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ABSTRACT: The paper presents a generic labeling algorithm for finding all non-
dominated outcomes of the integer multiple criteria knapsack problem (MCKP). The
algorithm is based on solving the multiple criteria shortest path problem on an un-
derlying network. Algorithms for constructing four network models, all representing
the MCKP, are also presented. Each network is composed of layers and each net-
work algorithm, working forward layer by layer, identifies the set of all permanent
nondominated labels for each layer successively. The effectiveness of the algorithms
is supported with numerical results obtained for randomly generated problems for
up to seven criteria or forty variables. One of the algorithms appears to determine
the state of the art in exact algorithms for the MCKP. Extensions of the approach
to other classes of problems including binary variables, bounded variables, multiple
constraints, and time-dependent objective functions are possible.
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1 Introduction
The multiple criteria knapsack problem is a well known combinatorial optimization prob-
lem with a wide range of applications. Examples may be found in affordability analysis
and capital budgeting where projects have to be chosen with respect to more than a single
criterion (see e.g., Bhaskar [5], Vetschera [25], and Kwak et al. [19]), in transportation in-
vestment planning (Teng and Tzeng [22]), or in conservation biology to model relocation
issues (Kostreva et al. [17]).

In this paper we consider the integer multiple criteria knapsack problem (MCKP)
formulated as

vmax f (x) = V x

s.t. wx≤W
x j ≥ 0, integer, j = 1, . . . , l

(1)

where V is an r× l matrix with nonnegative entries vi
j, i = 1, . . . ,r, j = 1, . . . , l. We denote

the ith row of V by vi and the jth column of V by v j. Thus fi(x) = vix, i = 1, . . . ,r,
represent the r conflicting objective functions. The constraint wx ≤W is interpreted as
a capacity constraint (budget constraint). The set of feasible solutions of (1) is given by
X = {x ∈ IN l

0 : wx≤W}.
Throughout the paper we additionally assume that the weight coefficients w j, j =

1, . . . , l, and the right-hand-side of the capacity constraint W are positive integers. In
order to avoid trivial solutions let 0 < w j ≤W , j = 1, . . . , l and ∑l

j=1 w j > W .
A special case of the above formulation is the case in which r = 2, i.e., the bicriteria

case.
Solving (1) is understood as generating its efficient (Pareto) solutions. A feasible

solution x̂ ∈ X is said to be an efficient solution of (1) if there is no other feasible solution
x ∈ X such that f (x)≥ f (x̂), i.e.:

∀i ∈ {1, . . . ,r} fi(x)≥ fi(x̂)
and ∃i ∈ {1, . . . ,r} s.t. fi(x) > fi(x̂).

(2)

Let Xe denote the set of efficient solutions of (1) and let Ye denote the image of Xe in the
objective space, that is Ye = f (Xe), where f = [ f1, . . . , fr]. The set Ye is referred to as the
set of nondominated outcomes of (1).

The MCKP is a difficult problem to solve since the binary single-criterion knapsack
problem is already NP-complete. While many authors have proposed algorithms for find-
ing all or some nondominated outcomes of the MCKP, a majority of the algorithms deal
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with the bicriteria knapsack problem.
As the MCKP falls into the category of multiple criteria integer programs, algorithms

proposed for finding nondominated outcomes of the latter could be also applied to solve
the former. In this review we focus on approaches developed specially for the knapsack
problem with more than two criteria. In general, these approaches can be classified as ex-
act procedures and metaheuristics. The former aims at finding all nondominated outcomes
of the MCKP and includes branch-and-bound procedures, dynamic-programming-based
approaches, and labeling algorithms.

A branch-and-bound procedure was proposed by Ulungu and Teghem [23].
Villarreal and Karwan [26] were perhaps the first ones who proposed dynamic pro-

gramming (DP) approaches to the MCKP. They proposed four approaches: two basic
ones, an embedded state approach, and a hybrid approach. Later in [27], they also ex-
tended DP recursive equations to the general multiple criteria integer framework and
presented them on the binary MCKP with multiple constraints. Klamroth and Wiecek
[16] proposed a comprehensive DP methodology able to solve a broad class of knap-
sack problems including the MCKP and its more complex extensions such as binary
variables, multiple constraints, multiple periods, and time-dependent criterion functions.
They presented DP recursive equations for five network models representing the MCKP
and showed how to apply the equations and networks for the MCKP and its extensions.

An independent research effort was undertaken by Captivo et al. [6] who applied the
concept of a labeling algorithm to the MCKP viewed as the multiple criteria shortest path
problem on an underlying network. The algorithm turned out to be very effective for some
hard instances of the bicriteria binary case of the MCKP.

The combinatorial nature of MCKP motivated the development of meta-heuristic algo-
rithms producing a subset or an approximation of the set of all nondominated outcomes.
Arndt and Seelaender [2] outlined an approach based on the concept of ceiling points.
Simulated annealing was extensively studied by Czyzak and Jaszkiewicz [8] and Ulungu
et al. [24]. Hansen [13] and Gandibleux et al. [9] applied tabu-search principles to con-
struct an approximation of the nondominated set. Combinations of tabu search and a
genetic algorithm were developed by Ben Abdelaziz et al. [4]. A comparative study of
the effectiveness of genetic algorithms was presented by Zitzler and Thiele [29].

In the current decade, researchers continued efforts on the development of genetic
algorithms or hybrid algorithms. Improved performance of genetic algorithms due to
the use of approximate dominance was reported by Grosan and Oltsean [11] and Kumar
and Banerjee [18]. Barichard and Hao combined a genetic procedure with a tabu search
operator [3], Guo et al. proposed a hybrid memetic algorithm [12], and Zhang et al.
developed an immune system strength Pareto algorithm based on a clonal selection theory
[28]. Some authors also conducted more comparative studies including Laumanns et al.
[20], Jaszkiewicz [15], and Colombo and Mumford [7].
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Despite the success of metaheuristic algorithms we believe that deterministic algo-
rithms remain competitive for solving the MCKP. In this paper, we therefore continue in
the direction of labeling algorithms as they showed to be very promising in construct-
ing an effective algorithm for solving the MCKP [6]. On the other hand, the dynamic-
programming framework provided by Klamroth and Wiecek [16] turned out to be a flex-
ible tool for solving a variety of knapsack problems with multiple criteria. We therefore
present a new framework featuring the computational effectiveness of labeling algorithms
and the modeling flexibility of dynamic programming. This new framework is composed
of a family of networks similar to those in [16] for which a generic labeling algorithm
is designed. The algorithm with minor adjustments solves the multiple criteria shortest
path problem on every network and generates the set of all nondominated outcomes of the
MCKP and its extensions.

In Section 2 we present algorithms for constructing several network models for the
MCKP. Although the models are collected from the literature, the algorithms are new
since they aim at minimizing the network size and the related computational effort. The
generic labeling algorithm, suitable for customization for the proposed network models,
is developed in Section 3 while Section 4 describes a computational experiment. The ef-
fectiveness of the algorithms is supported with numerical results obtained for randomly
generated problems for up to seven criteria or forty variables. One of the algorithms
appears to determine the state of the art in exact algorithms for the MCKP. Section 5
indicates further possibilities for the refinement of the algorithm and concludes the pa-
per. Detailed numerical results and pseudocodes of the algorithms for constructing the
networks are given in the Appendix.

2 Algorithms for building network models
In this section we present four network models to be used for solving the MCKP. These
models are based on modeling approaches available in the literature and developed within
the framework of dynamic programming. The new models are presented in the language
of network flow programming [1] and their main feature is reduction of their size. The
new networks include a smaller number of vertices and arcs comparing to the dynamic
programming based networks.

Every network is defined as a directed and connected graph G = (V ,A), where V is
the set of vertices with | V |= n and A ⊆ V ×V is the set of arcs with | A |= m. The arc
linking vertices i and j is denoted by (i, j), and the vector [c1(i, j), . . . ,cr(i, j)] represents
the r criterion values associated with the arc (i, j). In the set V , we distinguish a source
vertex, a sink vertex and terminal vertices that are directly connected with the sink vertex.
A path p from a source vertex s to a sink vertex t in G is a sequence of arcs and vertices

4



from s to t, where the tail vertex of a given arc coincides with the head vertex of the next
arc in the path.

Every network is composed of layers g. A layer is a set of vertices. A layer g is called
a successor of a layer g′ if there is at least one arc from g′ to g.

The networks have several common properties. All networks are acyclic. There may
exist arcs from layer g to layers g + 1,g + 2, . . . ,G. Within a layer, there may exist arcs
linking vertices in this layer and there may exist terminal vertices. In the topological
terms, all the arcs in a network are horizontal, vertical, or diagonal down right. This
property allows us to set permanent labels from the top to the bottom of each layer.

Every vertex has a position in a layer. A vertex in position k, for k = 0, . . . ,K in layer
g is denoted by gk. For example, 36 denotes a vertex in layer 3 in position 6.

Throughout the paper we use the following didactic example of the bicriteria case of
MCKP to illustrate all network models and the generic labeling algorithm:

vmax f (x) =

(

8 9 3
3 2 1

)





x1
x2
x3





s.t.
(

2 2 3
)





x1
x2
x3



≤ 6

x j ≥ 0, integer, j = 1,2,3

In the following subsections we present four different algorithms to construct four
network models for MCKP. At the beginning of each subsection we refer the reader to
related results from the literature.

2.1 Algorithm I
Algorithm I is based on the recursive equations of Garfinkel and Nemhauser [10] (equa-
tions III), Ibaraki [14] (representation 1), Villarreal and Karwan [26] (approach 2), and
Klamroth and Wiecek [16] (model I).

Each layer of the network is a singleton.
Let T denote a stack containing vertices already created but not visited. A vertex is

said to be visited if the set of all outgoing arcs of this vertex has been created. Otherwise,
the vertex is said to be non-visited.

(0) Set V ←{s}, T ←∅.

(1) Connect the vertex s with the vertex g← w j, for every j = 1, . . . , l. Add the vertex
g to T if it has not been already added and add the arc (s,g) to A . Assign the cost
vector c(s,g)← [−v1

j , . . . ,−vr
j] to this arc.
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(2) While T contains non-visited vertices, select the next non-visited vertex u in T . If
g← u + w j ≤W for every j = 1, . . . , l, connect u with g. Add the vertex g to T if
it has not been already added and add the arc (u,g) to A . Assign the cost vector
c(u,g)← [−v1

j , . . . ,−vr
j] to this arc.

(3) Connect every vertex g in T with the vertex t. Add the vertex t to T and the arcs
(g, t) to A . Assign the cost vector c(g, t)← (0, . . . ,0) to each of these arcs.

(4) Let V ← T .

Output: A network G = (V ,A ,c).

Figure 1 depicts the network constructed by Algorithm I for the example problem.

s 2 3 4 5 6

t

(8,3)

(9,2)

(8,3)

(9,2)

(8,3)

(9,2)

(8,3)

(9,2)

(3,10) (3,10) (3,10)

Figure 1: Network model I (the cost vector of dashed arcs is (0,0)).

2.2 Algorithm II
Algorithm II is based on the recursive equations of Ibaraki [14] (representation 2) and
used by Klamroth and Wiecek [16] (model II).

Each layer of the network typically contains several vertices (but it may be a single-
ton). The layers g belong to the set {1, . . . ,W} while the positions k in each layer belong
to the set {1, . . . , l}.

Let T denote a list of all the vertices in the current layer and U denote a list of vertices
being successors of the vertices in T .
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(0) Set V ←{s},T ←∅ and U ←∅.

(1) Connect the vertex s with a vertex gk such that g← w j and k← j for every j =
1, . . . , l and add the vertex gk to U and to V . Add the arcs (s,gk) to A and assign
the cost vector c(s,gk)← [−v1

k, . . . ,−vr
k] to each of these arcs.

(2) While U is non-empty, move the vertices gk of the current layer to T . For all vertices
gk in T , if g+w j ≤W , connect gk with the vertex (g+w j)

j and add it to U and to
V if it has not been already added. Add the arcs (gk,(g+w j)

j) to A and assign the
cost vector c(gk,(g+w j)

j)← [−v1
j , . . . ,−vr

j] to each of these arcs. Set T ←∅.

(3) Connect every vertex gk in V to the vertex t and add t to V . Add the arcs (gk, t) to
A and assign the cost vector c(gk, t)← [0, . . . ,0] to each of these arcs.

Output: A network G = (V ,A ,c).

Figure 2 depicts the network constructed by Algorithm II for the example problem.

s

21 41 61

22 42 62

33 53 63

t

(8,
3)

(9,2)

(3,10)

(8,3)

(9,2)

(3,10)
(9,2)

(3,10)

(8,3)

(9,2)

(9,2)

(3,10)

Figure 2: Network model II (the cost vector of dashed arcs is (0,0)).
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2.3 Algorithm III
Algorithm III is based on the recursive equations of Garfinkel and Nemhauser [10] (equa-
tions I), Ibaraki [14] (representation 3), Villarreal and Karwan [26] (approach 1), and
Klamroth and Wiecek [16] (model III). Captivo et al. [6] used this algorithm to construct
a network on which a binary bi-criteria knapsack problem was very effectively solved
with a labeling algorithm.

Each layer of the network contains several (more than one) vertices. The layers g
belong to the set {1, . . . , l}, while the positions k in each layer belong to the set {0, . . . ,W}.

Let T denote a list of positions of vertices in the current layer and U denote an auxil-
iary list of positions.

(0) Set V ←{s}, T ←∅ and U ←∅.

(1) Connect the vertex s with vertices 1k in layer 1 for k← βw1, β = 0,1, . . . ,bW/w1c.
Add the positions k to U and the vertices 1k to V . Add the arcs (s,1k) to A and
assign the cost vector c(s,1k)← β[−v1

1, . . . ,−vr
1] to these arcs.

(2) While g < l, for every gb with b in T , if k← b+βw j ≤W for every β = 0,1, . . . ,(≤
bW/w jc):

a) Connect the vertex gb with the vertex (g+1)k.

b) Add the position k to U if it has not been already added, and the vertex (g+1)k

to V .

c) Add the arc (gb,(g+1)k) to A .

d) If b = k assign the cost vector c(gk,(g+1)k)← [0, . . . ,0] to each of these arcs;
otherwise, c(gb,(g+1)k)← β[−v1

g, . . . ,−vr
g].

e) Set T ←∅ and move the elements of U to T .

(3) Connect the vertex gk, k in T , with the vertex t. Add the vertex t to V . Add the arcs
(gk, t) to A and assign the cost vector c(gk, t)← [0, . . . ,0] to each of these arcs.

Output: A network G = (V ,A ,c).

Figure 3 depicts the network constructed by Algorithm III for the example problem.
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s 10 20 30

12 22 32

33

14 24 34

35

16 26 36 t

(0,0)

(8,3)

(16,6)
(24,9)

(0,0)

(9,2)
(18,4)

(27,6)

(0,0)

(9,2)
(18,4)

(0,0)

(9,2)
(0,0)

(0,0)

(3,10)
(6,20)

(0,0)

(3,10)
(0,0)

(0,0)

Figure 3: Network model III (the cost vector of dashed arcs is (0,0)).

2.4 Algorithm IV
Algorithm IV is based on the recursive equations of Garfinkel and Nemhauser [10] (equa-
tions II) later used by Klamroth and Wiecek [16] (model IV).

Each layer of the network contains several (more than one) vertices. The layers g
belong to the set {1, . . . , l}while the positions k in each layer belong to the set {0, . . . ,W}.

Let T denote a list of positions of vertices in the current layer and U denote an auxil-
iary list of positions.

(0) Set V ←{s}, T ←∅ and U ←∅.

(1) Connect the vertex s with vertices 1k in layer 1 if k← βw1 for β = 0,1, . . . ,bW/w1c.
Add the positions k to T and the vertices 1k to V . Add the arcs (s,1k) to A , and
assign the cost vector c(s,1k)← [0, . . . ,0] to these arcs.

(2) While g≤ l, for every vertex gb, b in T :
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1. Connect gb with (g + 1)b. Add the position b to U , the vertex (g + 1)b to
V , and the arc (gb,(g + 1)b) to A . Assign the cost vector c(gb,(g + 1)b)←
[0, . . . ,0] to this arc.

2. If k← b+wg ≤W , connect the vertex gb with the vertex gk. Add the position
k to U if it has not been already added, and the vertex gk to V . Add the arc
(gb,gk) to A and assign the cost vector c(gb,gk)← [−v1

g, . . . ,−vr
g] to this arc.

3. Set T ←∅ and move the elements of U to T .

(3) Connect every vertex gk in layer l to the vertex t. Add the vertex t to V . Add the
arcs (gk, t) to A and assign the cost vector c(gk, t) = [0, . . . ,0] to each of these arcs.

Output: A network G = (V ,A ,c).

Figure 4 depicts the network constructed by Algorithm IV for the example problem.

s 10 20 30

12 22 32

33

14 24 34

35

16 26 36 t

(0,0)

(0,0)

(0,0)
(0,0)

(0,0) (0,0)

(0,0) (0,0)

(0,0) (0,0)

(0,0) (0,0)

(8,3)

(9,2)

(8,3)

(9,2)

(8,3)

(9,2)

(3,10)

(3,10)

(3,10)

Figure 4: Network model IV (the cost vector of dashed arcs is (0,0)).

2.5 Comparison of the algorithms
Table 1 summarizes some basic properties of the four types of networks constructed by
the presented algorithms. In the first four rows of the table the topology of networks is
addressed while the other three rows specify the lists (arrays) needed for data storage. The
numbers given in the table are based on the worst case data instance.
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Network I Network II Network III Network IV

number
of layers

W +2 W +2 l l

size of a layer 1 l W +1 W +1

connection
between
layers

various
layers

various
layers

adjacent
layers

adjacent
layers

connection
within a layer

No No No Yes

lists T T,U T,U T,U

size of T W +2 l W +1 W +1

size of U - l× (W +1) W +1 W +1

Table 1: Comparison of Networks I-IV

3 Generic labeling algorithm
We now present an algorithm to find all nondominated outcomes of the MCKP. The algo-
rithm is generic in the sense that the MCKP can be modeled by any network from among
the four networks presented in the previous section and the solutions of the MCKP are
found as solutions of a related multiple criteria shortest path problem. The algorithm is
presented in the form of a pseudocode that should be customized for a network of choice.

Let fq(p) denote the value of a path p with respect to the criterion q, for q = 1, . . . ,r,
i.e., fq(p) = ∑(i, j)∈p cq(i, j). A path pn in G is said to be nondominated if and only if
there does not exist another path p in G such that fq(p) ≤ fq(pn), for all q = 1, . . . ,r,
with at least one strict inequality. The multiple criteria shortest path problem consists in
computing the set of all nondominated paths from a source vertex s to a sink vertex t in
G . Let Pn denote the set of all nondominated paths in G from s to t.

The following notation is needed. Let

◦ {1, . . . ,G} denote the set of layers g constructed by each algorithm;

◦ K(g) denote the set of positions in layer g;

◦ L(u) = (α1, . . . ,αr) denote an r−dimensional vector whose every component rep-
resents the distance from the vertex s to the vertex u;

◦ S(u) denote the set of labels of vertex u.
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In the initialization of the algorithm, the vertex s is labeled as well as all its successors
(including the vertex t if it is a successor of s).

In the main step of the algorithm, the set of labels for all successor vertices of the
current vertex gk,k ∈ K(g), is calculated. The new set of labels, S(u), for each successor
vertex u is composed of the nondominated labels in the union of the set of current non-
dominated labels of the successor vertex u and the set being the algebraic sum of the set
of nondominated labels of the current vertex gk and the cost vector, c(gk,u), of the arc
from the current vertex gk to the successor vertex u.

Figure 5 presents a pseudocode of the algorithm. The set of all nondominated paths
in G from s to t computed by the algorithm is equivalent to the set of all nondominated
outcomes of the MCKP.

The complexity of the algorithm depends on the complexity of the networks built and
examined in each model and the complexity of the main step of the algorithm. The former
results for the number of variables and the magnitude of the right-hand-side coefficient
W (see Table 1) while the latter is determined by the complexity of the multiple criteria
shortest path problem which is known to be NP-complete [21].

GENERIC ALGORITHM

{ A generic labeling algorithm for MCKP models. }
INITIALIZATION

L(s)← (0, . . . ,0);
if (s is a terminal vertex) then

S(t)←{(0, . . . ,0)};
else

S(t)←{(∞, . . . ,∞)};
for (all (s,u) ∈ A , u 6= t) do

S(u)←{c(s,u)} ;
MAIN STEP

for (each layer g ∈ {1, . . . ,G}) do
for (each k ∈ K(g)) do

for (each u such that (gk,u) ∈ A) do
begin

S(u)← vmin
{

S(u)∪{S(gk)⊕ c(gk,u)}
}

;

if (gk is a terminal vertex) then
S(t)← vmin

{

S(t)∪S(gk)
}

;

end
END

Output: The set Pn ∈ G from s to t.
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Figure 5: The generic labeling algorithm.

f2(x)

f1(x)0

(11,13)

(12,12)

(24,9)

(25,8)

(26,7)

(27,6)

Figure 6: The set of nondominated paths for the example problem.

4 Numerical results
In this section we report on our computational experiment. The four models and algo-
rithms were implemented in C++, compiled using the Microsoft Windows 32-bit C/C++
Optimizing Compiler (version 12) for 80x86, and linked with the Microsoft Incremental
Linker (version 6). All the experiments were carried out on an 1133 MHz Pentium III
with 256 MB of RAM and Windows XP.

Instances of the MCKP were randomly generated for a given number of criteria and
a given number of variables. Thirty instances of the problem were typically solved when
the solution time for every instance did not exceed one hour. Occasionally, the calcula-
tions were stopped and a smaller number of instances is reported. For each instance, the
objective and constraint coefficients were randomly generated within a certain range.

The numerical results are reported in the Appendix in Tables 2-6 in which the follow-
ing notation is used:

• UB is the upper bound for the coefficients w j and vk
j that are randomly generated

within the range [1,UB];

• l is the number of variables;
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• N is the number of instances of the MCKP solved;

• W̄ is the average capacity of the knapsack calculated as the average of the capacities
of all the instances solved;

• |X̄e| is the average number of efficient solutions calculated as the average of the
number of efficient solutions of all the instances solved;

• |Ȳ e| is the average number of nondominated outcomes calculated as the average of
the number of nondominated outcomes of all the instances solved;

• St.Dev.σ̄ is the standard deviation of the number of nondominated outcomes ob-
tained for all the instances solved;

• n̄ is the average number of vertices of the graph obtained when converting the knap-
sack problem into a multicriteria shortest path problem calculated with respect to
all the instances solved;

• m̄ is the average number of arcs of the graph obtained when converting the knapsack
problem into a multicriteria shortest path problem calculated with respect to all the
instances solved;

• Lab. is the average number of labels generated to compute the efficient solutions
calculated with respect to all the instances solved;

• CPU is the average CPU time of all the instances solved;

• Mem. Mb. is the average memory requirements in mega bytes of all the instances
solved;

• Roman numerals I through IV denote the four network models of Section 2.

Tables 2 and 3 present results for MCKPs with three criteria and five to thirty five
variables. Among the four models implemented, Model IV has almost always the best
CPU times while Model I has almost always the second smallest CPU times and always
the smallest memory requirements. Model II seems to be the least attractive with respect
to the CPU time and required memory.

Model IV was applied to 3-criteria problems with 10, 20, and 40 variables and the
results are shown in Table 4. Note the exponential increase of the CPU time and memory
requirements due to the increase of the number of variables.

Tables 5 and 6 report results for MCKPs with four, five, six, and seven criteria and
five to twenty variables. Again, model IV (almost always) outperforms the other models
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as far as the CPU time while model I always uses the smallest amount of memory. When
using model IV as the number of criteria increases, the savings in CPU time seem to be
relatively bigger than the losses due to the required memory.

The presented results reveal differences between the four network models and also
give the evidence that this algorithmic approach is quite effective. Since our experiment
covers instances with up to 7 criteria and twenty variables, we believe that these are the
best numerical results for integer MCKPs ever solved with an exact algorithm. Based
on the analysis above, we make the conjecture that Model IV is currently the best exact
approach to solving MCKPs.

As we recognized in Section 1, many computational results with metaheuristic algo-
rithms have been reported in the literature. However, binary rather than integer instances
of the MCKP have been researched [3, 11, 15, 12, 18, 28]. Furthermore, since meta-
heuristics produce approximate rather than true efficient solutions, the focus has been on
the effectiveness of those algorithms which is reflected in the quality of the obtained so-
lutions. Also, for example in [15], binary MCKPs with no more than five criteria were
tested.

5 Conclusions
In this paper, we developed a comprehensive algorithmic framework for solving the in-
teger MCKP. Based on the dynamic programming models available in the litertaure, we
proposed four algorithms producing network models of the MCKP and a generic labeling
algorithm that computes all nondominated outcomes of this problem.

The algorithms were implemented and tested on randomly generated problems with
up to forty variables or seven criteria. Overall, two different models (I and IV) have
the smallest memory requirements and the fastest CPU times. In particular, Model IV
offers relatively bigger savings of CPU times in comparison to its increasing memory
requirements. We are not aware of another computational study with exact algorithms
applied to more complex instances of the integer MCKP with better numerical results. We
therefore claim that our results currently determine the state of the art in exact algorithms
for the MCKP.

We see two directions of further research. First, as shown by Klamroth and Wiecek
[16], the dynamic programming based models of the integer MCKP can handle problems
with binary variables, bounded variables, multiple constraints, multiple periods, and time-
dependent objective functions. The networks presented in this paper can also be extended
to accommodate all these cases while the generic labeling algorithm remains applicable.
The proposed framework therefore covers a family of multiple criteria knapsack problems
suitable to model a variety of real-life decision making situations.
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Second, a joint study of deterministic and metaheuristic algorithms for MCKPs should
be performed to evaluate both approaches on a common platform and to better understand
pros and cons of each of them.
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Appendix

Table 2: Average results for uncorrelated instances with r = 3 and w j,vk
j ∈ [1,UB] and W = b 50

100 ∑l
j=1 w jc.

St. n̄
UB l N W̄ |X̄e| |Ȳ e| Dev. m̄

σ̄ I II III IV I II III IV
5 30 1,262.13 6.27 6.27 8.46 181.53 274.80 704.97 704.97 606.97 570.70 1,037.87 1,005.93

1000 10 30 2,514.20 30.83 30.83 31.84 1,667.53 8,257.17 12,603.40 12,603.40 13,378.27 29,708.87 30,153.33 20,951.67
15 29 3,741.83 157.86 157.86 537.61 3,276.55 35,862.31 43,223.72 43,223.72 44,925.41 238,675.90 167,882.86 79,249.69
20 28 5,055.00 125.29 125.29 99.94 4,692.32 75,680.61 85,687.18 85,687.18 88,407.64 709,120.14 498,057.69 161,592.57

5 30 128.80 4.60 4.60 6.31 49.87 81.10 191.77 191.77 159.67 179.67 324.23 288.37
10 30 254.20 14.93 14.93 25.67 221.90 1,423.40 1,912.63 1,912.63 1,921.27 6,122.90 5,455.90 3,399.93
15 30 386.30 43.33 43.33 67.18 365.87 4,231.53 4,989.57 4,989.57 5,065.50 29,963.13 24,908.93 9,331.93

100 20 30 514.87 137.10 125.00 243.85 498.63 8,246.70 9,261.83 9,261.83 9,420.53 79,613.63 66,373.70 17,670.77
25 30 637.73 339.17 301.90 618.83 627.03 13,639.67 14,903.87 14,903.87 15,001.50 167,675.87 147,509.77 28,766.17
30 27 755.25 369.68 360.68 705.79 747.57 19,998.93 21,498.68 21,498.71 21,633.14 296,412.11 270,826.43 41,825.36
35 26 887.93 242.89 232.18 262.72 883.82 28,098.68 29,858.36 29,858.36 30,005.86 487,506.68 462,923.64 58,412.6819



Table 3: Average results for uncorrelated instances with r = 3 and w j,vk
j ∈ [1,UB] and W = b 50

100 ∑l
j=1 w jc.

Mem.
UB l Lab. CPU Mb.

I II III IV I II III IV I II III IV
5 104.17 127.60 257.47 213.70 0.01 0.01 0.01 0.01 0.0100 0.0300 0.0200 0.0200

1000 10 3,312.30 8,969.23 7,240.00 5,378.27 0.33 0.45 0.77 0.51 0.1500 0.4900 0.3300 0.2500
15 22,566.79 115,366.24 61,491.93 44,017.17 13.26 28.04 19.75 11.13 0.8900 4.7200 2.4500 1.7600
20 45,872.57 350,944.48 169,678.61 116,882.36 39.70 340.79 183.78 43.61 1.7800 13.9200 6.6200 4.5700
5 50,70 64.03 128.57 104.97 0.00 0.00 0.01 0.01 0.0029 0.0055 0.0068 0.0057

10 557,07 1,915.80 1,508.60 1,067.93 0.09 0.12 0.21 0.10 0.0236 0.0900 0.0650 0.0461
100 15 2,343.27 13,030.47 7,497.93 5,162.57 1.29 2.39 2.95 1.07 0.0923 0.5308 0.2984 0.2055

20 6,170.97 43,249.80 20,378.10 14,025.03 7.77 18.74 18.04 5.11 0.2388 1.7048 0.7940 0.5466
25 19,454.70 186,683.83 76,318.53 52,688.67 129.66 300.40 236.72 42.42 0.7461 7.2017 2.9319 2.0244
30 26,913.79 314,847.14 126,493.79 87,307.43 338.85 1,386.12 1,150.57 131.52 1.0311 12.1201 4.8499 3.3477
35 23,874.54 338,630.32 148,432.36 100,663.36 236.09 2,386.12 1,341.43 183.16 0.9156 13.0636 5.6916 3.8603

Table 4: Average results for uncorrelated instances with r = 3 and
w j,vk

j ∈ [1,100] and W = b 50
100 ∑l

j=1 w jc. Solutions for Model IV
St. Lab. CPU Mem.

l N. W̄ n̄ m̄ |Ȳ e| Dev. |X̄e| Mb.
|σ̄|

10 30 254.20 1,912.63 3,399.93 14.93 25.67 14.93 1,067.93 0.10 0.05
20 30 514.87 9,261.83 17,670.77 125.00 243.85 137.10 14,025.03 5.05 0.55
30 30 759.93 21,628.70 42,062.07 714.40 1,556.46 722.80 147,936.20 737.90 5.66
40 29 1,015.62 39,476.83 77,477.76 836.24 2,573.68 848.03 240,584.93 2,721.32 9.20

20



Table 5: Average results for uncorrelated instances with UB = 100 and w j,vk
j ∈ [1,UB] and W = b 50

100 ∑l
j=1 w jc.

St. n̄
r l N. W̄ |X̄e| |Ȳ e| Dev. m̄

σ̄ I II III IV I II III IV
5 30 128.80 6.50 6.50 6.50 49.87 81.10 191.77 191.77 159.67 179.67 324.23 288.37

4 10 30 254.20 30.60 30.60 44.45 221.90 1,423.40 1,912.63 1,912.63 1,921.27 6,122.90 5,455.90 3,399.93
15 30 386.30 236.27 236.27 557.68 365.87 4,231.53 4,989.57 4,989.57 5,065.50 29,963.13 24,908.93 9,331.93
20 28 513.46 767.57 560.00 1,526.67 496.54 8,206.46 9,218.29 9,218.29 9,379.29 79,192.36 65,593.82 17,591.50

5 30 128.80 7.27 7.27 6.69 49.87 81.10 191.77 191.77 159.67 179.67 324.23 288.37
5 10 30 254.20 47.13 47.13 61.03 221.90 1,423.40 1,912.63 1,912.63 1,921.27 6,122.90 5,455.90 3,399.93

15 30 386.30 331.67 331.67 663.74 365.87 4,231.53 4,989.57 4,989.57 5,065.50 29,963.13 24,908.93 9,331.93
20 28 513.46 973.18 814.36 1,884.57 496.54 8,206.46 9,218.29 9,218.29 9,379.29 79,192.36 65,593.82 17,591.50

5 30 128.80 7.73 7.73 6.99 49.87 81.10 191.77 191.77 159.67 179.67 324.23 288.37
6 10 30 254.20 59.50 59.50 78.02 221.90 1,423.40 1,912.63 1,912.63 1,921.27 6,122.90 5,455.90 3,399.93

15 29 386.30 472.41 472.41 1,081.48 365.28 4,230.21 4,984.97 4,984.97 5,059.41 30,007.31 25,164.97 9,329.10
20 26 513.46 794.08 794.08 1,693.10 497.50 8,225.81 9,237.65 9,237.65 9,399.23 79,446.08 66,204.00 17,638.08

5 30 128.80 7.83 7.83 7.00 49.87 81.10 191.77 191.77 159.67 179.67 324.23 288.37
7 10 30 254.20 62.80 62.80 77.48 221.90 1,423.40 1,912.63 1,912.63 1,921.27 6,122.90 5,455.90 3,399.93

15 29 390.97 614.07 614.07 1,448.29 369.97 4,279.86 5,046.93 5,046.93 5,121.76 30,311.14 24,996.31 9,439.41
20 25 514.08 1,016.48 1,016.48 2,338.46 497.88 8,255.48 9,268.52 9,268.52 9,406.20 79,899.24 66,479.68 17,699.04
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Table 6: Average results for uncorrelated instances with UB = 100 and w j,vk
j ∈ [1,UB] and W = b 50

100 ∑l
j=1 w jc.

Mem.
r l Lab. CPU Mb.

I II III IV I II III IV I II III IV
5 54.07 66.93 136.20 111.50 0.00 0.00 0.01 0.00 0.0032 0.0059 0.0076 0.0064

4 10 890.60 2,814.63 2,220.90 1,601.57 0.16 0.17 0.31 0.16 0.0397 0.1349 0.1004 0.0725
15 7,130.70 34,238.33 18,908.00 13,456.27 13.31 13.92 16.14 7.05 0.3021 1.4703 0.8053 0.5732
20 16,751.00 110,814.00 47,762.68 34,304.07 76.45 82.38 76.82 37.78 0.7063 4.7046 2.0204 1.4510

5 54.67 67.13 137.27 111.93 0.00 0.00 0.01 0.01 0.0034 0.0061 0.0082 0.0069
5 10 1,140.47 3,533.80 2,805.90 2,078.73 0.22 0.21 0.37 0.20 0.0545 0.1785 0.1356 0.1005

15 9,512.33 43,045.80 23,920.40 17,122.57 17.83 16.71 18.03 8.37 0.4383 2.0041 1.1068 0.7923
20 23,718.36 152,085.71 65,747.82 47.589.21 139.69 139.94 112.83 59.52 1.0892 7.0166 3.0256 2.1900

5 54.93 67.37 137.73 111.97 0.01 0.00 0.01 0.01 0.0037 0.0064 0.0087 0.0073
6 10 1,376.03 4,075.33 3,254.70 2,429.27 0.29 0.25 0.45 0.25 0.0705 0.2188 0.1685 0.1258

15 15,123.00 63,531.76 35,885.07 25,551.83 91.56 60.30 70.93 29.73 0.7529 3.1840 1.7913 1.2737
20 33,022.88 225,779.77 95,856.96 69,232.35 403.59 573.98 548.65 145.38 1.6411 11.2513 4.7695 3.4448

5 54.93 67.37 137.83 112.03 0.00 0.00 0.01 0.01 0.0039 0.0167 0.0092 0.0077
7 10 1,536.67 4,322.23 3,422.47 2,555.83 0.30 0.27 0.45 0.27 0.0843 0.2475 0.1898 0.1418

15 16,698.10 73,705.31 40,793.10 29,665.66 74.78 42.00 58.43 23.69 0.8947 3.9702 2.1903 1.5930
20 33,708.64 211,054.64 90,646.56 65,234.92 260.43 214.85 245.85 79.30 1.8037 11.3262 4.8567 3.4955
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Algorithms for constructing network models I-IV

MODEL−I
Input: w, W , l and vk, for k = 1, . . . ,r;
Output: a network G = (V,A,C);
(1) begin
(2) V ←{s} and A← /0;
(3) u← s; { s is the first vertex to be visited }
(4) for (1≤ j ≤ l) do
(5) begin
(6) g← w j;
(7) if (g /∈V ) then V ←V ∪{g};
(8) A← A∪{(s,g)};
(9) c(s,g)← [−v1

j , . . . ,−vr
j];

(10) end
(11) while (V contains non-visited vertices) do
(12) begin
(13) Let u denote the next vertex of V to be visited;
(14) for (1≤ j ≤ l) do
(15) begin
(16) g← u+w j;
(17) if (g≤W ) then
(18) begin
(19) if (g /∈V ) then V ←V ∪{g};
(20) A← A∪{(u,g)};
(21) c(u,g)← [−v1

j , . . . ,−vr
j];

(22) end
(23) end
(24) end
(25) for (all g ∈V ) do
(26) begin
(27) A← A∪{(g, t)};
(28) c(g, t)← [0, . . . ,0];
(29) end
(30) V ←V ∪{t};
(31)end

Figure 7: Algorithm for Model I
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MODEL−II
Input: w, W , l and vk, for k = 1, . . . ,r;
Output: a network G = (V,A,C);
(1) begin
(2) V ←{s} and A← /0;
(3) for (1≤ j ≤ l) do
(4) begin
(5) g← w j;
(6) V ←V ∪{g j};
(7) A← A∪{(s,g j)};
(8) c(s,g j)← [−v1

j , . . . ,−vr
j];

(9) end
(10) for (min j{w j} ≤ g≤W ) do
(11) begin
(12) for (0≤ k ≤ l such that gk ∈V ) do
(13) for (1≤ j ≤ l) do
(14) if (g+w j ≤W ) then
(15) begin
(16) if ((g+w j)

j /∈V ) then V ←V ∪{(g+w j)
j};

(17) A← A∪{(gk,(g+w j)
j)};

(18) c(gk,(g+w j)
j)← [−v1

j , . . . ,−vr
j];

(19) end
(20) end
(21) for (all gk ∈V ) do
(22) begin
(23) A← A∪{(gk, t)};
(24) c(gk, t)← [0, . . . ,0];
(25) end
(26) V ←V ∪{t};
(27)end

Figure 8: Algorithm for Model II
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MODEL−III
Input: w, W , l and vk, for k = 1, . . . ,r;
Output: a network G = (V,A,C);
(1) begin
(2) V ←{s} and A← /0;
(3) for (0≤ β≤ bW \w1c) do
(4) begin
(5) k← βw1;
(6) V ←V ∪{1k};
(7) A← A∪{(s,1k)};
(8) c(s,1k)← β[−v1

1, . . . ,−vr
1];

(9) end
(10) for (1≤ g < l) do
(11) for ( 0≤ b≤W such that gb ∈V ) do
(12) begin
(13) β← 0, k← b and j← 1;
(14) while (β≤ bW \w jc) and (k ≤W ) do
(15) begin
(16) if ((g+1)k /∈V ) then V ←V ∪{(g+1)k};
(17) A← A∪{(gb,(g+1)k)};
(18) if (k = b) then c(gk,(g+1)k)← [0, . . . ,0];
(19) else c(gk,(g+1)k)← β[−v1

j , . . . ,−vr
j];

(20) β← β+1 and j← j +1;
(21) k← b+βw j;
(22) end
(23) end
(24) for (0≤ k ≤W such that lk ∈V ) do
(25) begin
(26) A← A∪{(lk, t)};
(27) c(lk, t)← [0, . . . ,0];
(28) end
(29) V ←V ∪{t};
(30)end

Figure 9: Algorithm for Model III
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MODEL−IV
Input: w, W , l and vk, for k = 1, . . . ,r;
Output: a network G = (V,A,C);
(1) begin
(2) V ←{s} and A← /0;
(3) for (0≤ β≤ bW \w1c) do
(4) begin
(5) k← βw1;
(6) V ←V ∪{1k};
(7) A← A∪{(s,1k)};
(8) c(s,1k)← β[−v1

1, . . . ,−vr
1];

(9) end
(10) for (1≤ g≤ l) do
(11) for ( 0≤ b≤W such that gb ∈V ) do
(12) begin
(13) if ((g+1)b /∈V ) then V ←V ∪{(g+1)b};
(14) A← A∪{(gb,(g+1)b)};
(15) c(gk,(g+1)b)← [0, . . . ,0];
(16) k← b+wg;
(17) if (k ≤W ) then
(18) begin
(19) if (gk /∈V ) then V ←V ∪{gk};
(20) c(gb,gk)← β[−v1

j , . . . ,−vr
j];

(21) A← A∪{(gb,gk)};
(22) end
(23) end
(24) for (0≤ k ≤W such that lk ∈V ) do
(25) begin
(26) A← A∪{(lk, t)};
(27) c(lk, t)← [0, . . . ,0];
(28) end
(29) V ←V ∪{t};
(30)end

Figure 10: Algorithm for Model IV
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