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Abstract

ELECTRE III is a well-established multiple criteria decision making method with a solid
track of real-world applications. It requires precise values to be specified for the parame-
ters and criteria measurements, which in some cases might not be available. In this paper
we present a method, SMAA-III, that allows ELECTRE III to be applied with imprecise
parameter values. By allowing imprecise values, the method also allows an easily appli-
cable robustness analysis. In SMAA-III, simulation is used and descriptive measures are
computed to characterize stability of the results. We present a software implementing the
method and show the usage by re-analyzing an existing case study.

Key words: Decision support systems, robustness analysis, ELECTRE III, Stochastic
Multicriteria Acceptability Analysis (SMAA)

1 Introduction

ELECTRE III is a well-established multiple criteria decision making (MCDM)
method for ranking a discrete set of alternatives. It belongs to the ELECTRE fam-
ily of methods that are based on constructing and exploiting an outranking relation
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(see [4]). ELECTRE III has a long history of successful real-world applications in
different areas. The inputs for ELECTRE III consist of criteria evaluations on a set
of alternatives and preference information expressed as weights and thresholds.

ELECTRE III is a pseudo-criterion based model, and as such it uses a threshold
to model indifference between pairs of alternatives. Although this threshold might
be an easy concept for a common Decision Maker (DM) to understand, simula-
tion studies have shown, that it causes the model be quite unstable with respect
to changes in the indifference threshold value [8]. Because of this unstability, ro-
bustness analysis should always be done by considering different values for the
threshold.

Real-world decision-making problems in general include various types of uncer-
tainties inherent in problem structuring and analysis [1]. Eliciting the DMs pref-
erences in terms of relative criteria importance coefficients or weights is usually
difficult. Such weights should always be considered imprecise, because humans
usually do not think about preferences as exact numerical values, but as more vague
concepts [14]. In some cases, weight information may be entirely missing, which
corresponds to extremely imprecise weights.

This work presents a tool for dealing with imperfect knowledge within the ELEC-
TRE III method. It can be used either when information is poor and/or when a
robustness analysis needs to be done. The way robustness analysis is conducted
comprises intensity of exploration in the parameters space. This is achieved by ap-
plying simulation in such a way that the parameter space is explored with a high
concentration of discrete values. In addition to this, the exploration is coherent
with the model. This means that, for example, when exploring the weight space,
the meaning of weight is taken into account. In ELECTRE III weights represent
the amount of “votes” criteria have.

Capability to derive robust conclusions when applying MCDM methods is nowa-
days of uttermost importance. The main sources of imperfect knowledge that are
present in complex and multifaceted decision-making situations require a careful
observation of the results, and make them dependent of an exploration of the neigh-
bourhood of the parameters used mainly to represent preferences or technical as-
pects of the problem. If an alternative occupies almost always the first position
when changing simultaneously all the parameters in a certain neighbourhood, it
means that it can be a good choice for future implementation; these are the kind of
robust conclusions we are interested in.

The method presented in this paper is based on Stochastic Multicriteria Acceptabil-
ity Analysis (SMAA) [7], that is a family of decision support methods for aiding
DMs in discrete decision-making problems. For a survey on SMAA methods, see
[15]. The proposed method, SMAA-III, explores weight, criteria measurement, and
threshold spaces, in order to describe which values result in certain ranks for the
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alternatives. It allows ELECTRE III to be used with different kinds of imprecise or
partially missing information. This brings numerous advantages. Firstly, SMAA-
III allows performing an initial analysis without preference information in order to
eliminate “inferior” alternatives. Secondly, it allows DMs to express their prefer-
ences imprecisely, which can lower the DMs’ cognitive effort compared to speci-
fying precise weights. Thirdly, imprecise criteria measurements can be represented
with arbitrary joint probability distributions, allowing to model imprecision in a
coherent way not possible with ELECTRE III. Fourthly, it allows representing the
preferences of a group of DMs. Fifthly, the method can be used for analyzing the
robustness of the results by representing the imprecision of the elicited weights as
constraints or as suitable probability distributions.

In SMAA-III, robustness is analyzed with respect to the weights, criteria measure-
ments, and thresholds. Traditionally, robustness with ELECTRE methods is an-
alyzed by considering discrete points in the weight space (see e.g. [12]). But in
the case of ELECTRE III this is not enough: weights between these points that
might give contradictory results are missed. There are simulation techniques for
robustness analysis also outside the SMAA methodology (see [2]), but to our best
knowledge, they have never before been applied to ELECTRE III.

User-friendly software is of crucial importance for a MCDM method to be of prati-
cal importance. We present the software for SMAA-III, and demonstrate its use by
re-analyzing a real-life case study. The software presented is available for all major
operating systems.

This paper is organized as follows: ELECTRE III is briefly introduced in Section 2.
SMAA-III is presented in Section 3. The software and a re-analysis of a case-study
are presented in Section 4. The paper ends with conclusions and avenues for future
research in Section 5.

2 ELECTRE III

ELECTRE III is designed for solving a discrete ranking problem. It consists of m al-
ternatives a1, . . . ,ai, . . . ,am, that are evaluated in terms of n criteria g1, . . . ,g j, . . . ,gn.
We denote by J the set of criterion indices. g j(ai) is the evaluation of criterion g j
for alternative ai. Without loss of generality, we assume that all criteria are to be
maximized.

Similarly to the other ELECTRE family methods, ELECTRE III is based on two
phases. In the first phase, an outranking relation between pairs of alternatives is
formed. The second phase consists of exploiting this relation, producing a final
partial pre-order and a median pre-order. S denotes the outranking relation, that is,
aSb denotes that “alternative a is at least as good as alternative b”.
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ELECTRE III applies pseudo-criteria in constructing the outranking relation. A
pseudo-criterion is defined with two thresholds for modelling preferability: an in-
difference threshold q j(g j(·)) for defining the difference in criterion g j that the
DM deems insignificant, and a preference threshold p j(g j(·)) for the smallest dif-
ference that is considered absolutely preferred. Between these two is a zone of
“hesitation” between indifference and strict preference. ELECTRE III also de-
fines third threshold, a veto threshold v j(g j(·)). It is the smallest (negative) dif-
ference that completely nullifies (raises “veto” against) the outranking relation.
In addition to the thresholds, preferences are quantified through a weight vector
w = (w1, . . . ,w j, . . . ,wn). Without loss of generality, we assume that ∑ j ∈ Jw j = 1.

Exploitation of the outranking relation produces a partial pre-order, in which every
pair of alternatives is connected with either indifference (I), incomparability (R), or
preference (Â) relation.

2.1 Constructing the outranking relation

The outranking relation between every pair of alternatives is constructed based on
a comprehensive concordance index and partial discordance indices. The concor-
dance index is computed by considering individually for each criterion g j the sup-
port it provides for the assertion aS jb “a outranks b with respect to criterion g j”.
The partial concordance index is computed as follows, for all j ∈ J:

c j(a,b) =





1, if g j(b)−g j(a)≤ q j(g j(a)),

g j(a)+p j

(
g j(a)

)
−g j(b)

p j

(
g j(a)

)
−q j

(
g j(a)

) , if q j(g j(a)) < g j(b)−g j(a)≤ p j(g j(a)),

0, if g j(b)−g j(a) > p j(g j(a)).

(1)

After computing the partial concordance indices, the comprehensive concordance
index is computed as follows,

c(a,b) = ∑
j∈J

w jc j(a,b). (2)

The discordance of criterion g j describes the veto effect this criterion imposes
against the assertion aSb. The partial discordance indices are computed separately
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for each criterion j ∈ J:

d j(a,b) =





1, if g j(b)−g j(a)≥ v j(g j(a)),

g j(b)−g j(a)−p j(g j(a))
v j(g j(a))−p j(g j(a)) , if p j(g j(a))≤ g j(b)−g j(a) < v j(g j(a)),

0, if g j(b)−g j(a) < p j(g j(a)).

(3)

By applying the pre-mentioned indices, the degree of credibility of the outranking
assertion aSb is defined as

ρ(a,b) =





c(a,b) ∏
j∈V

1−d j(a,b)
1− c(a,b)

, if V 6= /0,

c(a,b), otherwise,

(4)

with
V = { j ∈ J : d j(a,b) > c(a,b)}. (5)

Notice that when d j(a,b) = 1 for any j ∈ J, this implies that ρ(a,b) = 0.

2.2 The exploitation procedure

The exploitation of the outranking relation consists of two phases. In the first phase,
two complete pre-orders, Z1 (descending) and Z2 (ascending) are constructed with
the so-called distillation procedures. In the second phase, a final partial pre-order
or a complete median pre-order is computed based on these two pre-orders.

The distillation procedures work by iteratively cutting the fuzzy outranking rela-
tions with descending λ-cutting levels. With a given cutting level λ∗, alternative a
outranks alternative b (aSλ∗b) if the following holds:

aSλ∗b⇐⇒





ρ(a,b) > λ∗, and

ρ(a,b) > ρ(b,a)+ s(ρ(a,b)),
(6)

where s(·) is the distillation threshold, usually defined as [1]

s(x) = 0.3−0.15x. (7)

The pre-orders are constructed in an iterative manner. In each step the alternatives
with the highest or lowest qualification scores are distillated, depending on whether
the distillation is descending or ascending. The qualification score is computed as
a difference between the number of alternatives that the selected alternative out-
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ranks and the number of alternatives that outrank it for a given cutting level. The
procedure is presented in Algorithm 1.

Algorithm 1 Distillations
1: Determine the maximum value of the credibility indices in the set under con-

sideration. Assign this to λ.
2: Determine λ∗ = max

d(a,b)<λ−s(λ)
{d(a,b)}, where (a,b) belong to the set under

consideration.
3: If λ∗ = 0, end this distillation.
4: Determine for each alternative its qualification score, that is: the difference

between the number of alternatives it outranks and the number of alternatives
that outrank it. Outranking is determined according to λ∗.

5: The set of alternatives having the largest (or smallest, if the distillation is as-
cending) qualification is the current distillate.

6: If the number of alternatives in current distillate is larger than 1, repeat the
process from step 2 inside the distillate.

7: Form a new set under consideration by removing the distillated alternatives
from the current one. If this set is not empty, repeat the process on the new set
from step 1.

8: The final pre-orders are ranked so that the alternatives in the first distillate are
given rank 1, in the second rank 2, etc.

In the original ELECTRE III, a median pre-order is computed based on the two
complete pre-orders, Z1 and Z2, and the final partial pre-order. The final partial pre-
order is computed as the intersection of the two complete pre-orders in such a way
that the following relations hold:

aÂ b⇐⇒(aÂZ1 b∧aÂZ2 b)∨ (aIZ1b∧aÂZ2 b)∨ (aÂZ1 b∧aIZ2b),
aIb⇐⇒(aIZ1b∧aIZ2b),
aRb⇐⇒(aÂZ1 b∧bÂZ2 a)∨ (bÂZ1 a∧aÂZ2 b).

(8)

After this, the median pre-order can be computed by removing the incomparabili-
ties with calculating the differences of ranks of an alternative in the two complete
pre-orders.

2.3 Robustness analysis for weights

There are numerous weight elicitation techniques proposed for ELECTRE meth-
ods, the following being among the most recent and popular ones:

(1) DIVAPIME by Mousseau [10] produces intervals for weights.
(2) Hokkanen and Salminen [5] used two different weight elicitation procedures,

and found that the normalized sets of weights had minor differences.
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(3) SRF by Figueira and Roy [3] allows weight elicitation in a user-friendly man-
ner by using a technique based on a pack of “playing cards” to determine the
relative importance criteria coefficients. It can produce interval weights and
was also designed to support multiple DMs.

(4) The approach proposed by Rogers and Bruen [11] uses pairwise comparisons
to elicit the weights.

The first three techniques that produce intervals or two weight sets that may be
used to define intervals, can directly be used in robustness analysis. When using
the fourth weight elicitation technique, intervals (such as ±10%) could be defined
around the original weights.

Traditionally the robustness analysis for ELECTRE methods has been an ad hoc
investigation into the effect of changing values [1]. This type of investigation typ-
ically considers only discrete points (for example, extreme points) of the feasible
weight space (e.g. weight intervals). The procedure of building the pre-orders is
based on exploiting the fuzzy outranking relation, which is non-linear and discon-
tinuous by nature. Therefore, instead of just a few discrete points, it is important to
analyze the entire continuum of the weight space.

3 SMAA-III

In order to overcome the limitations of ELECTRE III, SMAA-III applies simula-
tion and studies the effect of changing parameter values and criterion evaluations
on the results. The imprecision is quantified through joint density functions in the
corresponding spaces.

The weights are represented by a weight distribution with joint density function
fW (w) in the feasible weight space W . The weights are non-negative and normal-
ized: the weight space is an n−1 dimensional simplex,

W =
{

w ∈ Rn : w≥ 0 and ∑
j∈J

w j = 1
}

. (9)

Completely missing preference information is represented by a uniform (constant)
weight distribution in W , that is,

fW (w) = 1/vol(W ). (10)

If some kind of preference information is available, different weight distributions
can be applied (see [7]). In practice, the preferences can usually be elicited as inter-
val constraints for weights. In this case, a uniform distribution in the space bounded
by the constraints is used. Figure 1 illustrates the restricted feasible weight space of
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a 3-criterion problem with lower and upper bounds for w1. In this paper the focus
is on weight information provided as intervals, because:

(1) if there are multiple DMs whose preferences need to be taken into account,
the weight intervals in general can be determined to contain the preferences
of all DMs (see [7]), and

(2) weight intervals allow simple robustness analysis also when only deterministic
weights are available, by specifying, for example, a ±10% interval for each
weight.

It should be observed that other forms of easily elicitable preference information
can be used as well, such as ranking of the criteria. A ranking can be obtained
by asking the DMs to identify their most important, second most important, etc.
criterion. Figure 2 illustrates the feasible weight space for a three-criterion problem
with the ranking w1 ≥ w2 ≥ w3.

Figure 1. Feasible weight space of a 3-criterion problem with lower and upper bounds for
w1.

Imprecise thresholds are represented by stochastic functions α j(·), β j(·), and γ j(·),
corresponding to the deterministic thresholds p j(·), q j(·), and v j(·), respectively.
To simplify the notation, we define a 3-tuple of thresholds τ = (α,β,γ). It has a
joint density function fT in the space of possible values defining the functions. It
should be noted that all feasible combinations of thresholds must satisfy q j(ai) <
p j(ai) < v j(ai).

Traditionally the thresholds in ELECTRE models have been used to model pref-
erences of the DMs (e.g. differences deemed significant) as well as imprecision
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Figure 2. Feasible weight space of a 3-criterion problem with ranking of the criteria.

in the data. But it has been shown that the indifference threshold does not corre-
spond to a linear imprecision interval [8]. Therefore, in SMAA-III thresholds are
used only to model preferences (together with weights). Imprecision in the criteria
measurements is modelled with stochastic variables.

These stochastic variables are denoted with ξi j corresponding to the deterministic
evaluations g j(ai). They have a density function fX(ξ) defined in the space X ⊆
Rm×n. In principle, arbitrary distributions can be used, but in practice a uniform
distribution in a certain interval or a Gaussian distribution is used.

Incomparabilities between alternatives can be present in the final results of ELEC-
TRE III. This is one of the main features of ELECTRE methods in comparison
with the methods applying classical multi-attribute utility theory (see [6]). In the
late seventies, it was considered a very important theoretical advance. But, in real-
ity when dealing with practical situations, incomparabilities in the final result are
inconvenient. This aspect was soon observed [13] and partial pre-orders were re-
placed by complete pre-orders or median pre-orders. This is quite logical, as why
would DMs want to apply a tool that tells the alternatives are incomparable: this
was already the starting position. We apply median pre-orders in computing rank
acceptability indices. The only information lost in using the median pre-order as
the primary measure of the ranking is the incomparability. As our method is also
aimed to help analysts accustomed to ELECTRE III, we will later present another
index to measure incomparability.

Since only the median pre-order is needed in SMAA-III, the intermediate step of
constructing the final partial pre-order can be skipped; the median pre-order is con-
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structed directly from the two complete pre-orders in the following way:

aÂ b⇐⇒





(aÂZ1 b∧aÂZ2 b)∨ (aIZ1b∧aÂZ2 b)∨ (aÂZ1 b∧aIZ2b)

(aÂZ1 b∧bÂZ2 a)∧ (|rZ1(a)− rZ2(a)|< |rZ1(b)− rZ2(b)|)
(bÂZ1 a∧aÂZ2 b)∧ (|rZ1(a)− rZ2(a)|< |rZ1(b)− rZ2(b)|)

,

aIb⇐⇒¬(bÂ a)∧¬(aÂ b),

where r(·) is the ranking of an alternative in the superscripted pre-order.

Monte Carlo simulation is used in SMAA-III to compute three types of descriptive
measures: rank acceptability indices, pair-wise winning indices, and incomparabil-
ity indices. In order to compute these indices, let us define a ranking function that
evaluates the rank r of the alternative ai with the corresponding parameter values:

rank(i,w,ξ,τ). (11)

The evaluation of this function corresponds to executing ELECTRE III and return-
ing rank of the corresponding alternative in the resulting median pre-order. We will
next introduce the three indices. Interpretation of their values is presented in Sec-
tion 4 through various re-analyses.

3.1 Rank acceptability index

The rank acceptability index, br
i , measures the share of feasible weights that grant

alternative ai rank r in the median pre-order by taking into account simultaneously
imprecisions in all parameters and criterion evaluations. It represents the share of
all feasible parameter combinations that make the alternative acceptable for a par-
ticular rank, and it is most conveniently expressed percentage-wise.

The rank acceptability index br
i is computed numerically as a multidimensional

integral over the spaces of feasible parameter values as

br
i =

Z

W :rank(i,w,ξ,τ)=r
fW (w)

Z

X
fX(ξ)

Z

T
fT (τ)dT dwdξ. (12)

The most acceptable (“best”) alternatives are those with high acceptabilities for
the best ranks. Evidently, the rank acceptability indices are within the range [0,1],
where 0 indicates that the alternative will never obtain a given rank and 1 indicates
that it will obtain always the given rank with any feasible choice of parameters.
Thus, the rank acceptability indices are a measure of robustness.

Using the rank acceptability indices as measures of robustness is quite straightfor-
ward. More caution should be put on interpreting the results when these indices are
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computed without weight information to characterize the problem. If an alternative
obtains a low score for the first rank acceptability, it does not necessarily mean that
it is “inferior”. The DMs’ actual preferences may well lie within the corresponding
(small) set of favourable first rank weights.

3.2 Pair-wise winning index

The pair-wise winning index [9], oik, describes the share of weights that place al-
ternative ai on a better rank than alternative ak. An alternative ai that has oik = 1
for some k always obtains a better rank than alternative ak, and can thus be said to
dominate it.

The pair-wise winning index oik is computed numerically as a multidimensional
integral over the space of weights that give alternative a lower rank than for another.

oik =
Z

w∈W :rank(i,w,ξ,τ)<rank(k,w,ξ,τ)
fW (w)

Z

X
fX(ξ)

Z

T
fT (τ)dT dwdξ. (13)

The pair-wise winning indices are especially useful when trying to distinguish be-
tween the ranking differences of two alternatives. Because the number of ranks
in the median pre-order of different simulation runs varies, two alternatives might
obtain similar rank acceptabilities although one is in fact inferior. In these cases
looking at the pair-wise winning indices between this pair of alternatives can help
to determine whether one of the alternatives is superior to the other or if they are
equal in “goodness”.

3.3 Incomparability index

Because median pre-orders are used in computing the rank acceptability indices, it
is not anymore possible to model incomparability. As some DMs might be accus-
tomed to make decisions also based on incomparabilities, another index is intro-
duced. Incomparability index ρik measures the share of feasible parameter values
that cause alternatives ai and ak to be incomparable. For this reason, we define the
incomparability function:

R(i,k,ξ,τ) =





1, if alternatives ai and ak are judged incomparable,

0, if not.
(14)

This function corresponds to a run of ELECTRE III with the given parameter val-
ues and checking if the alternatives are judged incomparable in the final partial

11



pre-order. In practice we do not compute the final partial pre-order, because this
information can be extracted from the two partial pre-orders Z1 and Z2 as shown in
(8). By using the incomparability function, the incomparability index is computed
numerically as a multidimensional integral over the feasible parameter spaces as

ρik =
Z

W
fW (w)

Z

X
fX(ξ)

Z

T
fT (τ)R(i, j,ξ,τ)dT dwdξ. (15)

3.4 Computation

All of the indices mentioned above are computed with Monte Carlo simulation.
The procedure is similar to that presented and analyzed by Tervonen and Lahdelma
[16]. SMAA-III differs in the sense that it applies the ELECTRE III procedure to
derive the descriptive values instead of a utility function.

In each simulation iteration, sample parameter values are generated from their cor-
responding distributions, and ELECTRE III is executed with these values. Then the
corresponding hit-counters are updated as with the original SMAA. If standard dis-
tributions are used for defining the imprecise parameter values, then all sampling
except weight generation are computationally very light. In the case of weight gen-
eration, if tight upper bounds are used, the we can have very high weight rejection
ratios (up to 99,9%). Nevertheless, even with 99,9% weight rejection, the method
is fast enough to use in an interactive decision making process with problems of
reasonable size.

For obtaining sufficient accuracy for the indices, we suggest using at least 10000
simulation iterations. This gives error limits of less than 0.01 with 95% confidence
[16].

4 Case study and software

ELECTRE III has been used to choose the best waste incineration strategy for the
Eastern Switzerland region [12]. A total of 11 alternative strategies (alternatives)
were evaluated in terms of 11 criteria. ELECTRE III was run separately for 6 in-
terest groups, each of which had different preferences. The complete study will not
be presented here. The interested reader should refer to [12, Section 6].

We re-analyze the study using the SMAA-III software. The software is programmed
in C++ using portable user interface libraries, and is therefore available for various
operating systems. Currently Linux, Macintosh OS X, and Windows XP are sup-
ported. The software allows easy input of all models data. The interface is designed
in such a way that from each input phase, the user can move to any other one. For
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examples of the interface, see tables for criterion type input in Figure 3 and criterion
measurement input in Figure 4.

Figure 3. Input of criteria types in the software.

Figure 4. Input of criteria measurements in the software.

We re-analyze the “baseline run” of the case-study with weight information from
the Switzerlands Federal Agency for the Environment. In this initial run, the veto
thresholds were not defined. The weights were elicited by using two methods, the
SRF method and the method by Rogers and Bruen [11]. According to [12], the
differences in the weights obtained by using the two methods were minor. To see
how small differences in the parameter values cause alteration of results, we re-
analyze the problem with with five different scenarios:

(1) Original problem. Re-analysis by using the median pre-order.
(2) Imprecise weights. Original problem with imprecise weight values.
(3) Imprecise thresholds. Original problem with imprecise threshold values.
(4) Imprecise criteria measurements. Original problem with imprecise measure-

ments for the cardinal criteria.
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(5) Imprecision in all values. Original problem incorporating simultaneously all
the above types of imprecision.

The goal of our re-analysis is to identify which parameters are the most sensitive,
and what kind of robust conclusions can be derived from the results. We also show
how the different index values should be interpreted. All these analyses are com-
puted with 10000 Monte Carlo iterations.

4.1 Original study with median pre-order

We ran the software with exact data from the original study, obtaining a median
pre-order. Rank acceptability indices are shown in Figure 5. Notice that the indices
for each alternative are 100% for a single rank, and 0% for the others, therefore
defining a deterministic pre-order (S4.1 in the first rank, S3.1 in the second, etc).

Figure 5. Rank acceptability indices of the pre-order of the original study.

4.2 Imprecise weights

In the first re-analysis, we define the feasible weight space uniformly distributed
and constrained to include original weights ±10% in all dimensions. This weight
information is introduced in the software as shown in Figure 6. The choice of in-
tervals is quite arbitrary, and in a real-world application the intervals should be
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approved by the DMs.

Figure 6. Input of ranges for weights in the software.

The effect of a variable number of ranks in different simulations makes it hard to
interpret the results based on only the rank acceptability indices. Pair-wise winning
indices are better for seeing how imprecise weights affect the ranking in comparison
with exact weights. The pair-wise winning indices of this re-analysis are presented
in Figure 7.

Figure 7. Pair-wise winning indices of the re-analysis with imprecise weights.
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By looking at the pair-wise winning indices in Figure 7, we can see that the impre-
cise weights cause some alterations in the results. When the parameters are deter-
ministic, there are only indices of 100% and 0%. Now with the imprecise values,
for example, S2.1 is ranked better than S2.3 with 30% of the feasible weights values
(had a worse rank in the original analysis). What is more important, is the change in
ranking of alternatives that obtained good ranks in the original analysis. Although
ELECTRE III is a ranking method, most of its applications, including this study,
are in selecting an alternative to implement. The two best ranked alternatives in the
original case study are S4.1 (1st rank) and S4.1 (2nd rank). But in this re-analysis
incorporating imprecise weights, S3.1 obtains higher rank than S4.1 with 75% of
the feasible weights. Therefore, by taking into consideration the purpose of the ap-
plication (implementing the best alternative), we can say that weights are among
the sensitive parameters of this model.

4.3 Imprecise thresholds

The second case re-analyzed is with imprecise thresholds. We define imprecise
thresholds for cardinal criteria with ±10% imprecision. We analyze the impreci-
sion this time by looking at the rank acceptability indices, presented in Figure 8.
This figure shows a common phenomenon with rank acceptability indices, emerg-
ing when the parameters are sensitive: the amount of ranks in different simulation
runs changes. This is caused by some alternatives obtaining the same rank, there-
fore lowering the total number of ranks. This effect does not affect the first rank
acceptabilities, but is cumulative in higher ranks.

For example, see the rank acceptabilities of alternative S2.4: 24.5% for rank 9,
63.1% for rank 10, and 12.4% for rank 11. Based on the rank acceptability indices,
it would seem that the ranking of this alternative varies quite a lot. But by looking
the pair-wise winning indices of the same re-analysis presented in Figure 9, more
precise information is obtained. The column of alternative S2.4 tells the share of
feasible parameter values for other alternatives to obtain a better rank than S2.4. All
these (except for the alternatives own row, which is always 0%) are 100%, which
means that alternative S2.4 is always ranked the last and never shares this rank
with an another alternative.

Although this cumulative effect causes the rank acceptabilities to lose their intended
meaning for the worse ranks, it does not hinder their help to decisions of selecting
the best alternative. They also demonstrate in a comprehensive way the ranges of
ranks for which alternatives can be assigned into, and whether these are overlapping
with the corresponding ranges of another alternatives or not.
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Figure 8. Rank acceptability indices of the re-analysis with imprecise thresholds.

Figure 9. Pair-wise winning indices of the re-analysis with imprecise thresholds.

4.4 Imprecise criteria measurements

In the third re-analysis we add imprecision to the criteria measurements. We de-
fine ±10% imprecision interval for each cardinal criterion. The rank acceptability
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indices of this re-analysis are presented in Figure 10. As was expected, the results
show quite a large amount of dispersion in the indices. In a real application, the
uncertainties could have been quantified more precisely. Anyhow, one crucial ob-
servation should be made: S3.1 obtains the 1st rank with 85% of the possible criteria
measurements, while S4.1 achieves the same with only 15% of the measurements.

This observation confirms what has been reported by Lahdelma and Salminen [8]:
thresholds cannot be used to model imprecision. In the original study the thresholds
were used for modelling imprecision in the criteria measurements, and the analysts
ended up in recommending S4.1 as the most “robust” option. But by considering
the criteria measurements to have uniformly distributed values in an imprecision
interval, S3.1 seems to be more robust candidate for the first rank.

Figure 10. Rank acceptability indices of the re-analysis with imprecise criteria measure-
ments.

4.5 All values imprecise

The last re-analysis is with all types of imprecisions applied in the previous re-
analyses. Rank acceptability indices and pair-wise winning indices of this one are
similar to the previous re-analyses, showing (as expected) even more dispersion in
the values. Therefore, we will not present these indices here.

The incomparability indices of this re-analysis are presented in Figure 11. What
should be noticed from this figure, is the high amount of incomparability. In a real
decision making situation, most (if not all) parameter values are defined with impre-
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cise values. This imprecision causes a quite large share of the pairs of alternatives to
have incomparability indices of a reasonable magnitude. They can therefore not be
left out of consideration is the DMs want to make the decision taking into account
incomparability as well, and it brings an extra level of complexity to the decision
making process. In our opinion, this is another reason why modelling incompara-
bility is not useful in practical decision making.

Figure 11. Incomparability indices of the re-analysis with all parameters imprecise.

Before summarizing the results of this section, we note that the authors of the case
study also describe a robustness analysis of the results. But in their study, the ro-
bustness is analyzed through weights variations, by altering a single weight at a
time. It is more a sensitivity analysis than a robustness one. As has been shown
by our re-analyses, a different way should be considered to analyze robustness of
ELECTRE III results; stability of all parameters should be analyzed in such a way,
that the whole space of feasible parameter values is explored. Otherwise, nonlinear-
ity of the ranking function, which ELECTRE III represents, can produce surprising
results. The re-analyses of this particular case study showed that S3.1 would have
been a more robust alternative than S4.1 for implementation.

5 Conclusions and avenues for future research

In this paper we introduced a new method, SMAA-III, that allows the parameters
and criteria measurements of ELECTRE III to be imprecise, and to be defined with
various types of constraints: no deterministic values are required. This has numer-
ous advantages, especially in the context of MCDM with multiple DMs, because
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the parameters can be determined as intervals that contain the preferences of all
DMs. It also allows an easily applicable robustness analysis to be performed.

We presented a software 1 implementing the proposed method, and used it to re-
analyze multiple times an existing real-world case study. These re-analyses were
done to study the effect of imprecision in different parameters on the results. The
analyses showed that in this case all the parameters of ELECTRE III were sen-
sitive for reasonable changes. This confirms results of the simulation study by
Lahdelma and Salminen [8]: pseudo-criterion based models are unstable with re-
spect to changes in the threshold values and indifference threshold cannot be used
to model imprecision in the data.

Future research should study usefulness of SMAA-III in real-life cases. It should
be studied, if the indices of SMAA-III can be interpreted in a meaningful way
by analysts less accustomed to SMAA methods. In addition, new techniques for
visualizing the indices are needed.
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