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Augusto Eusébio∗† José Rui Figueira†‡ Matthias Ehrgott,§¶

December 21, 2006

∗Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Morro do Lena - Alto
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A primal-dual algorithm for
bi-criteria network flow problems

Abstract

In this paper we develop a primal-dual simplex algorithm for the biobjec-
tive linear minimum cost network flow problem. This algorithm improves
the general primal-dual simplex algorithm for multiobjective linear pro-
grams by [3]. We illustrate the algorithm with an example and provide
numerical results.

Keywords: Bi-criteria network flow problem, Primal-dual simplex al-
gorithm.
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1 Introduction

Multiobjective linear programs have been studied for more than 40 years. Exten-
sions of the simplex algorithm to deal with multiple objectives have been proposed
by various authors. Algorithms to solve multiobjective linear programs in objective
space are motivated by the fact that the dimension of the objective space is usu-
ally much smaller than the one of the decision space, and therefore the number of
nondominated extreme points in objective space is much smaller than the number
of efficient basic feasible solutions in decision space. After the discovery of interior
point algorithms to solve linear programs in polynomial time, efforts to apply such
methods to deal with multiple objectives are evident. For more information see the
references in [5].

In single objective linear programming primal-dual simplex algorithms have
proven to be very efficient for several classes of single objective linear program-
ming problems, in particular those related to network optimization problems. Such
efficient algorithms include the Hungarian method for assignment problems, the
augmenting path method for minimum cost flow problems, Dijsktra’s algorithm for
shortest path problems, etc. (see, e.g., [1]).

A primal-dual simplex algorithm has only recently been published in [4]. In this
paper we apply that algorithm to the special case of bicriteria linear network flow
problems, and propose an improvement of the original algorithm.

2 Definitions and Notation

In this section we introduce necessary definitions and notation from graph theory,
network flows, convex and polyhedral sets, and multi-criteria optimization that we
use in this paper. For an in depth introduction to these subjects see [1] and [3]).

Let G = (S, A) denote a directed and connected graph, where S is a finite set of
nodes or vertices with cardinality |S| = m, and A is a collection of ordered pairs of
elements of S called arcs, with cardinality |A| = n.

A graph G′ = (S′,A′) is called a subgraph of G = (S,A) if S′ ⊆ S and A′ ⊆ A. It
is a spanning subgraph of G if S′ = S. A path P is a sequence of vertices and arcs,
i1− a1− i2− a2− . . .− is−1− as−1− is, without repetition of vertices and where for
1 ≤ k ≤ s − 1 either ak = (ik, ik+1) ∈ A, or ak = (ik+1, ik) ∈ A. A directed path is
a path without backwards arcs. A cycle C is a closed path where the only repeated
vertex is the start and the end point, which coincide. A directed cycle is a closed
directed path. If a graph G contains paths linking any two different vertices of G,
the graph is called connected. A tree T = (V,E) is a connected subgraph without
cycles where V ⊆ S and E ⊆ A. A tree T is called a spanning tree if it spans the set
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of vertices S of G, i.e. V = S. A spanning tree is denoted by T = (S,E). Consider
(k, l) a given arc belonging to the set A but not to E. Then, there is a unique cycle
C if the arc (k, l) is added to E. The direction of C is defined to be the same as
(k, l). The arcs of a cycle C can be partitioned into two subsets by distinguishing
the arcs having the same direction as C from the arcs in the opposite direction. The
collection of all possible cycles of this type is called fundamental cycle basis of G.

A directed graph with numerical values assigned to its vertices and/or arcs is
called network. Let N = (G, c, l, u, b) be a network with a “cost” cij, a lower bound
lij and an upper bound or capacity uij associated with every arc (i, j) ∈ A. The
numerical values lij and uij, respectively, denote the minimum and the maximum
amount that must flow on the arc (i, j). Finally, let xij denote the amount of flow
on the arc (i, j). A numerical value bi is also associated with each vertex i ∈ S

denoting its supply (if bi > 0) or its demand (if bi < 0). A vertex with bi = 0 is
called a transshipment vertex.

The minimum cost network flow problem is a linear programming problem on a
network N formulated as follows

minimize f(x) =
∑

(i,j)∈A

cijxij

subject to:
∑

(k,j)∈A

xkj −
∑

(i,k)∈A

xik = bk ∀k ∈ S

lij ≤ xij ≤ uij ∀(i, j) ∈ A

(1)

or in matrix notation
minimize f(x) = cT x
subject to: Ax = b,

l ≤ x ≤ u
(2)

where x ∈ Rn is the vector of decision variables, c ∈ Nn
0 , and l, u ∈ Nn

0 are the
cost and capacity vectors, respectively, b ∈ Nm

0 is the right-hand-side vector and
A the node-arc incidence matrix. Each column (i, j) of A contains exactly two
nonzero coefficients: +1 in row i, and −1 in row j. The special structure of node-
arc incidence matrices is explouted in the network simplex algorithm, that solves the
minimum cost flow problem faster and with less resource consumption than standard
linear programming algorithms. Moreover, node-arc incidence matrices are totally
unimodular and as long as b, l, and u are integer vectors, all extreme points of the
feaible set have integer coordinates (see [1] and [2]).
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The dual linear programming problem associated with (1) is

maximize
∑
k∈S

bkπk +
∑

(i,j)∈A

(lijγij − uijµij)

subject to: πi − πj + γij − µij = cij ∀(i, j) ∈ A

γij, µij ≥ 0 ∀(i, j) ∈ A

πk free ∀k ∈ S

(3)

where π = (π1, · · · , πi, · · · , πm), i ∈ S is the vector of dual variables associated
with constraints (1), γ = (γi1j1 , · · · , γij, · · · , γinjn), (i, j) ∈ A is the vector of dual
variables associated with the constraints xij ≥ lij and µ = (µi1j1 , · · · , µij, · · · , µinjn),
(i, j) ∈ A is the vector of dual variables associated with the constraints xij ≤ uij.
In matrix notation the dual is

maximize bT π + lT γ − uT µ
subject to: AT π + γ − µ = c

γ, µ ≥ 0
π free

(4)

It can be assumed without loss of generality that γij · µij = 0 for all (i, j) ∈ A. If
both γij and µij are greater than zero for some arc (i, j) ∈ A let εij = min{γij, µij}
and define

γ′ij = γij − εij ≥ 0
µ′ij = µij − εij ≥ 0.

Problem (3) remains dual feasible if variables γij and µij are replaced by γ′ij + εij

and µ′ij + εij, since γij − µij = γ′ij − µ′ij.
The reduced cost of the arc (i, j) is defined as c̄ij = cij − πi + πj − γij + µij.
Consider primal and dual feasible solutions x and (π, γ, µ) to the linear programs

(1) and (3), respectively. Then they are both optimal to their respective problems
if and only if they have the same objective value, i.e.

∑

(i,j)∈A

cijxij =
∑

k∈S

bkπk +
∑

(i,j)∈A

(lijγij − uijµij).

Theorem 2.1 (Complementary Slackness Theorem) Let x∗ and (π∗, γ∗, µ∗)
be any feasible solutions to the primal (1) and dual (3) problems, respectively. Then
they are optimal if and only if

γ∗ij(x
∗
ij − lij) = 0 ∀(i, j) ∈ A

and
µ∗ij(x

∗
ij − uij) = 0 ∀(i, j) ∈ A.
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This theorem indicates that at least one of the two terms in each expression must
be zero. In particular

x∗ij > lij ⇒ γ∗ij = 0 (5)

γ∗ij > 0 ⇒ x∗ij = lij

x∗ij < uij ⇒ µ∗ij = 0 (6)

µ∗ij > 0 ⇒ x∗ij = uij.

Other statements can also be deduced. If the reduced cost of the arc (i, j) is not
equal to zero then the flow in the arc is either lij or uij. First we show that

π∗i − π∗j < cij ⇒ x∗ij = lij. (7)

We have

π∗i − π∗j < cij ⇔ γ∗ij − µ∗ij > 0

⇔ γ∗ij > µ∗ij ≥ 0

⇒ γ∗ij > 0

⇒ x∗ij = lij.

Furthermore

πi − πj > cij ⇔ γ∗ij − µ∗ij < 0

⇔ γ∗ij < µ∗ij
⇒ µ∗ij > 0

⇒ x∗ij = uij

which shows that
π∗i − π∗j > cij ⇒ x∗ij = uij. (8)

Moreover,
lij < x∗ij < uij ⇒ π∗i − π∗j = c∗ij. (9)

The bi-criteria linear network flow problem can be stated as follows:

minimize f1(x) =
∑

(i,j)∈A

c1
ijxij= (c1)T x

minimize f2(x) =
∑

(i,j)∈A

c2
ijxij= (c2)T x

subject to:
∑

(k,j)∈A

xkj −
∑

(i,k)∈A

xik = bk ∀k ∈ S

lij ≤ xij ≤ uij ∀(i, j) ∈ A

(10)
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Let

X =
{

x ∈ Rn : x = (xi1j1 , xi2j2 , · · · , xij, · · · , xinjn), (i, j) ∈ A,
∑

(k,j)∈A

xkj −
∑

(i,k)∈A

xik = bk,∀k ∈ S and lij ≤ xij ≤ uij

}

and

Y =
{

(y1, y2) ∈ R2 : y1 =
∑

(i,j)∈A

c1
ijxij, y2 =

∑

(i,j)∈A

c2
ijxij, and x ∈ X

}
.

X and Y are the sets of feasible solutions in the decision space, Rn, and in the
criterion space, R2, respectively.

Definition 2.1 (Efficient solution) A feasible solution x ∈ X is efficient iff there
does not exist another feasible solution x′ ∈ X such that y′ = f(x′) ≤ y = f(x) and
y′ 6= y. The set of all efficient solutions will be denoted by XE.

Definition 2.2 (Nondominated point) A point y ∈ Y is nondominated if there
is some efficient solution x ∈ XE such that y = f(x).

A fundamental result in multiobjective linear programming, and in particular
the biobjective network flow problem (10) is stated in the following theorem, see
e.g. [8].

Theorem 2.2 A feasible solution x ∈ X is efficient if and only if there exists a
λ ∈]0, 1[ such that x minimizes the weighted-sum linear program

min{(λ(c1 − c2) + c2)T x : x ∈ X}.

3 A Primal-dual Network Flow Algortihm

In this section a primal-dual simplex algorithm for finding an optimal solution for
the minimum cost network flow (1) with lower and upper bounds is described.

Consider the primal (1) and dual (3) formulation of the minimum cost network
flow problem. Let the vector (π′, γ′, µ′) be an initial dual feasible solution. The
components, π′k, γ′ij, and µ′ij of π′, γ′, and µ′, respectively, are such that π′i − π′j +
γ′ij − µ′ij = cij for all (i, j) ∈ A.

By the complementary slackness property for optimality it is necessary that, if
π′i − π′j 6= cij, then xij = lij or xij = uij. Let A= be the set of arcs such that
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π′i − π′j = cij, that is, the set of arcs with reduced cost zero. For each arc not in A=

set xij to lij or uij in (1), depending on the sign of cij − π′i + π′j.
Then the reduced primal problem that attempts to find a feasible solution to the

(primal) minimum cost flow problem associated with the arcs A= becomes

minimize z =
∑

k∈S\{1}
yk

subject to:
∑

(1,j)∈A=

x1j −
∑

(i,1)∈A=

xi1 − y1 + (−1)t2y2 + (−1)t3y3+

+ · · ·+ (−1)tryr + · · ·+ (−1)tmym = b′1∑
(k,j)∈A=

xkj −
∑

(i,k)∈A=

xik − (−1)tkyk = b′k, k ∈ S \ {1}
lij ≤ xij ≤ uij, ∀(i, j) ∈ A=

yk ≥ 0

(11)

where

tk =

{
1 if b′k ≥ 0
2 if b′k < 0

for k ∈ S. yk, k ∈ S are artificial variables used to obtain a starting basic solution to
the phase I problem and b′k, k ∈ S obtained from bk adding or subtracting the values
lij and uij in the right-hand-side according with the replacement of the variables
xij /∈ A= built in the initial problem.

This auxiliary problem is obtained considering the first node as root node and
adding to the initial network the following artificial arcs

{
(k, 1) if b′k ≥ 0
(1, k) if b′k < 0

for each k = 2, 3, · · · ,m with flow |b′k| and cost 1 as well as node 0 and the arc (0, 1)
with both flow and cost 0 (see [6]). For example, suppose we have the network in
Figure 1(a), then the network with the artificial arcs is in Figure 1(b).

The optimal objective value, ẑ of the reduced primal problem (11) is either
ẑ = 0 or ẑ > 0. If ẑ = 0 let (x̂, ŷ) be an optimal solution to (11), x̂ =

(
x̂ij

)
(i,j)∈A

and ŷ =
(
ŷk

)
k∈S

. The solution x∗ such that x∗ij = x̂ij for all (i, j) ∈ A= and
x∗ij = lij or x∗ij = uij for the remaining arcs in A, according to the changes made for
the auxiliary problem, is a feasible solution to the initial problem (1) since all the
artificial variables are zero. Furthermore (π′, γ′, µ′) is a dual feasible solution, and
the complementary slackness conditions also hold. So x∗ is an optimal solution to
(1).

If ẑ > 0 the current solution is not feasible for the initial problem. In this case
a new primal solution that improves the objective can be found or it is necessary to
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Figure 1: (b) is the auxiliary network for solving the minimum cost flow problem
(a).

conclude that primal problem is infeasible. The current solution is the best solution
for the minimum cost problem associated with the current network A=. A new arc
must be add to this network to obtain a new solution.

Consider the dual of problem (11):

maximize
∑
k∈S

b′kπk +
∑

(i,j)∈A

(lijγij − uijµij)

subject to: πi − πj + γij − µij = 0 ∀(i, j) ∈ A=

π1 ≥ 0
(−1)tkπ1 − (−1)tkπk ≤ 1

(12)

Let (π̂, γ̂, µ̂) be an optimal solution to this problem. By the complementary
slackness we obtain that

π̂i − π̂j + γ̂ij − µ̂ij = 0 for all (i, j) ∈ A= (13)

π̂i − π̂j < 0 ⇒ x̂ij = lij (14)

π̂i − π̂j > 0 ⇒ x̂ij = uij, (i, j) ∈ A=. (15)

Consider now a new solution (π′′, γ′′, µ′′) for the initial dual problem defined as

π′′ = π′ + θπ̂

γ′′ = γ′ + θγ̂

µ′′ = µ′ + θµ
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where θ > 0. In this case we have

cij − π′′i + π′′j − γ′′ij + µ′′ij = cij − (π′i + θπ̂i) + π′j + θπ̂j − γ′ij − θγ̂ij + µ′ij + θµ̂ij

= cij − π′i + π′j − γ′ij + µ′ij − θ(π̂i − π̂j + γ̂ij − µ̂ij).

This new solution is a dual feasible solution for the initial problem if θ is small
enough. There are two cases to examine.

1. If (i, j) ∈ A= then
π′′i − π′′j + γ′′ij − µ′′ij = cij

since cij − π′i + π′j − γ′ij + µ′ij = 0 and also π̂i − π̂j + γ̂ij − µ̂ij = 0.

2. If (i, j) /∈ A= then

π′′i − π′′j + γ′′ij − µ′′ij = cij ⇔ π̂i − π̂j = γ̂ij − µ̂ij

which is always possible since γ̂ij − µ̂ij can be any real number.

The new arc (i, j) to be include in the current network must reduce the objective
value, so if (i, j) ∈ L we must have πi − πj > 0 and if (i, j) ∈ U , πi − πj < 0. In the
first case cij − π′i + π′j > 0 and

cij − π′′i + π′′j ≥ 0 ⇔ θ ≤ cij − π′i + π′j
π̂i − π̂j

.

In the second case, (i, j) ∈ U , cij − π′i + π′j < 0 and

cij − π′′i + π′′j ≤ 0 ⇔ θ ≤ cij − π′i + π′j
π̂i − π̂j

.

This means that if we choose θ > 0 such that

θ = min
{cij − π′i + π′j

π̂i − π̂j

: (i, j) /∈ A= such that (cij − π′i + π′j > 0 and π̂i − π̂j > 0)

or (cij − π′i + π′j < 0 and π̂i − π̂j < 0)
}

(16)

at least one arc (i, j) not in the current set A= will be in the set A= of the next
iteration. This arc will reduce the objective function value.

In the next iteration the updated set A= of all the arcs such that π′′i + π′′j = cij

is considered and the new restricted problem is solved. Some arcs previously in A=

may not be in A= in this new iteration.
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Figure 2: Network flow example.

The foregoing process is continued until either ẑ = 0, in which case we have an
optimal solution for (1), or there are neither arcs in L such that π̂i − π̂j > 0 or arcs
in U such that π̂i − π̂j < 0. In this case the initial problem is not feasible.

Example 3.1.
Consider the minimum network flow problem illustrated in Figure 2.

It. 1: The algorithm starts with an initial feasible solution for the dual problem.
A solution with π′k = 0 for all nodes k and γij = µij = 0 for all arcs (i, j) ∈ A

is feasible. It can be easily seen that cij − π′i + π′j are all positive for all arcs
(i, j) in A (see Table 1) and so all variables xij = lij. Therefore, the initial
restricted problem is

minimize y2 + y3 + y4 + y5 + y6

subject to: y2 +y3 −y4 +y5 +y6 = 8
−y2 = −2

−y3 = −1
y4 = 2

−y5 = −1
−y6 = −6

yk ≥ 0, k = 2, 3, 4, 5, 6

This is the minimum cost network flow problem of Figure 7(a). The optimal
value of this problem is not zero and, therefore, the optimal solution is not
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optimal for the initial problem. The dual of the restricted problem has
optimal solution π̂ = (0,−1,−1, 1,−1,−1). The diferences πi − πj for each
arc (i, j) ∈ A are shown in Table 1. Thus, we have

θ = min
{
10, 10, 5, 25

}
= 5

and the new dual feasible solution

π′′ = (0, 0, 0, 0, 0, 0) + 5× (0,−1,−1, 1,−1,−1) = (0,−5,−5, 5,−5,−5)

and we proceed to the next iteration.

It. 2: The arc (4, 5) is added to the current network since it is the only one with

minimum ratio
cij−π′i+π′j

π̂i−π̂j
.

The new restricted problem is depicted in Figure 7(b). This problem has
an optimal solution with objective value greater than zero (see Figure 7(c)).
The dual of this problem has an optimal solution π̂ = (0,−1,−1, 1, 1,−1)
and θ = min

{
5, 5, 20, 10

}
= 5 obtained from the arcs (1, 2) and (1, 3). Thus

the new dual solution is

π′′′ = 0,−5,−5, 5,−5,−5)+5×(0,−1,−1, 1, 1,−1) = (0,−10,−10, 10, 0,−10)

We proceed to the next iteration.

The subsequent iterations are summarized in Table 2. The algorithm ends
with π∗ = (0,−10,−10,−20,−30,−70), A= =

{
1, 2), (1, 3), (3, 5), (4, 5), (4, 6), (5, 6)

}
,

x∗ = (2, 8, 0, 2, 0, 0, 8, 1, 1, 9) and f(x∗) = 640.

4 A Primal-dual Algorithm for the Bi-criteria Net-

work Flow Problem

In this section a primal-dual algorithm to solve the bi-criteria network flow problem
(10) is developed. This algorithm is a direct application of the algorithm of [4] for
the bi-criteria minimum cost flow problem.
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Table 1: Iteration output.

arc cij − π′i + π′j π̂i − π̂j
cij−π′i+π′j

π̂i−π̂j

(1, 2) 10 1 10
(1, 3) 10 1 10
(2, 3) 20 0
(2, 4) 70 −2
(2, 5) 50 0
(3, 4) 25 −2
(3, 5) 20 0
(4, 5) 10 2 10

2 = 5
(4, 6) 50 2 50

2 = 25
(5, 6) 20 0

cij − π′′i + π′′j π̂i − π̂j
cij−π′′i +π′′j

π̂i−π̂j

5 1 5
5 1 5
20 0
80 −2
50 −2
35 −2
20 0
0 2
40 2 40

2 = 20
20 0 20

2 = 10
a)First iteration b) Second iteration

arc cij − π′′′i + π′′′j π̂i − π̂j
cij−π′′′i +π′′′j

π̂i−π̂j

(1, 2) 0 0
(1, 3) 0 0
(2, 3) 20 0
(2, 4) 90 −1
(2, 5) 60 −1
(3, 4) 45 −1
(3, 5) 30 −1
(4, 5) 0 0
(4, 6) 30 2 30

2 = 15
(5, 6) 10 2 10

2 = 5

cij − πiv
i + πiv

j π̂i − π̂j
cij−πiv

i +πiv
j

π̂i−π̂j

0 0
0 0
20 0
95 1 95
65 1 65
50 1 50
35 1 35
0 0
20 0
0 0

c)Third iteration d) Fourth iteration

arc cij − πv
i + πv

j π̂i − π̂j
cij−πv

i +πv
j

π̂i−π̂j

(1, 2) 0 0
(1, 3) 0 0
(2, 3) 20 0
(2, 4) 60 0
(2, 5) 30 0
(3, 4) 15 0
(3, 5) 0 0
(4, 5) 0 0
(4, 6) 20 1 20
(5, 6) 0 −1

cij − πvi
i + πvi

j π̂i − π̂j
cij−πvi

i +πvi
j

π̂i−π̂j

0
0
20
60
30
15
0
0
0
−30

e)Fifth iteration f) Sixth iteration
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Table 2: Primal-dual results.
Iter. Dual solution A= Dual restricted so-

lution
θ

1 π=(0,0,0,0,0,0) {} π̂=(0,-1,-1,1,-1,-1) 5
2 π=(0,-5,-5,5,-5,-5) {(4,5)} π̂=(0,-1,-1,1,1,-1) 5
3 π=(0,-10,-10,10,0,-10) {(1,2), (1,3), (4,5)} π̂=(0,0,0,1,1,-1) 5
4 π=(0,-10,-10,15,5,-15) {(1,2), (1,3), (4,5),

(5,6)}
π̂=(0,0,0,0,-1,-1) 35

5 π=(0,-10,-10,-20,-30,-50) {(1,2), (1,3), (3,5),
(4,5), (5,6)}

π̂=(0,0,0,0,0,-1) 20

6 π=(0,-10,-10,-20,-30,-70) {(1,2), (1,3), (3,5),
(4,5), (4,6), (5,6)}

Finding all efficient solutions of (10) is equivalent to finding all optimal solutions
of network flow problems of the form

minimize
∑

(i,j)∈A

(
λ(c1

ij − c2
ij) + c2

ij

)
xij

subject to:
∑

(k,j)∈A

xkj −
∑

(i,k)∈A

xik = bk ∀k ∈ S

lij ≤ xij ≤ uij ∀(i, j) ∈ A

(17)

for all λ ∈]0, 1[ (Theorem 2.2).
It is well known that there exists a finite partition of the interval ]0, 1[ such that

an efficient solution of (10) is associated with one and only one set in the partition
(see [9]).

The algorithm of [4] solves problem (10) by applying the primal-dual algorithm
to (17). The dual feasible solutions constructed in the algorithm do not depend
on the λ parameter. Moreover, the sequence of problems solved correspond to a
partition of the interval ]0, 1[.

Consider problem (17). The dual is

maximize
∑
k∈S

bkπk +
∑

(i,j)∈A

(
lijγij − uijµij

)

subject to: πi − πj + γij − µij = λ(c1
ij − c2

ij) + c2
ij, ∀(i, j) ∈ A

γij, µij ≥ 0 ∀(i, j) ∈ A.

(18)

Let π′(λ) be be an initial feasible solution to (18) and Λ′q′ , q
′ = 1, 2, · · · , r′ be a

partition of ]0, 1[ such that for q′ = 1, 2, · · · , r′ there exists A=
q′ ⊂ A such that

• for all λ ∈ Λq′ ,

12



– for all (i, j) ∈ A=
q′ , π′i(λ)− π′j(λ) = λ(c1

ij − c2
ij) + c2

ij and

– for all (i, j) /∈ A=
q′ , π′i(λ)− π′j(λ) 6= λ(c1

ij − c2
ij) + c2

ij

• for all λ /∈ Λq′ there is (i, j) ∈ A=
q′ π′i(λ)− π′j(λ) 6= λ(c1

ij − c2
ij) + c2

ij

Consequently, for λ ∈ Λq′ and (i, j) /∈ A=
q′ , xij = lij or xij = uij. Let A<

q′ be the
set of arcs (i, j) such that xij = lij, i.e., such that π′i(λ)− π′j(λ) < λ(c1

ij − c2
ij) + c2

ij

and A>
q′ be the set of arcs (i, j) such that xij = uij, i.e., such that π′i(λ) − π′j(λ) >

λ(c1
ij − c2

ij) + c2
ij.

For each interval Λq′ we have the restricted primal problem

minimize z =
∑

k∈S\{1}
yk

subject to:
∑

(1,j)∈A=
q′

x1j −
∑

(i,1)∈A=
q′

xi1 − y1 + (−1)t2y2 + (−1)t3y3+

+ · · ·+ (−1)tryr + · · ·+ (−1)tmym = b′1∑
(k,j)∈A=

q′

xkj −
∑

(i,k)∈A=
q′

xik − (−1)tkyk = b′k, k ∈ S \ {1}

lij ≤ xij ≤ uij, ∀(i, j) ∈ A=
q′

yk ≥ 0.

(RP (A)=)

If the optimal objective value z∗ of (RP (A)=) is zero, its optimal solution x̂ is
optimal for (17) for any λ ∈ Λq′ as in the case of the single objective primal-dual
algorithm. If z∗ > 0 we can formulate the dual (DRP (A=)).

maximize
∑
k∈S

b′kπk +
∑

(i,j)∈A

(lijγij − uijµij)

subject to: πi − πj + γij − µij = 0 ∀(i, j) ∈ A=

π1 ≥ 0
(−1)tkπ1 − (−1)tkπk ≤ 1.

(DRP (A=))

Let (π̂(λ), γ̂(λ), µ̂(λ)) be an optimal solution of (DRP (A=)). A new solution for
the dual initial (18) is

π′′(λ) = π′ + θ(λ)π̂

γ′′(λ) = γ′ + θ(λ)γ̂

µ′′(λ) = µ′ + θ(λ)µ

13



where θ(λ) > 0 is defined by

θ(λ) = min
{λ(c1

ij − c2
ij) + c2

ij − π′i + π′j
π̂i − π̂j

:

π̂i − π̂j > 0 and c1
ij − c2

ij + c2
ij − π′i + π′j > 0 or

π̂i − π̂j < 0 and c1
ij − c2

ij + c2
ij − π′i + π′j < 0

}
.

Notice that θ(λ) might have different values since the quotient
λ(c1ij−c2ij)+c2ij−π′i+π′j

π̂i−π̂j

depends on the λ value. The interval Λq′ is partitioned in intervals Λq′q′′ , q
′′ =

1, 2, · · · , r′′. The algorithm continues with the dual solution π′′(λ) and an interval
Λq′q′′ .

Algorithm 1: Primal-dual bi-criteria network flow algorithm

1. Choose π′(λ), an initial value of the vector π in problem (18) and
compute the partition Λ′q′, q′ = 1, 2, · · · , r′ of the interval ]0, 1[.

2. Compute the set L =
{
(A<

q′ , A
>
q′), q′ = 1, 2, · · · , r′

}
.

3. While (L 6= ∅) do

Choose
(
A<

q′ ,A
>
q′
) ∈ L and solve RP (A)=.

(a) If the optimal value is 0 then its solution is an efficient
solution to (10). Set L = L\(A<

q′ , A
>
q′
)
.

(b) Else solve DRP (A=) and let (π̂, γ̂, µ̂) be an optimal so-
lution.
i. If there is no arc (i, j) such that cij − π′i + π′j > 0

and π̂i− π̂j > 0 or cij −π′i +π′j < 0 and π̂i− π̂j < 0
P (λ) is infeasible. STOP.

ii. Else compute the partition ∆q′q′′ of ∆q′,
q′′ = 1, 2, · · · , r′′ and set L = L\(A<

q′ , A
>
q′
) ∪{(

A<
q′q′′ , A

>
q′q′′

)
: q′′ = 1, 2, · · · , r′′

}
.

5 An Improvement of the Algorithm of [4]

The primal-dual algorithm as it has been presented in Section 4 leads to a partition
of the interval ]0,1[ into more sub-intervals than necessary. As a consequence the

14



same solutions are found repeatedly. In this section we use the knowledge of each
extreme solution (an extreme solution is an efficient solution such that f(x) is an
extreme point of Y ) to find a partition of the interval ]0,1[ in Λq, q = 1, 2, · · · , r with
one subset for each extreme nondominated point.

The primal-dual algorithm divide the interval ]0, 1[ successively according to the
tree in Figure 3.

a

]0, 1[

Λ1 Λ2 · · · Λr

Λ11 Λ12 · · · Λ1r · · ·

· · ·

Λ11···1 Λ11···2 · · · Λ11···r

Figure 3: Interval division scheme.

Using a depth-first search for the choice of the interval Λq the first extreme point
x∗ obtained is an optimal solution for the problem (17) with λ = 0 + ε, where ε is
a sufficiently small positive number. It is known that the optimal Spanning Tree
Structure (STS) associated with this solution has reduced costs c̄ij = cij − πi +
πj, (i, j) ∈ A. Both cij, πi and πj are linear functions in λ. Thus c̄ij are also linear
functions

c̄ij = aijλ + bij ≥ 0 for all (i, j) ∈ L

c̄ij = aijλ + bij ≤ 0 for all (i, j) ∈ U.

where aij and bij are real numbers.
Let λ′ ∈]0, 1[ be such that

λ′ = max
{

λ : c̄ij ≥ 0,∀(i, j) ∈ L and c̄ij ≤ 0,∀(i, j) ∈ U
}

.

The solution x∗ is an optimal solution for the problem (17) for all λ ∈]0, λ′]. There-
fore, in the second iteration of the primal-dual algorithm all the intervals Λq ⊂ ]0, λ′]
can be removed from further analysis since the same solution x∗ would be obtained.
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6 An Illustrative Example

Consider the bicriteria network flow problem which is sketched in Figure 4. Mathe-
matically it becomes

minimize f1(x) = 3x12 + 8x13 + 5x23 + 3x24 + 2x34 + 10x35 + x45

minimize f2(x) = 5x12 + x13 + 5x23 + 9x24 + 7x34 + 2x35 + 4x45

subject to: x12 +x13 = 10
−x12 +x23 +x24 = 0

−x13 −x23 +x34 +x35 = 0
−x24 −x34 +x45 = 0

−x35 −x45 = −10

(19)

x12 ≤ 10, x13 ≤ 5, x23 ≤ 4, x24 ≤ 7, x34 ≤ 8, x35 ≤ 6,

x45 ≤ 8

x12, x13, x23, x24, x34, x35, x45 ≥ 0.

(20)

1

3

2 4

5

(3
,5
)

[0
,1
0]

(8,1)[0,5]

(5
,5

)

[0
,4

]

(3,9)

[0,7]

(2
,7
)

[0
,8
]

(10
,2)

[0,6
]

(1,4)[0,8]10 -10

1

3

2 4

5

1

0

1

0

1

0

1

10

0

1

1

1

−1

Figure 4: Bi-criteria network flow problem.

Let λ ∈]0, 1[ and consider the parametric problem
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minimize (−2λ + 5)x12 + (7λ + 1)x13 + 5x23 + (−6λ + 9)x24+

+ (−5λ + 7)x34 + (8λ + 2)x35 + (−3λ + 4)x45

subject to: x12 +x13 = 10
−x12 +x23 +x24 = 0

−x13 −x23 +x34 +x35 = 0
−x24 −x34 +x45 = 0

−x35 −x45 = −10

(21)

x12 ≤ 10, x13 ≤ 5, x23 ≤ 4, x24 ≤ 7, x34 ≤ 8, x35 ≤ 6,

x45 ≤ 8

x12, x13, x23, x24, x34, x35, x45 ≥ 0.

Let π1, π2, π3, π4, π5 be the dual variables associated with constraints (19) and
the dual variables µ12, µ13, · · · , µ45 associated with constraints (20). Then the dual
problem is defined as follows

maximize 10π1 − 10π5 − 10µ12 − 5µ13 − 4µ23 − 7µ24 − 8µ34 − 6µ35 − 8µ45

subject to: π1 −π2 −µ12 ≤ −2λ + 5
π1 −π3 −µ13 ≤ 7λ + 1

π2 −π3 −µ23 ≤ 5
π2 −π4 −µ24 ≤ −6λ + 9

π3 −π4 −µ34 ≤ −5λ + 7
π3 −π5 −µ35 ≤ 8λ + 2

π4 −π5 −µ45 ≤ −3λ + 4

(22)

µ12, µ13, µ23, µ24, µ34, µ35, µ45 ≥ 0.

Solving problem (21) by using primal-dual algorithm of Section 4 the efficient
STSs and the intervals Λq are outlined in Figure 5. The algorithm starts with
λ ∈]0, 1[. It first splits this interval into two subintervals ]0, 2

11
] and [ 2

11
, 1[. If the

interval ]0, 2
11

] is first considered two new subintervals are obtained ]0, 2
22

] and [ 2
22

, 2
11

].
Taking the interval ]0, 2

22
] the first efficient extreme point for the bi-criteria prob-

lem is achieved

x′ = (x12 = 5, x13 = 5, x23 = 1, x24 = 4, x34 = 0, x35 = 6, x45 = 4).

The STS associated with this solution is in Figure 6 with dual variables π and
reduced costs for the first and second criteria c̄1

ij and c̄2
ij, respectively. This STS
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a

]0, 1[

]0, 2

11
] [ 2

11
, 1[

]0, 1

22
] [ 1

22
,

2

11
] [ 2

11
,

9

16
] [ 9

16
, 1[

[ 2

11
,

6

17
] [ 6

17
,

9

16
] [ 9

16
,

3

5
] [3

5
, 1[

(×) (×)(×)

(5, 5, 0, 5, 0, 5, 5) (7, 3, 0, 7, 1, 2, 8)(5, 5, 1, 4, 0, 6, 4)

Figure 5: Interval division scheme and solutions.
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remains an optimal STS for problem (21) while λ ∈]0, λ′] where

λ′ = min
(i,j)∈J ′

−c̄2
ij

c̄1
ij − c̄2

ij

with

J ′ = {(i, j) ∈ L : c̄1
ij < 0 and c̄2

ij ≥ 0} ∪ {(i, j) ∈ U : c̄1
ij > 0 and c̄2

ij ≤ 0}.

So λ′ = 6
11+6

= 6
17

and solution x′ remains optimal for (21) for all λ ∈]0, 6
17

]. This

knowledge avoids the search of efficient extreme points in both intervals [ 1
22

, 2
11

] and
[ 2
11

, 6
17

].
Next, problem (21) is solved for ( 6

17
, 9

16
). The optimal solution is x′′ = (5, 5, 0, 5, 0,

5, 5). Computing the reduced costs for the STS associated with this optimal solution
we conclude that this is also an optimal solution for the interval [ 9

16
, 3

5
]. The last

efficient extreme point x′′′ = (7, 3, 0, 7, 1, 2, 8) is obtained when λ ∈ [3
5
, 1[.

a

i j

1

3

2 4

5

(c1ij, c
2

ij) (c̄
1

ij, c̄
2

ij)

[0,uij ] xij
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[0
,1
0]
5

(8,1)
(0,-9)

[0,5] 5

(5
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[0,4]
1

(3,9)

[0,7] 4

(2
,7
)

(4
,3
)

[0
,8
] 0

(10
,2)

(11,
-6)

[0,6]
6

(1,4)0,8] 4
0
0
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π
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π
1
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π
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i j

1
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2

4

cij
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πi πj

2

−1

1
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Figure 6: Efficient solution and reduced costs to problem of Figure 4
.
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Table 3: Problem parameters.
Skeleton Arcs

Problem Nodes Arcs Sources Sinks Supply with
max
cost
1

with
max
cost
2

Capacity

150-179 10 40 5 4 100 20 30 0-20
250-279 20 100 7 5 200 30 30 0-30
350-379 30 300 8 12 300 25 25 0-30
450-479 40 600 12 14 400 20 30 0-40
550-579 50 1000 15 15 600 25 25 0-40
650-679 60 1400 20 20 800 20 20 0-40

7 Computational Experiments

Two versions of the primal-dual simplex algorithm for the minimum cost bi-criteria
network flow problem have been implemented using the C programming language.
The first version is the implementation of algorithm 1 and the second is the same
algorithm with the modification made in Section 5. The computer used for the
experiments is equipped with an Intel Pentium processor 2.13GHz with 1GB of
RAM, and runs under OS X operating system.

Several instances (30 of each type) of the minimum cost bi-criteria network flow
problem were generated using the NETGEN network generator after some changes
for this particular problem. The objective function coefficients were randomly gen-
erated (uniform distribution) from the integer set {0, 1, 2, · · · , 100}. All arcs are
capacitated with minimum value of 0. The remaining parameters of the generated
problems are tabled in Table 3. The designations are the same used in NETGEN
(See [7]). The number of nodes and arcs, the number of nondominated extreme
points and the average CPU time for both algorithms are shown in Table 4. It can
be seen that the average CPU time using the second algorithm is smaller than that
of the first algorithm. The improvement is about a factor of 6 to 7.
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Table 4: Numerical results.
Problem Nondominated extreme CPU Time (sec.)

points (average) 1st version 2nd version
150-179 7.77 0.10 0.02
250-279 29.63 0.65 0.14
350-379 85.67 7.08 1.02
450-479 126.77 28.40 4.18
550-579 104.52 139.23 18.27
650-679 164.32 317.17 50.35
Average 86.45 82.10 12.33

8 Conclusions

In this paper we have developed a primal-dual simplex algorithm for the biobjective
network flow problem. Our numerical results show that the algorithm can solve
medium size instances in reasonable time. In the future we plan to compare our
algorithm with other algorithms for the same problem, e.g. a parametric network
simplex algorithm. Another topic of research is the investigation of the integer bicri-
teria flow problem. In contrast to the single objective case, this poses considerable
difficulties, because nondominated points in the interior of Y exist. The proposed
algorithm can be used in phase 1 of a 2 phase approach to this problem.
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