py

that belongs to its reference zone. It is obvious that its upper bound value is equal
to 1.

Remark 4.2 It should be remarked that the value of IP (Y, Y ′) is independent of the
choice of the reference zone, when for one y ∈ Y , there is more than one zone in Y ′

with the same maximum value of attribute common to y.

Consider again Figures 2 and 3. The inclusion index, IP 2(Y ′′, Y ), is 8+9+9+8
36

=
34
36

, according to P 2. Note that only, y′′
2 , is not totaly included in some zone of

Y ; y2 is its reference zone in Y . When P 1 is considered, the reference zone of y′′
2

will change. The overall quantity P 1
y′′
2

is 19. Its largest part, 10 units, belongs

to y4. Obviously, as y′′
1 , y′′

3 , and y′′
4 are included in y1, y3, and y4, respectively,

IP 1(Y ′′, Y ) = 6+10+9+8
42

= 33
42

. The same value is obtained for IP 1(Y ′′, Y ′). It should
be remarked that, y′′

1 ⊆P1
y′

1.

4.3 Analysis of the index

The following proposition states that IP (Y, Y ′) is bounded from above and below.

Proposition 4.1 Consider a territory A, composed of n elementary units, an at-
tribute P defined on A, and two partitions, Y, Y ′ ∈ Y. The index IP (Y, Y ′) ∈ [ 1

n
, 1]

and the minimum and maximum values for IP (Y, Y ′) are 1
n

and 1, respectively.

Proof. Since Py∩RY ′ (y) ≤ Py, for all y ∈ Y ,
∑

y∈Y Py∩RY ′ (y) ≤
∑

y∈Y Py. Then

IP (Y, Y ′) = 1
P

∑
y∈Y Py∩RY ′(y) ≤

1
P

∑
y∈Y Py = 1. It is also the maximum value of IP ,

because when Y ⊆P Y ′, y ⊆P RY ′(y), for all y ∈ Y , and, therefore, Py∩RY ′(y) = Py.
Thus, IP (Y, Y ′) = 1.

For each y ∈ Y , Py∩RY ′ (y) is minimal when the overall amount of its attribute

is equally distributed by all the zones of Y ′. Thus, for any y ∈ Y , Py∩y′ = Py

K ′ , for

all y′ ∈ Y ′. Consequently, Py∩R′
Y

(y) = Py

K ′ . In this case, IP (Y, Y ′) = 1
P

∑
y∈Y

Py

K ′ =
1

K ′
1
P
P = 1

K ′ . Therefore, the greater the number of zones in Y ′, the more degradation
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of IP (Y, Y ′) occurs. The condition, “the overall amount of attribute from each y ∈ Y
is equally distributed by all the zones of Y ′”, imposes an upper bound to the number
of zones, K ′, in Y ′. Its maximum possible value for K ′, is n

K
, if n is a multiple of

K and pi = P

n
, i.e., any elementary unit has the same amount of attribute. Conse-

quently, the maximum value that K ′ can take is reached when K is minimum, i.e.,
when Y has only one zone (K = 1). Finally, assuming that each elementary unit
has the same amount of attribute, K = 1 and K ′ = n, the index IP (Y, Y ′) reaches
its minimal value, 1

n
. �

The following proposition states for the properties of Section 4.1.

Proposition 4.2 Consider a territory A, composed of n elementary units, an at-
tribute P defined on A, and two partitions, Y, Y ′ ∈ Y. The index IP (Y, Y ′) verifies
the following properties:

1. Total inclusion: Y ⊆P Y ′ iff IP (Y, Y ′) = 1;

2. Idempotence: IP (Y, Y ) = 1;

3. Anti-symmetry: if IP (Y, Y ′) = 1 and Y 6= Y ′ then IP (Y ′, Y ) < 1;

4. Transitivity: if IP (Y, Y ′) = 1 and IP (Y ′, Y ′′) = 1 then IP (Y, Y ′′) = 1.

Proof.

1. The implication “if Y ⊆P Y ′ then IP (Y, Y ′) = 1” was proved in the Proposi-
tion 4.1. Let us now consider the reverse implication. If there is a yu0

∈ Y
such that yu0

*p y′ for any y′ ∈ Y ′, i.e., Y *P Y ′, then Pyu0
∩RY ′(yu0

) < Pyu0
.

Therefore, since Py∩RY ′ (y) ≤ Py,
∑

y∈Y Py∩RY ′(y) <
∑

y∈Y Py = P. That is,
IP (Y, Y ′) < 1. Thus, if IP (Y, Y ′) = 1 then Y ⊆P Y ′.

2. For all Y ∈ Y, Y ⊆P Y , then IP (Y, Y ) = 1.

3. If IP (Y, Y ′) = 1 and Y 6= Y ′ then there is at least one y′
v0

∈ Y ′ for which, there

are yu1
, . . . , yuKv0

∈ Y such that y′
v0

=P

⋃Kv0

u=1 yui
, and Py′

v0
∩yui

> 0, for more

than one yui
. Consequently, Py′

v0
∩RY (y′

v0
) < Py′

v0

. Then IP (Y ′, Y ) < 1

4. If IP (Y, Y ′) = 1 and IP (Y ′, Y ′′) = 1, then Y ⊆P Y ′ and Y ′ ⊆P Y ′′. Therefore,
for each y ∈ Y there is y′ ∈ Y ′ such that y ⊆P y′ and for which there is
y′′ ∈ Y ′′ that verifies, y′ ⊆P y′′. We will check now that y ⊆P y′′. Since y ⊆ y′

then Py∩y′ > 0, i.e., ∃ i ∈ y ∩ y′ such that pi > 0. Since y′ ⊆ y′′ then, also,
i ∈ y′′. So Py∩y′′ > 0. Let us suppose that there is an elementary unit i ∈ y
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such that i /∈ y′′. By reductio ad absurdum, suppose that pi 6= 0. Therefore,
i ∈ y′ because y ⊆P y′. So, by y′ ⊆P y′′, pi = 0. Contradiction! This means
that pi = 0. Then y ⊆P y′′ and, consequently, Y ⊆P Y ′′, i.e., IP (Y, Y ′′) = 1.�

5 Distance index

In this section we aim at defining a distance index, DP (Y, Y ′), that evaluates “how
different” two partitions can be. The attribute P is considered here as a strictly
positive function, i.e., pi > 0, for all i ∈ V .

5.1 Definition and structural properties

Definition 5.1 (Equality between two partitions) Two partitions Y, Y ′ ∈ Y

are equal, according to attribute P (denoted Y ≈P Y ′), if both inclusions Y ⊆P Y ′

and Y ′ ⊆P Y hold.

Remark 5.1 Note that the equality between partition ≈P refers to the attribute P .
For example, in Figure 2 the partitions Y and Y ′ are equal according to P 3 (see also
Figure 3).

Remark 5.2 We aim at defining a distance DP (Y, Y ′) in Y that fulfills the metric
properties. Consider the following three partitions Y, Y ′, Y ′′ ∈ Y,

1. DP (Y, Y ′) = 0 iff Y ≈P Y ′;

2. Symmetry: DP (Y, Y ′) = DP (Y ′, Y );

3. Triangular inequality: DP (Y, Y ′′) ≤ DP (Y, Y ′) + DP (Y ′, Y ′′).

5.2 Implementation

The proposed implementation for the distance index is defined taking into account
all the edges {i, j} ∈ E, corresponding to the border zones in one and only one of
the partitions.

Consider the following notation:

• IY = {{i, j} ∈ E : ∃ y ∈ Y, i, j ∈ y};

• BY = {{i, j} ∈ E : ∀ y ∈ Y, i, j /∈ y};

13



where, for any Y ∈ Y, IY represents the set of edges that are included into some
zone, and BY represents the set of all edges corresponding to border zones. It should
be noticed that IY ∪ BY = E and IY ∩ BY = ∅.

Consider now, the set IBY Y ′ ⊆ E, defined as follows:

IBY Y ′ = BY ∩ IY ′ ∪ BY ′ ∩ IY

where Y, Y ′ ∈ Y. In other words, the set IBY Y ′, represents the set of edges for which
their adjacent vertices belong to the same zone in one of the partitions and pertain
to different zones in the second one.

We will define a distance DP between Y and Y ′, according to an attribute P , as
follows:

DP (Y, Y ′) =
1

∆

∑

e∈IBY Y ′

δe (2)

where, for each edge e = {i, j} ∈ E, δe = min{pi, pj} and ∆ =
∑

e∈E δe.

The distance, DP (Y, Y ′), between Y and Y ′, represented in Figure 2, and ac-
cording P 1, is equal to zero. Note that the set IBY Y ′ has three edges, the edges
corresponding to the border between y′

1 and y′
2, however, the values δe are equal to

zero, so P 1
y′
2

= 0. Considering now Y and Y ′′, and also P 1, the set IBY Y ′′ has six

edges. Three of them has the value δe equal to zero and for the others three the
value is equal to one. Therefore DP 1(Y, Y ′′) = 1

51
(0 + 0 + 0 + 1 + 1 + 1) = 3

51
.

5.3 Analysis of the index

Proposition 5.1 Consider a territory A, composed of n elementary units, an at-
tribute P defined on A, and Y , Y ′ ∈ Y. The index DP (Y, Y ′) ∈ [0, 1] and the
minimum and maximum values for DP are 0 and 1, respectively.

Proof. Since that pi ≥ 0 ∀i ∈ V , then δe ≥ 0. Consequently, DP (Y, Y ′) ≥ 0. Since
IBY Y ′ ⊆ E, then

∑
e∈IBY Y ′

δe ≤ ∆. Therefore, DP (Y, Y ′) ≤ 1.
Let us to prove that 0 and 1 are also the minimum and maximum value of

DP (Y, Y ′), respectively. Obviously, IBY Y = ∅, then DP (Y, Y ) = 0. Suppose now
that Y has only one zone and Y ′ has n zones (see Figure 7). Obviously, IBY Y ′ = E.
Therefore DP (Y, Y ′) = 1. �

Let us now to prove the properties presented in Section 5.1.

Proposition 5.2 The operator DP , defined in (2) is a “true” distance, i.e., DP

verifies the properties:
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Partition R

One-zone partition

Partition S

n-zone’s partition

Figure 7: Trivial partitions

1. DP (Y, Y ′) = 0 iff Y ≈P Y ′;

2. Symmetry: DP (Y, Y ′) = DP (Y ′, Y );

3. Triangular inequality: DP (Y, Y ′′) ≤ DP (Y, Y ′) + DP (Y ′, Y ′′).

Proof.

1. (⇒) Suppose that Y ≈/P Y ′, i.e., Y *P Y ′ or Y ′ *P Y . Without loss of
generality, let us suppose that Y *P Y ′, i.e., ∃ y0 ∈ Y : ∀ y′ ∈ Y ′, y0 *P y′.
Thus, there is at least one y′

0 ∈ Y ′, such that Py∩y′
0

> 0 and
∑

i∈y0\y′
0

pi > 0.

Therefore, because each zone is contiguous, there is at least an edge e = {i, j},
such that, i ∈ y0 \ y′

0 and j ∈ y0 ∩ y′
0, i.e., e ∈ IBY Y ′ . Since the attribute is

strictly positive then DP (Y, Y ′) > 0.
(⇐) If DP (Y, Y ′) > 0 then there is e = {i, j} ∈ IBY Y ′ , such that, min{pi, pj} >
0. Suppose that e ∈ BY ∩ IY ′ . Then ∃ y′

0 ∈ Y ′ : i, j ∈ y′
0 and ∀ y ∈ Y, i, j /∈ Y .

Thus y′
0 *P y for all y ∈ Y , i.e., Y ′ *P Y . Consequently, Y ≈/P Y ′.

2. Since IBY Y ′ = IBY ′Y , then DP (Y, Y ′) = DP (Y ′, Y ).

3. It is obvious that if IBY Y ′′ ⊆ IBY Y ′ ∪ IBY ′Y ′′ then DP (Y, Y ′′) ≤ DP (Y, Y ′) +
DP (Y ′, Y ′′). Therefore, let us to prove that IBY Y ′′ ⊆ IBY Y ′∪IBY ′Y ′′ . Consider
e ∈ IBY Y ′′ . By the definition of IBY Y ′′, either

e ∈ BY ∩ IY ′′ (3)

or
e ∈ BY ′′ ∩ IY (4)

Concerning the partition Y ′, either e ∈ IY ′ or e ∈ BY ′. In the first case, if (3)
is true then e ∈ IBY Y ′. Otherwise, by (4), e ∈ IBY ′Y ′′ . Similarly, in the second
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· Elementary territorial unit
— Adjacent elementary territorial unit

Figure 8: The contiguity graph of Paris region

case (e ∈ BY ′), if (3) is true then e ∈ IBY ′Y ′′ . Otherwise, by (4), e ∈ IBY Y ′ .
Therefore, in all the possibilities, e ∈ IBY Y ′ ∪ IBY ′Y ′′ . �

In this section it was necessary to consider P as being a strictly positive function.
Without this constraint Property 1 of Proposition 5.2 is not valid. This restriction
does not represent a considerable loss of applicability in real-world problems. There-
fore, in a large number of cases the attribute of a territory is represented by a strictly
positive number. If the implementation of distance suggested in 2 seems inadequate,
it can be modified, without changing the properties proven in this section. This al-
teration passes through the redefinition of the sets IY and BY as follows.

• I ′
Y = {{i, j} ∈ V × V : ∃ y ∈ Y, i, j ∈ y};

• B′
Y = {{i, j} ∈ V × V : ∀ y ∈ Y, i, j /∈ y}.

That is, I ′
Y e B′

Y , are now subsets of pairs of vertices. The set IBY Y ′ keeps the same
definition. This fact increases the effort of calculation of the distance index. The
number of elementary operations is bounded by O(n2). With the previous definition
the calculation of DP (Y, Y ′) is done in O(n) elementary operations.

16



(a) Initial partition (b) After 100 EPs (c) After 500 EPs

Figure 9: Successive elementary perturbations (EP’s) of a partition

6 Numerical experiments and the behavior of the

indices

In this section, we present some numerical experiments that aim at investigating
the behavior of the three indices. We consider data concerning the territory of
the Paris region, composed of 1300 elementary territorial units (see Figure 8, the
contiguity graph G = (V, E) where |V | = 1300 and |E| = 3719). The attribute
of territorial units considered in the experiment is the “working population” (P =
working population).

In order to analyze the behavior of the indices, we consider two partitions: a
root partition Y R and a current one, Y . In the experiments, Y R remains the same,
while Y is progressively modified through successive elementary perturbations. An
elementary perturbation (EP) consists of moving an elementary unit between two
neighboring zones. Figure 9 shows how successive elementary perturbations modify
an initial partition formed by 30 zones (a), after 100 EPs (b), and after 500 EPs (c).

6.1 Compatibility index

We consider an initial pair of partitions (Y R, Y ) which fulfill the property of total
compatibility (Y R ≡P Y hence CP (Y R, Y ) = 1). When applying α successive
elementary perturbations to Y lead to Y α. The compatibility index between Y R

and Y α was computed for 100 randomly generated instances of Y α.
The results are provided in Figure 10. It depicts how the value of CP (Y R, Y α)

evolve when α = 100, 200, . . . , 1000. As expected, the index CP (Y R, Y α) decreases
as α increases.
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Figure 10: Behavior of the inclusion and compatibility indices

6.2 Inclusion index

We consider an initial pair of partitions (Y R, Y ) which fulfills the property of total
inclusion (Y R ⊆P Y , hence IP (Y R, Y ) = 1). When applying α successive elementary
perturbations to Y lead to a partition denoted Y α. The inclusion index between Y R

and Y α was computed for 100 randomly generated instances of Y α.
The results are provided in Figure 10. It depicts how the value of IP (Y R, Y α)

evolve when α = 100, 200, . . . , 1000. As expected, the index IP (Y R, Y α) decreases as
α increases. Moreover, the observed minimal value for IP (Y R, Y α) was 0.619, which
is far from the minimal possible value for IP (Y, Y ′). But, it should be remarked that
the minimum corresponds to very specific cases (for example Y being composed of
1 zone and the zones of Y ′ being the elementary units).

6.3 Distance index

We consider the pair of partitions (Y R,Y R) which obviously verifies DP (Y R, Y R) = 0.
When applying α successive elementary perturbations to Y R leads to Y Rα

. The
distance index between Y R and Y Rα

was computed for 100 randomly generated
instances of Y Rα

.
The results are provided in Figure 11. It depicts how the value of DP (Y R, Y Rα

)
evolve when α = 100, 200, . . . , 1000. As expected, the index DP (Y R, Y Rα

) increases
as α increases.
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Figure 11: Behavior of the distance index

7 On the use of the comparison indices in man-

agerial problems

We have presented in the previous three sections the indices that capture three dif-
ferent ways by which territory partitions can be compared: compatibility, inclusion,
and distance. In this section, we illustrate the potential interest of these indices in
management problems involving territory partitions.

7.1 Compatibility index

Territory partitions are frequently used in the field of salesperson management in
which a commercial zone is assigned to each salesperson (see for example [6, 17,
8]). Consider a company that commercializes products grouped into several ranges,
salespersons being specialized in a specific range of product. Hence, there exists
a sales territory partition for each range of product. Obviously, clients can buy
products from different ranges. As the demand is not geographically homogenous
among product ranges, the sales territory partitions do not usually match.

Consider two ranges of products A and B and the corresponding partitions Y A

and Y B. In order to optimize customer relations, Y A and Y B should be defined in a
way such that a vendor share clients with a limited number of vendors in the other
team. More precisely, the commercial zones should be defined so that a vendor of
the range A should share clients either with one vendor of the range B, or with
several vendors of the range B who share clients only with him/her.

This requires that any zone of Y A is either totally included into a zone of Y B,

19



or corresponds to the union of zones of Y B. Such a property perfectly matches
the concept of total compatibility between two partitions (see Section 3), when the
attribute considered is the number of clients in each territorial unit. Hence the
compatibility index CP (Y A, Y B) appears to be useful in this context to evaluate
to which extend partitions Y A and Y B optimizes customer relation management
between ranges A and B.

7.2 Inclusion index

Let us illustrate here the interest of the inclusion index in the context of the pricing of
public transportation. The pricing of the public transportation in the Paris region
(France) is grounded on the definition of pricing zones. A reform of this pricing
system has been undertaken by the STIF: the Paris region transportation authority
(see [13]). The current partition in zones consists of concentric rings (the Paris city
being the center) is considered as unsatisfactory as it no longer corresponds to travel
patterns or needs. The STIF wishes to define a new partition in which the zones are
geographical autonomous entities with respect to transportation. Such a partition
is to be used to ground the pricing system.

In the definition of this new pricing partition, the STIF considers an existing
partition: the “school map”. In the French educational system, the “school map”
(see [5]) defines to which high school a student should be assigned: hence each
student should be sent to the school associated to his/her zone of residence. Such a
school map allows to plan in which school to open/close teaching positions according
to the demographic evolution of the corresponding zone. The size of the zones in
this school map refers to the dimension of the associated high school and the density
of population.

An important quality for a new transport pricing partition concerns its ability
to take into account the “school map”. Ideally, each student should be able to go
to the school within the same pricing zone. This requires that the pricing partition
should be included in the school partition denoted Y sch. Hence, in order to evaluate
and compare alternative pricing partitions Y 1, Y 2, ..., it is relevant to consider the
inclusion index IP (Y i, Y sch), i = 1, 2, ... In this way, we can seek for a partition that
“minimizes” the student journeys between different pricing zones.

7.3 Distance index

A large proportion of research dealing with territorial partitions has been devoted to
political districting (e.g. [2, 9, 11, 12]). In modern democracies, the representatives
in the parliaments represent voters attached to an electoral district, hence defining

20



an electoral partition of the territory. Basic democratic principles impose that each
district should contain approximately the same number of voters.

Moreover, the demographic evolution of populations imposes to revise regularly
political districts. Obviously, such a revision is a highly sensitive issue. Namely,
electors would not understand that such a revision would lead to drastically different
district, and political manipulation would be suspected. Moreover, candidates are
involved in the political life of their respective district and a complete change in the
districts would run counter local political debate.

Therefore, when revising the electoral partition, the new partition should be as
close as possible to the previous one. A criterion to be minimized can be the distance
(as defined in Section 5) with respect to the number of voters.

8 Conclusion and avenues for future research

Over the last years there was a tremendous growth on the use of models and software
for partitioning a territory into zones. The following examples belong perhaps to
the most representative areas covered by this type of problems: electoral systems,
salesperson teams planning and management, and school systems. This increasing of
models and attention devoted to such a kind of problems brought by itself the need
of comparing two different partitions of the same territory along with its translation
into numerical figures. In political districting problems is very frequent to find as
a measure of comparing two partitions a criterion that consists of minimizing the
“differences” between the existing partition and a new proposal.

This research represents an initial attempt to characterize the comparison indices
in districting problems. Specifically, we identified three main classes: compatibility,
inclusion, and distance. We strongly believe that this classification can incorpo-
rate any kind of measure. The inclusion class covers all the measures devoted to
evaluate the degree of fineness of a given partition with respect to a second one.
The compatibility class incorporates all the measures that checks if each zone of the
first partition results from a group of zones of the second one, or if each zone along
with the remaining zones of the same partition define a single zone of the second
partition. Finally, the distance class comprises all the measures applied to evaluate
any difference between two partitions.

For each class we provided a set of elementary properties related to the very
nature of the respective class. We also suggested a possible implementation for each
class. Each one is analyzed in view of the expected properties.

The concepts and measures introduced in this paper do not consider a territory by
itself, but an attribute associated to each elementary unit according to the problem
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we are dealing with. In this way it was developed the abstraction of each measures
and the universe of applicability

We also implemented the measures on a real-world network and after analyzing
the results we could demonstrate the good performance of those implementations.
The experiments dealt with the progressive degradation of the similarity between
two partitions and the consequent evaluation of such an effect on the value of each
measure considered.

An interesting avenue for future research consists of increasing the flexibility of
the indices in view of a better adaptation to different realities. For such propose, it
is possible to consider a set of parameters to approximate each measure towards the
major particularities of the different problems. We also believe that it is possible to
generalize the three indices for more than one attribute.
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