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Bi-criteria network flow problems:
A characterization of non-dominated

solutions

Abstract

This paper deals with network flow problems with two criteria. The main
purpose of the paper is to present a characterization of non-dominated
solutions when using a simplex like algorithm for identifying supported
non-dominated solutions for the integer bi-criteria network flow prob-
lem. This study can help us for a better understanding of network flow
problems with multiple criteria. The paper also presents an ε-constraint
based technique for identifying all efficient non-dominated solutions for
the integer bi-criteria network flow problem.

Keywords: Multicriteria linear and integer programming, Bi-criteria
network flows, Network simplex algorithm, Efficient/non-dominated so-
lutions
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1 Introduction

Planning the design and construction of highways, telecommunications networks in
a certain country, computers networks, distribution energy networks, gas networks,
and water networks, are just some examples in which network flow problems have
been applied mainly over the past three decades. In general, it is frequent do not
“optimize” one, but several criteria simultaneously, being thus necessary the use of
multiple criteria models. In general, the criteria are conflicting, not being possible
to obtain a solution which optimizes all the criteria simultaneously. Consequently,
it is necessary to “re-define” the notion of “better” solution for such problems.
The concept of efficient or non-dominated solutions is used instead of the notion
of optimal solutions. An efficient solution is a solution where it is not possible to
improve the evaluation of one of the criteria without the degradation of at least one
of the remaining criteria. We refer to non-dominated solutions as the image of an
efficient solution in the criterion space.

The search for the entire set of non-dominated solutions in a multiple criteria
network flow problem is a difficult problem. Ruhe [21] showed that, for particu-
lar instances with just two criteria, the number of non-dominated solutions grows
exponentially with the number of vertices in the network.

Linear network flow problems with multiple criteria can be solved using the gen-
eral methods for the resolution of linear programming models with several criteria.
Among the algorithms proposed for the determination of the set of efficient solutions
the following can be mentioned, Evans and Steuer [8], Zeleny [26], Isermann [13],
Ecker and Kouada [6], Yu [25], and Armand and Malivert [2].The first one, called
ADBASE, is the only one that was coded and stills available for use.

The algorithms particularly designed for multiple criteria network flow problems
can only deal with two criteria, for example, Malhotra and Puri [16], Lee and Pulat
[14], Pulat, Harng and Lee [20], Sedeño Noda and González-Mart́ın [22].

The resolution of a multiple criteria integer linear programming problem brings
some additional difficulties. While in a linear programming problem the boundary
of the feasible region contains the set of efficient solutions in multiple criteria integer
linear programming problems efficient solutions can also belong to the interior of
the convex hull of the feasible region in the criterion space.

As for the integer bi-criteria network flow problem we also found some algorithms.
Among them the following deserve some attention, Lee and Pulat [15] and Sedeño-
Noda and González-Mart́ın [23] which does not solve some special cases (see [19])
and [9].

The algorithms presented in [15] and [23] are simplex like algorithms that explore
the connectedness of the set of the efficient solutions. Since connectedness is not
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verified for such problems [19] the above algorithms have several drawbacks [12],
mainly due to an unfamiliar knowledge about bi-criteria network flow problem non-
dominated points. This paper is mainly devoted to improve the knowledge on such
kind of problems.

This article is thus about bi-criteria network flows. A revision of the main
notions on this very topic is provided. A set of examples that shows the existence
of particular solutions when a simplex based method is used are presented. These
examples show that some methods in the literature cannot be effectively used since
during the search process they miss certain particular non-dominated solutions.

The rest of this paper is organized as follows. Section 2 introduces the fun-
damental notation, concepts, definitions from graph theory, network flows, convex
and polyhedral sets, and multi-criteria optimization. Section 3 presents a simplex
algorithm and its particular version for minimum cost network flows. Section 4 is
devoted to two algorithms for computing the set efficient solutions for bi-criteria
network flows; these algorithms are adaptations of existent algorithms. Section 5 is
consecrated to a set of difficult examples for bi-criteria network based algorithms.
In particular it is shown that it is possible to have non-dominated supported so-
lutions as images of non-intermediate solutions. Section 6 describe an ε-constraint
based technique for identifying all efficient non-dominated solutions for the integer
bi-criteria network flow problem. And Section 7 is the conclusion of the paper.
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2 Concepts, definitions, and notation

For understanding better the proposed approach, concepts, definitions, and notation
from graph theory, network flows, convex and polyhedral sets, and multi-criteria
optimization are introduced in this section (for more details consult also [1] and
[24]).

2.1 Graph theory

Let G = (S,A) denote a directed and connected graph, where S is a finite set of
nodes or vertices with cardinality |S| = m, and A is a collection of ordered pairs of
elements of S called arcs, with cardinality |A| = n.

A graph G′ = (S′,A′) is called a subgraph of G = (S,A) if S′ ⊆ S and A′ ⊆ A. It
is a spanning subgraph of G if S′ = S. A path P is a sequence of vertices and arcs,
i1 − a1 − i2 − a2 − . . . − is−1 − as−1 − is, without repetition of vertices and where
1 ≤ k ≤ s− 1 for which either ak = (ik, ik+1) ∈ A, or ak = (ik+1, ik) ∈ A. A directed
path is a path without backwards arcs. A cycle C is a closed path where the only
repeated vertex is the starting and the ending point that coincide. A directed cycle
is a closed directed path. When in a given graph G there is always a path linking
any two different vertices of G, the graph is called connected. A tree T = (V, E) is a
subgraph without cycles where V ⊆ S and E ⊆ A. A tree T is called a spanning tree
when it spans the set of vertices S of G, that is V = S. A spanning tree is denoted
by T = (S,E). Consider (k, l) a given arc belonging to the set A but not in E. Then,
there is a unique cycle C when the arc (k, l) is added to E. The direction of C is
the same as (k, l). In a cycle C a partition of its arcs can be made by separating
the arcs having the same direction as C from the arcs in the opposite direction. The
collection of all possible cycles of this type is called fundamental cycle basis.

2.2 Network flows

A directed graph with numerical values assigned to its vertices and/or arcs is called
network. Let N = (G = (S,A), c, l, u, b) be a network with a “cost” cij, a lower bound
lij and an upper bound or capacity uij associated with every arc (i, j) ∈ A. The
numerical values lij and uij, respectively, denote the minimum and the maximum
amount that must flow on the arc (i, j). Finally, let xij denote the amount of flow
on the arc (i, j). A numerical value bi is also associated with each vertex i ∈ S

denoting its supply (if bi > 0) or its demand (if bi < 0). A vertex with bi = 0 is
called a transshipment vertex.
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2.3 Minimum cost flow problem

The minimum cost network flow problem can be stated as a linear programming
problem,

minimize f(x) =
∑

(i,j)∈A

cijxij

subject to:
∑

{j:(i,j)∈A}
xij −

∑
{k:(k,i)∈A}

xki = bi ∀i ∈ S

0 ≤ xij ≤ uij ∀(i, j) ∈ A

(1)

which is equivalent to,
minimize f(x) = cT x
subject to: Ax = b

0 ≤ x ≤ u
(2)

where, x ∈ Rn is the vector of decision variables, c ∈ Rn and u ∈ Rn are the
cost and capacity vectors, respectively, b ∈ Rm is the right-hand-side vector and
A the node-arc incidence matrix. Each column (i, j) of A contains exactly two
nonzero coefficients: +1 in row i, and −1 in row j. This type of matrices has some
“good” properties that allows the application of for example, the network simplex
algorithm, that solves the minimum cost flow problem faster and with less resource
consumption than standard linear programming algorithms (see [1] and [3]).

Associated to the problem (1) we can define its dual version,

maximize
∑
i∈S

biπi −
∑

(i,j)∈A

uijµij

subject to: πi − πj − µij ≤ cij ∀(i, j) ∈ A

µij ≥ 0, ∀(i, j) ∈ A

πi free,∀i ∈ S

(3)

where π = (π1, · · · , πi, · · · , πm), i ∈ S is the vector of dual variables associated
with constraints (1), and µ = (µi1j1 , · · · , µij, · · · , µinjn), (i, j) ∈ A is the vector of
dual variables associated with the constraints xij ≤ uij. Using formulation (2) the
corresponding dual is

maximize bT π − uT µ
subject to: AT π − µ ≤ c

µ ≥ 0
π free

(4)

2.4 Multiple criteria network flow problem (MMCF)

The multiple criteria version can also be considered when p cost functions are taken
into account
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“minimize” F (x) = CT x
= ((c1)T x, (c2)T x, . . . , (cp)T x)

subject to: Ax = b
0 ≤ x ≤ u

(5)

where the constraints are the same as in (2). Generally, there is a conflicting situ-
ation and not all criteria fq(x) = (cq)T x reach their minimum at the same extreme
point, therefore the “best” solution does not be intended as the value in X that
minimizes simultaneously all functions fq(x), q = 1, 2, . . . , p.

In what follows the notation below should be considered,

X= {x ∈ Rn : Ax = b, 0 ≤ x ≤ u}
Y = F (X)

= (f1(x), f2(x), . . . , fq(x), . . . , fp(x))

= (y1, y2, . . . , yq, . . . , yp)

X and Y are denominated the sets of feasible solutions in the decision space, Rn,
and in the criterion space, Rp, respectively.

By adding integrality requirements to the variables in X we obtain a multiple
criteria integer minimum cost flow problem.

In what follows, the assumptions below must be taken into account:

1. The graph is directed and connected.

2. All the numerical values for the costs, lower and upper bounds on the arcs and
supplies/demands on the vertices are integral and finite.

3. The condition
∑

i∈S

bi = 0 must be fulfilled.

4. The multiple criteria (linear or integer) network flow problem has at least
two feasible solutions and the minimum values for the individual objective
functions are different.

2.5 Convex and polyhedral sets

According to the following definition a set is convex whenever all points on the line
connecting any two points in the set are also in the set.

Definition 2.1 (Convex set) A set X ⊂ Rn is convex iff for any x′, x′′ ∈ X the
point (λx′ + (1− λ)x′′) ∈ X, for all λ ∈ [0, 1]. Otherwise, the set is nonconvex.
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A point in a set is said to be extreme if it cannot be expressed as a convex
combination of any two different points in this set.

Definition 2.2 (Extreme point) Let X ⊂ Rn denote a convex set. A point x ∈
X is an extreme point of X iff points x′, x′′ ∈ X, x′ 6= x′′, do not exist such that
x = λx′ + (1− λ)x′′ for some λ ∈]0, 1[

Definition 2.3 (Convex hull) Let S ⊂ Rn, the convex hull of S is the intersection
of all convex sets containing S. Conv(S) denotes the convex hull of S.

Definition 2.4 (Polyhedral set) A polyhedral set or polyhedron is the convex hull
of a finite set of points and a finite number of unbounded line segments. A polyhedral
set is a polytope if it is the convex hull of a finite set of points.

Let X ⊂ Rn and F : X → Rp. Then, if X is convex and F is linear the image
of X under F , Y = F (X), is convex too. If X is polyhedral, Y is given by the set
of all convex combinations of the images of the extreme points and the points along
the unbounded edges of X (see [24]).

2.6 Dominance

The idea of dominance is used in the criterion space to compare two criterion vectors.
Two forms of dominance should be considered.

Definition 2.5 (Dominance) Let y′, y′′ ∈ Rp denote two criterion vectors. Then,
y′ dominates y′′ iff y′ ≤ y′′ and y′ 6= y′′ (i.e, y′q ≤ y′′q for all q and y′q < y′′q for at
least one q, q = 1, 2, . . . , p).

When y′ dominates y′′ this means that no component of y′ is worst than the
corresponding component of y′′ and at least one component of y′ is better than its
corresponding component of y′′.

Definition 2.6 (Strong dominance) Let y′, y′′ ∈ Rp denote two criterion vec-
tors. Then, y′ strongly dominates y′′ iff y′ < y′′ (i.e, y′q < y′′q for all q, q =
1, 2, . . . , p).

If y′ strongly dominates y′′, each component of y′ is better than its corresponding
component of y′′. Note that if a criterion vector strongly dominates another, it
dominates it as well.
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2.7 Non-dominated criterion vectors

A criterion vector is non-dominated if it is not dominated by any other criterion
vector.

Definition 2.7 (Non-dominated criterion vector) Let y ∈ Y . Then y is non-
dominated iff there does not exist another y′ ∈ Y such that y′ ≤ y and y′ 6= y.
Otherwise, y is a dominated criterion vector.

We represent the set of all non-dominated criterion vectors by ND(Y ).

2.8 Efficiency

Definition 2.8 (Efficient point) A point x ∈ X is efficient iff there does not
exist another point x′ ∈ X such that y′ ≤ y and y′ 6= y, y′ = F (x′) and y = F (x).
Otherwise, x is inefficient.

The set of efficient solutions will be denoted by EFF (X).
An important result to develop algorithm for finding the set of all efficient points

for (6) is stated in the following theorem.

Theorem 2.1 (Efficiency) The solution x ∈ X is efficient iff there exists a

λ ∈ Λ =
{

λ = (λ1, λ2, . . . , λq, . . . , λp) ∈ Rp|λq > 0, q = 1, 2, . . . , p,
p∑

q=1

λq = 1
}

such that x minimizes the weighted-sum linear programming,

min{λCT x : x ∈ X}

2.9 Supported and unsupported non-dominated criterion
vectors

When considering the integer MMCF two more concepts have to be introduced:
supported and unsupported non-dominated criterion vectors.

Let
Y = = Conv(ND(Y ) +Rp

=)

where, Rp
= = {y ∈ Rp|y = 0} and ND(Y ) + {y ∈ Rp

=} = {y ∈ Rp : y = y′ + y′′, y′ ∈
ND(Y ) and y′′ ∈ Rp

=} and y = 0 if yq ≥ 0, q = 1, 2 · · · , p.
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Definition 2.9 (Supported non-dominated criterion vector) Let y denote a
non-dominated criterion vector. Then, if y is on the boundary of Y =, y is a supported
non-dominated criterion vector. Otherwise, y is an unsupported non-dominated cri-
terion vector.

Definition 2.10 (Supported-extreme non-dominated criterion vectors) Let
y be a supported non-dominated criterion vector. Then, y is a supported-extreme
vector if it is an extreme point of Y =. Otherwise, y is a supported non-extreme
vector.

Inverse images of supported non-dominated criterion vectors are said to be sup-
ported efficient points and inverse images of unsupported non-dominated criterion
vectors are said to be unsupported efficient points.

Example 2.1.
In Figure 1, dots represent the feasible vectors y1, y2, . . . , y|Y | in the criterion space,
R2. Solutions y1, y3, y4, and y5 are all supported extreme non-dominated vectors and
the shaded area represents Conv(Y ). Solution y7 is a supported non-extreme non-
dominated vector, while solutions y8 and y9 are both unsupported non-dominated
vectors.

3 Network simplex algorithm

This section succinctly recall the network simplex method for minimum cost network
flow problems. It is important to see how it works to understand the bi-criteria
simplex algorithm.

The basic idea for any variant of the network simplex method is an STS - Span-
ning Tree Structure, (T, L, U). Such a structure is obtained when, for any arc not
belonging to this tree, the flow value is fixed at its lower bound or at its upper
bound. All the arcs fixed at their lower bound belong to the set L, while all the
arcs fixed at their upper bound belong to the set U . The remaining arcs are those
belonging to the spanning tree T.

A minimum cost network flow problem has always at least one STS optimal
solution (see [1]). It is possible to find an optimal STS by moving from one STS to
another, successively. At each iteration, we exchange a pair of arcs (one arc entering
STS and one arc coming out from STS). Any STS corresponds to one feasible basic
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solution in linear programming, and each move from one STS to another coincides
with one pivoting operation in the standard simplex method.

The initialization of the algorithm consists of finding one feasible STS (or equiv-
alently, a feasible basic solution in the standard simplex method). Two vectors are
associated with this STS, the flow x (primal solution) and the potential π (dual
solution). Each iteration of the method consists of:

1. identifying one eligible arc (k, l) with (k, l) /∈ T (In a particular case the
entering and the leaving arc can be the same.);

2. adding the arc (k, l) to T and finding an arc (p, q) coming out of T;

3. updating STS and the primal and dual solution (x, π), obtaining an adjacent
STS.

An arc not belonging to T is said to be eligible if:

1. Its reduced cost is strictly negative and its flow is at its lower bound, that is,
c̄ij < 0 and (i, j) ∈ L.

2. Its reduced cost is strictly positive and its flow is at its upper bound, that is,
c̄ij > 0 and (i, j) ∈ U .

The reduced cost of a given arc (i, j) is defined as follows:

c̄ij = cij − πi + πj

where, πi and πj are the dual variables associated with the vertices i and j, respec-
tively. It should be noted that for all the arcs (i, j) ∈ T the reduced cost c̄ij = 0.

Algorithm 1: Network simplex algoritm

Simplex method.
{ Determining a minimum cost flow. }
(1) begin
(2) let (T, L, U) be a starting feasible STS;
(3) let x denote the flow vector and π the dual vector associated with (T,L,U);
(4) while (not optimal solution) do
(5) begin
(6) select an entering arc (k, l) not in T;
(7) add (k, l) to T and remove (p, q) from T;
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(8) update the STS and vector x and π;
(9) end
(10) end

In a particular problem an STS(ν) can be identified by its sets L and U . This
solution can be represented by ρν = (L,U) where, ν is a number identifying the
solution. In case of a degenerate STS(ν), there are more then one STS associated
with solution ν. Suppose there are, r > 1, STSs associated with ν, then ρk

ν , k =
1, 2, . . . , r represent these r STSs.

4 Bi-criteria network simplex algorithm

In this section two methods for finding the set of efficient solutions are reviewed.
This methods are quite the same as in [7, 9]. Both begin with an efficient STS and
go through all adjacent efficient STS until finding all the extreme efficient solutions.
The second algorithm differs from the algorithm in [20] only in the way it finds the
adjacent efficient solutions, but both are equivalent.

The bi-criteria linear network flow problem is a particular case of the MMCF
and can be stated as follows.

“ min ” {(c1)T x, (c2)T x}
subject to: Ax = b

0 ≤ x ≤ u
(6)

4.1 Parametric linear program

Finding all the basic efficient solutions of (6) is equivalent to find the optimal solu-
tions of a sequence of linear programming problems of the form,

min{λ(c1)T x + (1− λ)(c2)T x : x ∈ X} (7)

for all λ ∈]0, 1[ (Teorema 2.1). Consider the reduced cost vector c̄ of the parametric
objective function,

c̄(λ) = λc̄1 + (1− λ)c̄2 (8)

an optimal basic solution, x, of (7) for some λ and a nonbasic variable xij. Two
cases should be considered,

A) If (i, j) ∈ L, i.e., xij = 0, then we have c̄ij(λ) ≥ 0 and either c̄1
ij ≥ 0 or c̄1

ij < 0.

1. If c̄1
ij ≥ 0, two cases for the reduced costs of the second criterion should be

considered.
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(a) c̄2
ij ≥ 0, which implies c̄ij(λ) ≥ 0.

(b) c̄2
ij < 0, which means that the reduced cost for variable xij is non-negative

when λ ≥ −c̄2ij
c̄1ij−c̄2ij

. In fact

c̄ij(λ) ≥ 0 ⇔ λc1
ij + (1− λ)c2

ij ≥ 0

⇔ λ(c̄1
ij − c̄2

ij) ≥ −c̄2
ij

⇔ λ ≥ −c̄2
ij

c̄1
ij − c̄2

ij

2. c̄1
ij < 0, implies that c̄2

ij ≥ 0, since c̄ij(λ) = λc̄1
ij + (1− λ)c̄2

ij ≥ 0 and λ ∈]0, 1[.
Thus,

c̄ij(λ) ≥ 0 ⇔ λc1
ij + (1− λ)c2

ij ≥ 0

⇔ λ ≤ −c̄2
ij

c̄1
ij − c̄2

ij

B) If (i, j) ∈ U , i.e. xij = uij, then c̄ij(λ) ≤ 0 and two cases for the reduced costs of
the first criterion, may occur.

1. if c̄1
ij ≤ 0, two cases can be considered.

(a) c̄2
ij ≤ 0; which implies c̄ij(λ) ≤ 0.

(b) c̄2
ij > 0, which means that the reduced cost of the new function for variable

xij is non-positive when λ ≥ −c̄2ij
c̄1ij−c̄2ij

. In fact

c̄ij(λ) ≤ 0 ⇔ λc1
ij + (1− λ)c2

ij ≤ 0

⇔ λ(c̄1
ij − c̄2

ij) ≤ −c̄2
ij

⇔ λ ≥ −c̄2
ij

c̄1
ij − c̄2

ij

2. if c̄1
ij > 0 then an optimal solution only occur when c̄2

ij ≤ 0. Thus we have

c̄ij(λ) ≤ 0 ⇔ λc1
ij + (1− λ)c2

ij ≤ 0

⇔ λ ≤ −c̄2
ij

c̄1
ij − c̄2

ij
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Consider the following sets

J1 = {(i, j) ∈ L : c̄1
ij ≥ 0 and c̄2

ij < 0}
∪ {(i, j) ∈ U : c̄1

ij ≤ 0 and c̄2
ij > 0} (9)

and

J2 = {(i, j) ∈ L : c̄1
ij < 0 and c̄2

ij ≥ 0}
∪ {(i, j) ∈ U : c̄1

ij > 0 and c̄2
ij ≤ 0} (10)

Let,

λ1 = max
(i,j)∈J1

−c̄2
ij

c̄1
ij − c̄2

ij

(11)

and

λ2 = min
(i,j)∈J2

−c̄2
ij

c̄1
ij − c̄2

ij

(12)

The current solution of the problem continues as an optimal one whenever λ varies
within the range [λ1, λ2].

The set of extreme efficient points can now be determined as follows,

1. Find the first efficient solution by solving (7) with λ = 1.

2. Then, iteratively, find the entering variable and the new λ values according to
(11).

3. When for all non-basic variables, xij, (i, j) ∈ L, c̄2
ij ≥ 0 or (i, j) ∈ U, c̄2

ij ≤ 0,
STOP.

This procedure is stated as Algorithm 2. Note that problem (7) with λ = 1
may have optimal alternative solutions and not all being efficient of problem (6);
we need one basic efficient solution to run the algorithm. Let x denote an optimal
solution and y = (y1, y2) = (f1(x), f2(x)) denote the image of x through F . Then
if x is not efficient it means that there exists an efficient solution x′ such that
y′ = (y′1, y

′
2) = (f1(x

′), f2(x
′)), y′ ≤ y with y′ 6= y. But since that y1 = min

x∈X
f1(x)

then y′2 < y2. Thus x′ is an optimal solution for (7) with λ = 1. At that point x′ is
efficient if and only if there is a λ ∈]0, 1[ such that x′ is an optimal solution of (7).
Thus there is a 0 < θ < 1 such that x′ is an optimal solution of (7) with λ = 1− θ.
The reduced cost vector for (7) with λ = 1− θ is

c̄(λ) = λc̄1 + (1− λ)c̄2 = (1− θ)c̄1 + θc̄2
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Solution x′ is an optimal solution for (7) with λ = 1 and λ = 1− θ; it means that,
with respect to x′, all the arcs (i, j) in L with c̄1

ij = 0 have c̄2
ij ≥ 0 and all the arcs

(i, j) in U such that c̄1
ij = 0 have c̄2

ij ≤ 0.

Algorithm 2: Bi-criterion network simplex algorithm.

Parametric bi-criteria network simplex algorithm
{ Computing the set of efficient STSs and the set of efficient extreme points. }
(1) begin
(2) find a feasible STS or conclude that the problem is infeasible;
(3) find the set S2 of all efficient STSs to problem (6) that

are optimal for problem (7) with λ = 1;
(4) S3 ← {};
(5) while (S2 6= {}) do
(6) begin
(7) select an STS ρi from S2;
(8) S2 ← S2\{ρi};
(9) S3 ← S3 ∪ {ρi};
(10) Find the set S1 of efficient adjacent STSs of ρi

(11) Let S2 ← S2 ∪ S1\S3

(12) end
(13) find the set EFF (X) of all efficient extreme points associated with the STS in S3;
(14) end

In step 10 the efficient adjacent STSs are identified from the current STS pivoting
with the entering arc (k, l) such that

λ1 =
−c̄2

kl

c̄1
kl − c̄2

kl

= max
(i,j)∈J1

−c̄2
ij

c̄1
ij − c̄2

ij

or such that c̄1
kl = c̄2

kl = 0.

Example 4.2.
Consider the example of Figure 2. The objective is to find all basic feasible efficient
points. The first step consists of solving the minimum cost network flow problem
by minimizing the first criterion. The solution x = (5, 5, 4, 1, 3, 6, 4) in Figure 11
(STS ρ20) is obtained using Algorithm 1. This solution is not efficient for problem
(2) since variable x13 is at its upper bound with reduced cost, c̄1

13 = 0 and c̄2
13 > 0.

Among the strategies for finding all efficient STSs for problem (6), that are optimal
solutions of (7) with λ = 1, the following two can be applied.
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ρ L U
ρ20 {} {(1,3),(2,3),(3,5)}
ρ75 {(3,4)} {(2,3),(3,5)}
ρ24 {} {(1,3),(2,3),(4,5)}
ρ1

91 {(1,3),(3,4)} {(2,3)}
ρ2

91 {(3,4)} {(1,2),(2,3)}
ρ1

93 {(1,3)} {(2,3),(4,5)}
ρ2

93 {} {(1,2),(2,3),(4,5)}
Table 1: Set of all optimal solutions for λ = 1.

1. Find the set of all optimal STSs for (7), S1, and remove from this set the
inefficient STSs.

2. Moving from the current STS to an adjacent one till an efficient STS is found.

Consider the first strategy. Let S1 denote the current set of optimal STSs for
(7) and S2 the set of STSs not examined yet. Then S1 = {ρ20} and S2 = {ρ20}.
Let S2 = {} and find the optimal STSs adjacent to ρ20. Reduced costs c̄1

13 = 0
and c̄1

35 = 0 (see Figure 11). If either arc (1, 3) or (3, 5) is the entering arc the
corresponding solution stills remain optimal. When the arc (1,3) enters in the tree
ρ75 is reached and when arc (3,5) enters ρ24 is obtained; therefore, ρ75 and ρ24

are adjacent STSs to ρ20. Let S2 = {ρ75, ρ24}. The algorithm continues finding
adjacent STSs to ρ75: S1 = {ρ20, ρ75}, S2 = {ρ24}. Solution ρ75 has three adjacent
STSs: ρ20, ρ1

91, and ρ2
91. Both ρ1

91 and ρ2
91 represent the same degenerate solution.

Let S2 = {ρ1
91, ρ

2
91} and S1 = {ρ20, ρ75, ρ24} and find now the STSs adjacent to

ρ24. Continuing in such a way until S2 = {} the algorithm finds all optimal STSs
S1 = {ρ20, ρ75, ρ24, ρ

1
91, ρ

2
91, ρ

1
93, ρ

2
93} (see Figure 12). Only ρ1

91 and ρ2
91 are efficient

STSs.
Instead of determine all optimal STSs we could try to move from the current

optimal STS to another adjacent efficient STS. There is no guarantee to find the
efficient solution faster than with the first method, but generally this is true. The
STS ρ20 has c̄1

13 = 0 and c̄2
13 = 12 and arc (1, 3) belongs to U . As it was seen before

an efficient STS cannot have an arc in U , with a reduced cost equal to zero for the
first criterion and a reduced cost positive for the second one. Then, the algorithm
finds the adjacent STS when arc (1, 3) enters in the tree. The obtained STS is ρ75

which is not efficient, as it can be seen the arc (3, 5) belongs to U and have reduced
costs, c̄1

35 = 0 and c̄1
35 = 7 > 0. When inserting the arc (3, 5) into the tree, the STSs

ρ1
91 and ρ2

91 are obtained; both are efficient. Now the second step of the algorithm
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can be performed with S2 = {ρ1
91, ρ

2
91}.

Consider the first STS, ρ1
91, that is presented in Figure 13(a). Then S2 = {ρ2

91}
and S3 = {ρ1

91}, and consequently J1 = {(2, 3)} which leads to

λ1 = max{ −22

−2− 22
} =

11

12
.

Then the current solution is efficient for λ ∈ [11
12

, 1]. When arc (2, 3) enters in the tree
leads to the cycle shown in Figure 13(b). Afterwards the arc (2, 4) leaves the tree
and a new efficient STS is obtained (see Figure 13(c)), ρ1

89. Setting S2 = {ρ2
91, ρ

1
89}

and go to another iteration.
Consider now the STS ρ2

91, let S2 = {ρ1
89} and S3 = {ρ1

91, ρ
2
91} and consequently

J1 = {(2, 3)} which leads to

λ1 = max{ −22

−2− 22
} =

11

12

which means that current solution is efficient for λ ∈ [11
12

, 1] and that (2, 3) enters in
the tree. The arc (2, 4) leaves the tree and ρ2

89 is reached. Setting S2 = {ρ1
89, ρ

2
89}

and go to another iteration.
Consider the STS ρ1

89, let S2 = {ρ2
89} and S3 = {ρ1

91, ρ
2
91, ρ

1
89}. J1 = {(1, 3)}

and λ1 = 15
17

. Consequently, the arc (1, 3) enters in tree and a new solution, ρ47, is
obtained (see Figure 13(e)). We set S2 = {ρ2

89, ρ47} and go to another iteration.
Consider the STS ρ2

89, let S2 = {ρ47} and S3 = {ρ1
91, ρ

2
91, ρ

1
89, ρ

2
89}. J1 = {(1, 2)}

and λ1 = 15
17

. The solution ρ47 obtained is already in S2. Go to next iteration.
Consider the STS ρ47, let S2 = {} and S3 = {ρ1

91, ρ
2
91, ρ

1
89, ρ

2
89, ρ47}. J1 = {}.

Since S2 = {} the cycle while ends.
The set of efficient solutions is

EFF (X) = {(10, 0, 4, 6, 0, 4, 6),

(10, 0, 3, 7, 0, 3, 7),

(7, 3, 0, 7, 0, 3, 7)}

4.2 Slope based technique

Consider problem (6). Suppose the characteristic of A is m, i.e., matrix A has a non-
singular submatrix B, (Note: in a minimum cost flow problem the node-arc incidence
matrix has characteristic m − 1, but by inserting an artificial variable a matrix A
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with characteristic m can be obtained [3]). Matrix A can then be decomposed into
three submatrices, A =

(
B NL NU

)
. Let xB = (xB1 , xB2 , . . . , xBm) denote the

vector with variables associated to the 1st, 2nd, . . . , mth column of the matrix B,
respectively, i.e. the basic variables. In the same way let xL and xU denote the
variable’s vectors associated to the columns of NL and NU , respectively. We have
thus,

x =




xB

xL

xU


 and c =




cB

cL

cU




Consequently, the system Ax = b can be rewritten as

Ax = b ⇔ BxB + NLxL + NUxU = b

⇔ BxB = b−NLxL −NUxU

⇔ xB = B−1b−B−1NLxL −B−1NUxU

Solution xL = 0, xU = uU and xB = B−1b−B−1NUuU is called a basic solution.
Furthermore, if 0 ≤ xB ≤ uB the solution is called a feasible basic solution. This
type of solutions corresponds to a feasible STS, where the arcs in T, L and U are
associated with the variables xB, xL, and xU , respectively.

Consider an STS and its associated extreme point x, an adjacent STS is asso-
ciated with the extreme point x + ∆d, ∆ ≥ 0, where d is a vector, called feasible
direction [4], with all components dL and dU equal to zero except one, dkl, such that

• dkl = 1 if xkl = 0

• dkl = −1 if xkl = ukl

and dB = −dklB
−1Akl, where Akl is the klth column of A. The new STS is feasible

if for all arcs (i, j)
0 ≤ xij + ∆dij ≤ uij (13)

The non-basic components of d fulfil these inequalities as soon as ∆ ≤ ukl. The
basic components have the following three cases to be considered:

1. If dij = 0 then (13) occurs for all ∆ ≥ 0.

2. If dij > 0 then

0 ≤ xij + ∆dij ≤ uij

⇔ −xij

dij

≤ ∆ ≤ uij − xij

dij
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and since ∆ ≥ 0,

∆ ≤ uij − xij

dij

3. If dij < 0 then

0 ≤ xij + ∆dij ≤
⇔ −uij − xij

dij

≤ ∆ ≤ −xij

dij

and since ∆ ≥ 0

∆ ≤ −xij

dij

The new feasible STS, x + ∆d, is obtained for ∆, computed as follows,

∆ = min

{
min

{
uij − xij

dij

: dij > 0

}
, min

{
−xij

dij

: dij < 0

}
, ukl

}

Let x′ denote the extreme point associated with the STS ρ′. Vector y′ =
((c1)T x, (c2)T x) is the image of x′ through F . An adjacent STS ρ′′ have an extreme
point x′′ = x′ + ∆d with

y′′ = ((c1)T x + ∆(c1)T d, (c2)T x) + ∆(c2)T d

= ((c1)T x + ∆c̄1, (c2)T x + ∆c̄2)

as its image.
The line [y′, y′′] has slope d that can be calculated as follows.

1. If c̄1
kl 6= 0 and ∆ 6= 0,

d =
(c2)T x + ∆c̄2

kl − (c2)T x

(c1)T x + ∆c̄1
kl − (c1)T x

=
c̄2
kl

c̄1
kl

2. If ∆ = 0 then x′ and x′′ are the same point; the same occurs with y′ and y′′.
Therefore, the line segment [y′, y′′] is reduced to a single point.

3. If c̄1
kl = 0 then [y′, y′′] is a vertical line. If c̄2

kl = 0 the line [y′, y′′] is reduced to
a point.
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The efficient extreme solutions are determined by using the following steps:

1. The set of efficient STSs, S2, and the associated extreme point, x such F (x) =
(y1, y2), are found, where y1 = min {f1(x) : x ∈ X}. The reduced costs of this
solution are

(a) if (i, j) ∈ L, c̄1
ij ≥ 0

(b) and if (i, j) ∈ U , c̄1
ij ≤ 0

2. For each STS in S2 find all adjacent efficient STSs, evaluating the set

J3 = {(i, j) ∈ L : c̄1
ij > 0 and c̄2

ij < 0} ∪ {(i, j) ∈ U : c̄1
ij < 0

and c̄2
ij > 0}

and if J3 6= {} find all the arcs (k, l) such as

c2
kl

c1
kl

= min{c2
ij

c1
ij

: (i, j) ∈ J3}

Consider also the arcs (k, l) such that c̄1
kl = 0 and c̄2

kl = 0 since these arcs lead
to an alternative efficient STS. In this case new extreme efficient solutions may
occur.

The adjacent efficient STSs are obtained making basic the arcs (k, l). These
STSs are included in S2 whenever they are not already been in this set.

3. Repeat step 2 until S2 = {}.

5 Characterizing non-dominated solutions

Consider the bi-criteria problem (6) with all integer variables. In multiple criteria
linear programming only supported non-dominated criterion vectors are present. In
multiple criteria integer programs, however, unsupported non-dominated criterion
vectors should also be considered.

In this section we present examples of supported extreme non-dominated and
non-extreme non-dominated vectors that are images of basic and non-basic feasible
solutions, as well as examples of unsupported vectors that are images of basic and
non-basic feasible solutions. We show also that there are non-basic non-intermediate
solutions whose image, trough F , are supported vectors.

19



5.1 Supported vectors

The set of supported vectors is a set of images of solutions of X that are either basic
or non-basic feasible solutions. As it will be seen the image of a basic solution is not
necessarily an extreme vector of Conv(Y ). But all the extreme points of Conv(Y )
are images of at least one basic solution.

5.1.1 Basic solutions

There are basic solutions that have as images extreme and non-extreme non-dominated
vectors of Conv(Y ).

a) Extreme non-dominated points of Conv(Y )

According to the discussion in Section 2.5 all extreme vectors of Conv(Y ) are
vectors y = F (x) such that x is a basic feasible solution but not all the images of
basic feasible solutions are extreme vectors of Conv(Y ). Consider now the bi-criteria
network flow example whose network N is pictured in Figure 3. The set of solutions
to this example is given in Table 5 (Appendix A). The set of feasible vectors, Y ,
in the criterion space, (represented by bullets) and the convex hull, Conv(Y ), (the
shaded area) are represented in Figure 4. It can be seen that all the extreme vectors
are images of basic feasible solutions. The Conv(Y ) has five extreme vectors and all
these vectors are images of at least one basic feasible solution. For instance, solution
5 is basic and its image is an extreme vector and there is no another solution that
has this vector as image. But, solutions 4 and 48 are also basic solutions and have as
image the same extreme vector. Consequently, one can say that one extreme point
of Conv(Y ) can be the image of at least one basic feasible solution. But that are
also images of other feasible solutions (not basic ones) that have an extreme point
as image.

b) Non-extreme non-dominated points of Conv(Y )

Figure 4 presents basic solutions whose image, through F , are non-extreme points
and particularly supported non-dominated non-extreme points of Conv(Y ). This is
the case of solutions 47 and 90. Both are basic feasible solutions and their images,
through the application F , are non-extreme non-dominated vectors of Conv(Y ).

5.1.2 Non-basic solutions

a) Extreme non-dominated points of Conv(Y )

20



Problema

i j

1

3

2 4

5

(c1

ij, c
2

ij)

[0, uij ]

(3
,1
2)

[0
,1
0]

(6,9)[0,5]

(1
,1

2
)

[0
,4

]

(28,1)

[0,7]

(2
5,
16

)

[0
,8
]

(28
,25)

[0,6
]

(3,14)[0,8]

10 -10

bi bj
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Figure 2: Bi-criteria network flow example.
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Figure 3: Bi-criteria network flow example.
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Every extreme point of Conv(Y ) is image of at least a basic feasible solution, but will
it be image of non-basic solutions? The answer can be achieved looking at Figure
4. For instance, solutions 46, 65, 79, and 88 are all non-basic, but nevertheless
their image, through F , is an extreme point of Conv(Y ). Therefore, there exist
extreme vectors that are images of non-basic solutions. One can ask if these non-
basic solutions whose images are extreme points are all intermediate solutions. The
answer can be given by the following example.

Example 5.3.
Consider the network in Figure 5. This problem has 6 basic feasible solutions that
are efficient, all degenerate (see Table 8). Some of these solutions are equivalent,
that is, have the same image through F; it is the case of solutions 256, 61, and
22; all of them have the point y = (290, 356) as image (see Table 7). Vector y is
a non-dominated extreme-point of Conv(Y ) and 290 is the minimum of the first
function, f1, subject to the constraints of the problem. There are also non-basic
solutions that have y as image some of them are intermediate solutions and others
are non-intermediate solutions.Problema

i j

1

3

2 4

5

6

(c1

ij , c
2

ij)

[0, uij ]

(6
,2
4)

[0
,6
]

(27,7)[0,6]

(1
8
,8

)

[0
,5

]

(13,25)

[0,4]
(24,28)[0,5]

(7
,1
)

[0
,4
]

(6,20)

[0,5]

(9
,9

)

[0
,1

]

(24,12)[0,6]

(1
3,
9)

[0
,5
]

8

-2

-1

2

-1

-6

bi bj

Solução 256

1

3

2 4

5

6

(6
,2
4)

[0
,6
]6

(27,7)[0,6] 2

(1
8
,8

)

[0
,5

]
0

(13,25)

[0,4] 4
(24,28)[0,5] 0

(7
,1
)

[0
,4
] 0

(6,20)

[0,5]1

(9
,9

)

[0
,1

]
1

(24,12)[0,6] 5

(1
3,
9)

[0
,5
] 1

8

-2

-1

2

-1

-6

i

Figure 5: Bi-criteria network flow example

Figure 6 presents some of non-dominated vectors of this example. The point
y = (290, 356) is an extreme point of Conv(Y ). The point y is the image of solutions
256, 236, 189, 121, 61, 229, 177, 106, 48, 163, 92, 40, 79, 29, and 22 (see Table 7 in
Appendix B) that are feasible solutions. Solutions 256, 61, and 22 are all basic and
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Table 2: Intermediate-solutions from 256 to 61.
u 6 6 5 4 5 4 5 1 6 5

arc (1,2) (1,3) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (4,6) (5,6)
256 6 2 0 4 0 0 1 1 5 1
236 6 2 0 3 1 0 1 1 4 2
189 6 2 0 2 2 0 1 1 3 3
121 6 2 0 1 3 0 1 1 2 4
61 6 2 0 0 4 0 1 1 1 5

Table 3: Intermediate-solutions from 256 to 22.
u 6 6 5 4 5 4 5 1 6 5

arc (1,2) (1,3) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (4,6) (5,6)
256 6 2 2 0 2 0 3 1 1 5
229 6 2 1 3 0 0 2 1 4 2
163 6 2 2 2 0 0 3 1 3 3
79 6 2 3 1 0 0 4 1 2 4
22 6 2 4 0 0 0 5 1 1 5

the remaining ones are not. Solutions 256, 61, and 22 are also adjacent solutions.
When moving from 256 to 61 solutions 236, 189, and 121 are obtained (see Table 2)
trough the cycle {(2, 4), (2, 5), (4, 6), (5, 6)}. But when moving from 256 to 22 the
non-basic solutions 229, 163, and 79 are reached (see Table 3). And, when moving
from 61 to 22 non-basic solutions 48, 40, and 29 are achieved (see Table 4). Solutions
236, 189, 121, 229, 48, 163, 40, 79, and 29 are non-basic intermediate solutions whose
image is y. Solutions 177, 106, and 92 are non-basic non-intermediate solutions and
their image is the extreme point y.

This example will be detailed hereafter.
First, we consider solution 256. This is a degenerate basic solution and we may

Table 4: Intermediate-solutions from 61 to 22.
u 6 6 5 4 5 4 5 1 6 5

arc (1,2) (1,3) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (4,6) (5,6)
61 6 2 0 0 4 0 1 1 1 5
48 6 2 1 0 3 0 2 1 1 5
40 6 2 2 0 2 0 3 1 1 5
29 6 2 3 0 1 0 4 1 1 5
22 6 2 4 0 0 0 5 1 1 5
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associate four STSs to this solution: ρ1
256 =({(2, 3), (2, 5), (3, 4)},{(2, 4), (4, 5)}),

ρ2
256 =({(2, 5), (3, 4)}, {(1, 2), (2, 4), (4, 5)}), ρ3

256=({(2, 3), (2, 5), (3, 4)},{(1, 2),
(4, 5)}), ρ4

256 =({(2, 3), (3, 4)},{(1, 2), (2, 4), (4, 5)}). While ρ2
256, ρ3

256, and ρ4
256 are

optimal STSs for f1 in the sense that all arcs in L have non-negative reduced costs
and all arcs in U have non-positive reduced costs, ρ1

256 is not optimal (see Figure
8).When we iterate to obtain the optimal solution from ρ1

256, we get ρ2
256 or ρ4

256

that are optimal. In the ρ2
256 STS we have two arcs with reduced cost zero, x24

and x25, which give rise to optimal alternative STSs. If the arc (2, 4) enters in the
tree we have the cycle in Figure 10(b) and one of the arcs (3, 5) or (5, 6) comes
out of the tree or the arc (2, 4) remains non-basic, which correspond to STSs ρ4

22,
ρ2

22, and ρ12
22, respectively. When the arc (2, 5) enters in tree, the arc (2, 3) comes

out (see the cycle in Figure 10(c)) and the new STS is ρ4
256. Therefore, we have

four alternative optimal STSs associated with ρ2
256. When moving from ρ2

256 to ρ2
22,

ρ4
22 or ρ12

22 there are three intermediate solutions 229, 163, and 79 making ∆ = 1,
∆ = 2 and ∆ = 3 in the cycle of Figure 10(b). In the STS ρ3

256 we have two zero
reduced costs corresponding to the arcs (2, 3) and (2, 5). When the arc (2, 3) enters
in tree we obtain ρ12

22, ρ4
22, or ρ2

22 through the cycle in Figure 10(b). When the arc
(2, 5) enters in tree we obtain ρ4

61 or ρ1
61 through the cycle in Figure 10(a). When

moving from ρ3
256 to ρ1

61, or ρ4
61 there are three intermediate solutions 236, 189, and

121 leading to ∆ = 1, ∆ = 2 and ∆ = 3 in the cycle of Figure 10(a). In ρ4
256 we

have two zero reduced costs corresponding to arcs (2, 3) and (2, 4). When the arc
(2, 3) enters in tree we obtain the STS ρ2

256 through the cycle {(2, 3), (2, 5), (3, 5)}
with ∆ = 0. When the arc (2, 4) enters in tree we obtain STS ρ4

61 or ρ1
61 through

the cycle in Figure 10(a).
Consider now the solution number 61. This is also a degenerate solution with

four STSs associated with it ρ1
61, ρ2

61, ρ3
61, and ρ4

61, represented in Figure 9(a), (b),
(c) and (d), respectively. Only two of these solutions are optimal ρ1

61 and ρ4
61. The

Solution ρ1
61 has ρ1

22, ρ2
22, ρ3

256, and ρ4
256 as adjacent solutions and ρ4

61 has ρ7
22, ρ12

22,
ρ3

256 and ρ4
256 as adjacent solutions. When moving from ρ1

61 to ρ1
22 or ρ2

22 we have 48,
40 and 29 as intermediate solutions and the same happens when moving from ρ4

61

to ρ7
22 or ρ12

22.
Figure 7 shows the graph where each node is the optimal STS that have as image

y = (290, 356). Two nodes have an arc linking each other if they represent optimal
adjacent STSs. We add also the non-optimal STSs for f1 which are wrapped by a
rectangle whose image through F is y. Passing from each STS to its adjacent STS
we obtained as intermediate solutions 236, 189, 121, 229, 163, 79, and 48, 40, 29 but
there are also solutions 177, 106, and 92 that are not obtained when moving from
one STS solution to its adjacent. These solution are not intermediate.
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Ligação entre as soluções 256,61 e 22 -Utilizando cred=0 e apenas soluções

óptimas
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Figure 7: Connection between optimal STSs having image y from Example 3.
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b) Non-extreme non-dominated points of Conv(Y )

Consider again the example of Figure 3. Solutions 9, 14, and 19 are non-basic
intermediate (see Figure 4) because they are obtained when moving from 24 to 4
through the cycle C = {(2, 3), (2, 4), (3, 4)}. These points have images in Conv(Y )
that are supported non-dominated non-extreme points.

5.2 Unsupported non-dominated vectors

Contrary to continuous linear programming in which all non-dominated points are
in the boundary of Conv(Y ), in integer linear programming, non-dominated vector
may belong to the interior of Conv(Y ). These vectors are images of basic or non-
basic solutions. For instance problem 3 has non-basic solutions 6 and 8 with an image
corresponding to an unsupported non-dominated vector, that is, a non-dominated
vector in the interior of Conv(Y ).

6 The ε-constraint method

This section presents a method that solves bi-criteria network flow problems without
characterizing their network structure.

At each iteration, the network simplex method shown in Algorithm 1 always
gives an integer solution for the minimum cost network flow problem. But it is
possible to obtain non-integer solutions between two adjacent STSs. Let us recall
that when moving from one STS to an adjacent one, an amount of flow, 4, must
be sent along the orientation of cycle C. This quantity 4 is integer. But, what
happens if a non-integer amount of flow is sent along C? It is obvious that a non-
integer solution will be obtained. This solution has exactly |C| non-integer variables,
but it does not define a spanning tree structure.

In multiple criteria linear programming several techniques (scalar optimization
problems) can be used in order to characterize efficient solutions (non-dominated
vectors) like, for example, weighted-sum approaches, Tchebycheff metrics based
methods, ε-constraint methods, and so on [24]. Among the existing methods, the
ε-constraint approach can be easily used in multiple criteria integer problems with-
out any additional restrictions. Efficient solutions can be characterized as optimal
solutions for the ε-constraint problem.

The ε-constraint problem associated with the bi-criteria (6) can be stated as
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follows:
min f1(x)
subject to:

x ∈ X
f2(x) ≤ ε,

(14)

where ε is a scalar.
In the ε-constraint method, ε varies among all the values for which (14) remains

feasible. So, in order to identify a set of efficient solutions, a sequence of problems (3)
is solved for each different value of ε [5]. For integer bi-criteria linear programming
problems the entire non-dominated set ND(Y ) can be easily determined by solving
a sequence of problems (14).

Theorem ([11]). Consider ε ≥ min f2(x). If the solution x∗ solves problem (3) and
when x∗ is not unique it leads to a minimal value for criterion f2(x), then x∗ solves
(1), that is, x∗ is an efficient solution for (1).

Proof:
Suppose now that x∗ does not solve the problem. Another solution x̂ can then be
considered so that only one of the following two cases can occur:

• f1(x̂) < f1(x
∗) and f2(x̂) ≤ f2(x

∗) which contradicts the fact that x∗ solves
(14), or

• f2(x̂) < f2(x
∗) and f1(x̂) ≤ f1(x

∗), which contradicts the hypothesis that x∗

is optimal for (14) with the smallest value for f2(x).

The theorem is proved by the two cases above.

¤

Problem (14) will be used in the algorithm outlined in Section 4 to determine
all the non-dominated vectors for problem (6).

The ε-constraint optimization along with a branch-and-bound technique can be
used to compute all efficient solutions of a bi-criteria integer network flow problem
(see [9]). When applying this method we do not need to compute consecutively the
supported extreme solutions and then the unsupported ones. The method allows to
compute all the solutions by a lexicographic order.

7 Conclusions

This article dealt with bi-criteria network flow. A summary of the main concepts on
the theory network flow problems was provided. A set of examples shows that sev-

29



eral published methods designed for computing the set of non-dominated solutions
contains drawbacks because they do not take into account all the possible cases for
this type of problems.

The study done in this paper was especially devoted to point out the main
characteristics of the set of non-dominated solutions. The number of the papers for
bi-criteria network flows in the area is rather rare. It stills exist very little research
on this very topic. It is a difficult problem, but the progresses made on this subject
will be used in a vast range of practical problems and also in some theoretical works.
The main purpose of this work was thus to characterize the non-dominated space.
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Appendices

A All feasible solutions of example on Figure 3

Table 5: Solutions of the bi-criterion network flow on Figure 3.

lij 0 0 0 0 0 0 0
uij 10 5 4 7 8 6 8

(1,2) (1,3) (2,3) (2,4) (3,4) (3,5) (4,5) y1 y2

1 5 5 0 5 0 5 5 455 480
2 5 5 0 5 1 4 6 450 508
3 5 5 0 5 2 3 7 445 536
4 5 5 0 5 3 2 8 440 564
5 5 5 1 4 0 6 4 459 460
6 5 5 1 4 1 5 5 454 488
7 5 5 1 4 2 4 6 449 516
8 5 5 1 4 3 3 7 444 544
9 5 5 1 4 4 2 8 439 572

10 5 5 2 3 1 6 4 458 468
11 5 5 2 3 2 5 5 453 496
12 5 5 2 3 3 4 6 448 524
13 5 5 2 3 4 3 7 443 552
14 5 5 2 3 5 2 8 438 580
15 5 5 3 2 2 6 4 457 476
16 5 5 3 2 3 5 5 452 504
17 5 5 3 2 4 4 6 447 532
18 5 5 3 2 5 3 7 442 560
19 5 5 3 2 6 2 8 437 588
20 5 5 4 1 3 6 4 456 484
21 5 5 4 1 4 5 5 451 512
22 5 5 4 1 5 4 6 446 540
23 5 5 4 1 6 3 7 441 568
24 5 5 4 1 7 2 8 436 596
25 6 4 0 6 0 4 6 450 508
26 6 4 0 6 1 3 7 445 536
27 6 4 0 6 2 2 8 440 564
28 6 4 1 5 0 5 5 454 488

continued on the next page
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lij 0 0 0 0 0 0 0
uij 10 5 4 7 8 6 8

(1,2) (1,3) (2,3) (2,4) (3,4) (3,5) (4,5) y1 y2

29 6 4 1 5 1 4 6 449 516
30 6 4 1 5 2 3 7 444 544
31 6 4 1 5 3 2 8 439 572
32 6 4 2 4 0 6 4 458 468
33 6 4 2 4 1 5 5 453 496
34 6 4 2 4 2 4 6 448 524
35 6 4 2 4 3 3 7 443 552
36 6 4 2 4 4 2 8 438 580
37 6 4 3 3 1 6 4 457 476
38 6 4 3 3 2 5 5 452 504
39 6 4 3 3 3 4 6 447 532
40 6 4 3 3 4 3 7 442 560
41 6 4 3 3 5 2 8 437 588
42 6 4 4 2 2 6 4 456 484
43 6 4 4 2 3 5 5 451 512
44 6 4 4 2 4 4 6 446 540
45 6 4 4 2 5 3 7 441 568
46 6 4 4 2 6 2 8 436 596
47 7 3 0 7 0 3 7 445 536
48 7 3 0 7 1 2 8 440 564
49 7 3 1 6 0 4 6 449 516
50 7 3 1 6 1 3 7 444 544
51 7 3 1 6 2 2 8 439 572
52 7 3 2 5 0 5 5 453 496
53 7 3 2 5 1 4 6 448 524
54 7 3 2 5 2 3 7 443 552
55 7 3 2 5 3 2 8 438 580
56 7 3 3 4 0 6 4 457 476
57 7 3 3 4 1 5 5 452 504
58 7 3 3 4 2 4 6 447 532
59 7 3 3 4 3 3 7 442 560
60 7 3 3 4 4 2 8 437 588
61 7 3 4 3 1 6 4 456 484
62 7 3 4 3 2 5 5 451 512
63 7 3 4 3 3 4 6 446 540
64 7 3 4 3 4 3 7 441 568
65 7 3 4 3 5 2 8 436 596
66 8 2 1 7 0 3 7 444 544

continued on the next page
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lij 0 0 0 0 0 0 0
uij 10 5 4 7 8 6 8

(1,2) (1,3) (2,3) (2,4) (3,4) (3,5) (4,5) y1 y2

67 8 2 1 7 1 2 8 439 572
68 8 2 2 6 0 4 6 448 524
69 8 2 2 6 1 3 7 443 552
70 8 2 2 6 2 2 8 438 580
71 8 2 3 5 0 5 5 452 504
72 8 2 3 5 1 4 6 447 532
73 8 2 3 5 2 3 7 442 560
74 8 2 3 5 3 2 8 437 588
75 8 2 4 4 0 6 4 456 484
76 8 2 4 4 1 5 5 451 512
77 8 2 4 4 2 4 6 446 540
78 8 2 4 4 3 3 7 441 568
79 8 2 4 4 4 2 8 436 596
80 9 1 2 7 0 3 7 443 552
81 9 1 2 7 1 2 8 438 580
82 9 1 3 6 0 4 6 447 532
83 9 1 3 6 1 3 7 442 560
84 9 1 3 6 2 2 8 437 588
85 9 1 4 5 0 5 5 451 512
86 9 1 4 5 1 4 6 446 540
87 9 1 4 5 2 3 7 441 568
88 9 1 4 5 3 2 8 436 596
89 10 0 3 7 0 3 7 442 560
90 10 0 3 7 1 2 8 437 588
91 10 0 4 6 0 4 6 446 540
92 10 0 4 6 1 3 7 441 568
93 10 0 4 6 2 2 8 436 596

Source :Figueira 2002
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B Solutions for example 3

u 6 6 5 4 5 4 5 1 6 5
(1,2) (1,3) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (4,6) (5,6) f1 f2

256 6 2 0 4 0 0 1 1 5 1 290 356
236 6 2 0 3 1 0 1 1 4 2 290 356
189 6 2 0 2 2 0 1 1 3 3 290 356
121 6 2 0 1 3 0 1 1 2 4 290 356
61 6 2 0 0 4 0 1 1 1 5 290 356

229 6 2 1 3 0 0 2 1 4 2 290 356
177 6 2 1 2 1 0 2 1 3 3 290 356
106 6 2 1 1 2 0 2 1 2 4 290 356
48 6 2 1 0 3 0 2 1 1 5 290 356

163 6 2 2 2 0 0 3 1 3 3 290 356
92 6 2 2 1 1 0 3 1 2 4 290 356
40 6 2 2 0 2 0 3 1 1 5 290 356
79 6 2 3 1 0 0 4 1 2 4 290 356
29 6 2 3 0 1 0 4 1 1 5 290 356
22 6 2 4 0 0 0 5 1 1 5 290 356

Table 7: Solutions whose image is point (290, 356) in Figure 6.

u 6 6 5 4 5 4 5 1 6 5
arco (1,2) (1,3) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (4,6) (5,6) y1 y2

256 6 2 0 4 0 0 1 1 5 1 290 356
61 6 2 0 0 4 0 1 1 1 5 290 356
22 6 2 4 0 0 0 5 1 1 5 290 356
1 2 6 0 0 0 0 5 1 1 5 302 256
3 2 6 0 0 0 0 5 0 2 4 304 250

109 2 6 0 0 0 4 1 0 6 0 352 226

Table 8: Basic feasible solutions of the problem in Figure 5.
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C Extreme non-dominated points of Conv(Y)
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çã
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çã

o
61

-
1o

ca
so

1

32
4 5

6

(6
,2
4)
(-
3,
25

)

[0
,6
]6

(2
7,
7)

[0
,6
] 2

(18,8)(0,0)

[0,5] 0

(1
3
,2

5
)

[0
,4

]
0

(2
4,
28

)

[0
,5
] 4 (7

,1
)(

12
,-1

6)

[0
,4

]0 (6
,2

0
)

[0
,5

] 1

(9,9)(-2,6)

[0,1] 1

(2
4,
12

)
[0
,6
] 1

(1
3,

9)
(0

,0
)

[0
,5

]5

π
1
(1
)
=

0

π
1
(2
)
=
−
9

π
1
(3
)
=
−
27

π
1
(4
)
=
−
22

π
1
(5
)
=
−
33

π
1
(6
)
=
−
46

S
ol
u
çã
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D Solutions of example 2
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Solução óptima utilizando a função 1 - alternativa com melhor valor de f2 —¿2

3

4

53
+
∆

[0
,7
]

6-∆

[0,6
]

4+
∆

[0,8]
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Solução óptima utilizando a função 1 - alternativa com melhor valor de f2 —¿2

1

3

2 4

10
-∆

[0
,1
0]

0+
∆[0,5]

6 -∆

[0,7]

2
+
∆

[0
,8
]

i

Solução efficient 2

1

3

2 4

10
-∆

[0
,1
0]

0+
∆[0,5]

6 -∆

[0,7]

2
+
∆

[0
,8
]
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Figure 11: Example 2 - optimal STSs considering only the first criterion.
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Figure 12: Example 2 - Connections between optimal STSs using the first criterion.

44



Solução efficient alternativa à 1
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Figure 13: Example 2 - efficient STSs.
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