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This paper presents a negative cycle based algorithm for computing the solutions of bi-criteria network
flow problems associated with supported non-dominated vectores. Eusébio and Figueira (2006) have shown
that the concept of Spanning Tree Structure (STS) carry out some difficulties to find the set of non-dominated
supported vectors that this algorithm avoid, unless more cycle operations are performed. To get all the non-
dominated supported solutions “cross pivot” operations among the cycles should be performed. We present
an alternative algorithm for such purpose. It is a negative cycle based algorithm.
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Introduction
The design of exact methods for finding all
the non-dominated vectors in integer bi-criteria
network flow problems (BMCIF) has been
almost always divided in two parts: first the
algorithms should compute the set of supported
non-dominated vectors, and second the set of
unsupported non-dominated vectors should be
identified. But, computing all the integer sup-
ported non-dominated vectors cannot be an
easy task for some algorithms as it has been
shown by Eusebio and Figueira (2006) for net-
work simplex based algorithms. Some exam-
ples show that there can exist supported non-
dominated vectors that are not images of solu-
tions of neither STSs nor intermediate STSs in
the sense we precise later on. Consequently, the
supported non-dominated vectors are difficult
to find. But, these points can be found when
using other types of algorithms as it is the case
of negative cycle based algorithms. This is what
this paper is about.

The paper starts with section 1 where con-
cepts, definitions and notation are introduced.
The proposed method is presented in Section 2
and it is illustrated in section 3. The paper ends
with some conclusions.

1. Concepts: Definitions and
notation

Let G = (S,A) be a directed and connected
graph, where S is a finite set of nodes or vertices
with cardinality |S|= m, and A is a collection
of ordered pairs of elements of S called arcs,
with cardinality |A|= n.

A graph G′ = (S ′,A′) is called a subgraph of
G = (S,A) if S ′ ⊆S and A′ ⊂A. It is a spanning
subgraph of G if S ′ = S. A path P is a sequence
of vertices and arcs, i1−a1−i2−a2−· · ·−is−1−
as−1− is (stated as i1− i2−· · ·− is−1− is when
the identification of the arcs are not ambigu-
ous), without repetition of vertices and where
for which 1≤ k≤ s−1 either ak = (ik, ik+1)∈A,
or ak = (ik+1, ik) ∈A. A directed path is a path
without backwards arcs. A cycle C is a closed
path where the only repeated vertex is the start-
ing and the end point that coincide. A directed
cycle is a closed directed path. When in a given
graph G there is always a path linking any two
different vertices of G, the graph is called con-
nected. A tree T = (V,E) is a subgraph without
cycles where V ⊆S and E ⊂A. A tree T is called
a spanning tree when it spans the set of ver-
tices S of G, that is V = S. A spanning tree is

1
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denoted by T = (S,E). Consider (k, l) a given
arc belonging to the set A but not in E . Then,
there is a unique cycle C when the arc (k, l) is
added to E . The orientation of C is the same as
(k, l). In a cycle C a partition of its vertices can
be made by separating the arcs having the same
orientation as C from the arcs in the opposite
direction. The collection of all possible cycles of
this type is called fundamental cycle basis.

A directed graph with numerical values
assigned to its vertices and/or arcs is called
network. Let G = (S,A) be a network with
two “costs” c1

ij and c2
ij, a lower bound lij and

an upper bound or capacity uij associated with
every arc (i, j) ∈ A. The numerical values lij
and uij respectively denote the minimum and
the maximum amount that must flow on the arc
(i, j). Finally, let xij be the amount of flow on
the arc (i, j). A numerical value bi is also associ-
ated with each vertex i ∈ S denoting its supply
(if bi > 0) or its demand (if bi < 0). A vertex
with bi = 0 is called a transshipment vertex. The
bi-criteria “minimum cost” network flow prob-
lem can be stated as follows:

minf1(x) =
∑

(i,j)∈A
c1

ijxi,j

minf2(x) =
∑

(i,j)∈A
c2

ijxij

subject to :∑

j | (i,j)∈A
xij −

∑

k | (k,i)∈A
xij = bi, ∀i∈ S

lij ≤ xij ≤ uij, ∀(i, j)∈A

(1)

It was been shown that every problem with the
lower bounds lij 6= 0 can be written as an equiv-
alent minimum cost problem with lij = 0 for all
arc arcs (i, j) ∈A. In the following we suppose
that the problem has lij = 0 for all arcs (i, j) ∈
A. We also suppose that the graph is con-
nected, all numerical values for the costs, lower
and upper bounds on the arcs and supplies/
demands on the vertices are integral and finite,
the condition

∑
i∈S

bi = 0 must be fulfilled and the

integer bi-criteria “minimum cost” network flow
problem has at least two feasible solutions and
the minimum values for the individual objective
functions are different.

Spanning Tree Structure (STS) is the basic
structure for working with network simplex
variant methods. Such structure is the partition
of the set of arcs in the network in three sub-
sets: T , L, and U . The arcs corresponding to the
basic variables in a simplex solution are in T ,
the remaining arcs with flow value at its lower
bound level are in L and with flow at its upper
bound level are in U .

Consider the network G and a feasible solu-
tion x0 for problem (1). The residual network,
G(x0), with respect to the given flow x0 is the
network that results from G replacing each arc
(i, j) by two arcs (i, j) and (j, i): the arc (i, j)
has cost cij and residual capacity rij = uij−x0

ij,
and the arc (j, i) has cost −cij and residual
capacity rij = x0

ij. The residual network con-
sists of only the arcs with a positive residual
capacity. It can be shown that every flow x in
the network G corresponds to a flow x′ in the
residual network G(x0). The sum

∑
δijcij for all

arcs (i, j) in a cycle is called cost of the cycle,
where δij equal to 1 if arc (i, j) is a forward arc
in the cycle and δij equal to −1 if arc (i, j) is
a backward arc in the cycle. A cycle W (not
necessarily directed) in G is called augmenting
cycle with respect to a flow x if by augment-
ing a positive amount of flow around the arcs in
the cycle, the flow remains feasible. Therefore,
an augmenting cycle cannot have backward arcs
(i, j) such that xij = lij or forward arcs such
that xij = uij. Each augmenting cycle W with
respect to a flow x corresponds to a direct cycle
W in the residual network G(x), and vice-versa.

The optimality of one solution, x∗ for the
minimum cost flow problem can be evaluated
through the cost of the directed cycles in the
residual network. The result is in the following
theorem.

Theorem 1 (Optimality Theorem).
A feasible solution x∗ for the minimum cost

flow problem is an optimal solution if and only
if the residual network G(x∗) contains no cycle.

This theorem supports an algorithm that find
the optimal solution for the minimum cost flow
problem whose main steps are listed in Figure
1. The algorithm first establishes a feasible flow
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{ Computing a minimum cost flow. }
(1)begin
(2) establish a feasible flow x in the network;
(3) while G(x) contains a negative cycle do
(4) begin
(5) use some algorithm to identify a

negative cycle W ;
(6) δ := min{rij : (i, j)∈W};
(7) augment δ units of flow in the cycle

W and update G(x);
(8) end
(9) end

Figure 1 Algorithm cycle-canceling

x in the network that can be achieved by solv-
ing a maximum flow problem. (see Ahuja et al.
(1993))

Next we will define some concepts for the gen-
eral multiple criteria case with r criteria. Dom-
inance is a key concept in multiple criteria deci-
sion analysis.

Definition 1 (Dominance ).
Consider y′ and y′′ two criterion vectors. Then,
y′ dominates y′′ iff y′ ≤ y′′ and y′ 6= y′′, that is,
y′q ≤ y′′q for all q = 1, . . . , r with at least one strict
inequality.

Definition 2 (Non-dominated vector).
A vector y′ ∈ Y is called non-dominated iff there
does not exist another vector y ∈ Y such that
y ≤ y′ and y 6= y′. Otherwise, y′ is a dominated
criterion vector. The set of all non-dominated
vectors in Y is designed by ND(Y ).

A distinction between efficient solutions in
decision variable space and non-dominated vec-
tors in criteria space can be made. Efficient
solutions are crucial for the usefulness of mul-
tiple criteria methods. This concept was first
introduced by Pareto (1896). Thus, these solu-
tions are called Pareto optimal, and also non-
inferior or functional efficient solutions.

Definition 3 (Efficient solution).
A solution x′ ∈X is said to be efficient iff it is
impossible to find another solution x ∈X with
a better evaluation of a given criterion without
deteriorating the evaluations of at least another
criterion. The set of all efficient solutions in X
is designed by EF (X).

In multiple criteria integer linear program-
ming, two types of non-dominated vectors can
be distinguished: supported and unsupported
non-dominated vectors.

Let
Y = = Conv(ND(Y )+Rp

=)

where, Rp
= = {y ∈Rp|y = 0} and ND(Y )+Rp

= =
{y ∈Rp : y = y′+ y′′, y′ ∈ND(Y ) and y′′ ∈Rp

=},
y = 0 if yq ≥ 0, q = 1,2 · · · , p and Conv stands
for convex hull.

Definition 4 (Supported ND vector).
Let y denote a non-dominated criterion vector.
Then, if y is on the boundary of Y =, y is a
supported non-dominated criterion vector. Oth-
erwise, y is an unsupported non-dominated cri-
terion vector.

Definition 5. (Supported-extreme ND vec-
tor) Let y be a supported non-dominated crite-
rion vector. Then, y is a supported-extreme vec-
tor if it is an extreme point of Y =. Otherwise,
y is a supported-nonextreme vector.

Inverse images of supported non-dominated
criterion vectors are said to be supported effi-
cient points and inverse images of unsupported
non-dominated criterion vectors are said to be
unsupported efficient points.

Theorem 2 (Efficiency). The solution x∈
Conv(X) is efficient iff there exists

λ∈Λ =
{
λ∈Rp : λq > 0, q = 1,2, · · · , p

and
p∑

q=1

λq = 1
}

such that x minimizes the weighted-sum linear
programming min{λCT x : x∈X}.

2. Outline of the Algorithm
This section describe an algorithm to obtain
all supported non-dominated vectors in a bi-
criteria minimum cost flow problem. The algo-
rithm makes use of the connectedness of the
solutions associated with directed cycles of cost
zero in residual networks. This assertion is
proved in this section.
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Definition 6. Let x′ and x′′ be two efficient
solutions for problem (1) and G(x′) the resid-
ual network with respect to the flow x′. x′′ is
said to be a cycle-adjacent solution of x′ if x′′ it
is obtained from x′ augmenting δ units of flow
in the cycle corresponding to a directed cycle,
W in G(x′), with cost zero, where δ = min{rij :
(i, j) ∈ W}. The solution obtained from aug-
menting δ1 units of flow in this cycle, where
0 < δ1 < δ, is called cycle-intermediate solution
of (x′, x′′).

Proposition 1. Let x′ and x′′ be two effi-
cient solutions for problem (1). If x′′ is a cycle-
adjacent solution of x′ then either x′ is a cycle-
adjacent solution of x′′ or a cycle-intermediate
solution of (x′′, x′′′), where x′′′ is a cycle adja-
cent solution of x′′.

Proof. If x′′ is a cycle-adjacent solution of x′

then there is a cycle, i1 − a1 − i2 − a2 · · · − is −
as− i1, in the network G such that augmenting
the flow δ units along this cycle leads to the
the solution x′′. Consider the solution x′′ and
the former cycle with an opposite orientation,
i1−as−is · · ·−a2−i2−a1−i1. The same δ units
of flow in this cycle lead to x′. If W is the corre-
sponding directed cycle in the residual network,
G(x′′) and δ = min{rij : (i, j) ∈ W} then x′ is
cycle-adjacent. If δ < min{rij : (i, j) ∈W}, x′ is
a cycle-intermediate solution of (x′′, x′′′), where
x′′′ is a cycle-adjacent solution of x′′. Q.E.D.

The following example shows two solutions x′

and x′′ such that x′′ is cycle adjacent of x′ but
x′ is not cycle-adjacent of x′′.

Example 2.1. Consider the bi-criteria flow
problem in Figure 4. The solutions a) and b)
in Figure 2 are efficient solutions. Solution a) is
a cycle-adjacent solution of b) since the cycle
1 − 3 − 5 − 4 − 2 − 1 of cost zero has δ =
min{4,1,5,5,9}= 1 and this cycle leads to solu-
tion a). The residual network associated with
the efficient solution a) has three cycles of cost
zero: 1 − 2 − 4 − 5 − 3 − 1, 1 − 3 − 2 − 1 and
2−4−5−2. None of these cycles leads to solu-
tion b) but passing trough the first cycle one
unit of flow the solution b) is obtained. Thus b)
is a cycle-intermediate solution.
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(c) (d)
Figure 2 Efficient solutions a) and b) and residual

networks c) and d), respectively.

Proposition 2. Let x′ and x′′ be two effi-
cient solutions corresponding to two adjacent-
STSs solutions for problem (1). If x′′ is a cycle-
adjacent solution of x′ then x′ is also a cycle-
adjacent solution of x′.

Proof. Consider the STSs STS′ and STS′′

associated with x′ and x′′, respectively. If STS′

and STS′′ are adjacent then there exists an arc
(k, l) that when it is added to the tree T ′ of
STS′ creates a cycle, W , with the same direc-
tion as (k, l). An outcoming out arc (p, q) is then
identified sending through this cycle the max-
imum amount of flow such that the resulting
solution, x′′, remains feasible. Thus, this cycle is
an augmenting cycle such that the correspond-
ing cycle in the residual network G(x′) leads to
x′′ sending the maximum amount of flow and,
therefore, x′′ is a cycle-adjacent solution of x′.
To prove that x′ is also a cycle-adjacent solu-
tion of x′′ consider the cycle corresponding to
W with reverse direction, obtained when the
arc (p, q) to the tree T ′′ and the arc (k, l) comes
out. This cycle is an augmenting cycle such that
the corresponding cycle in the residual network
G(x′′) leads to x′ with maximum flow. Therefore
x′ is a cycle-adjacent solution of x′′. Q.E.D.

Definition 7. A cycle-sequence is a sequence
of efficient solutions x(1), · · · , x(p) such that for
each pair (x(q), x(q+1)) x(q+1) is a cycle-adjacent
solution of x(q), q = 1,2, · · · , p − 1. A solution
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x′ is said to be in a cycle-sequence x(1), · · · , x(p)

if x′ is one of the solution x(1), · · · , x(p) or x′

is a cycle-intermediate solution of (x(q), x(q+1)),
q = 1,2, · · · , p− 1.

From Definition 4 and Theorem 2 the sup-
ported non-dominated vectors are over the
boundary of a polygon (see Figure 3). Next we
show that the supported non-dominated points
are connected.

f1HxL

f2HxL

y '

y ''

Figure 3 .

Theorem 3. Let y′ = f(x′) and y′′ = f(x′′)
be two supported-extreme non-dominated vec-
tors in the same line segment from Y = bound-
ary. Then any supported non-dominated vectors
in the line segment [y′, y′′] is image of an effi-
cient solution in a cycle-sequence (x′, x′′).

Proof. Consider two supported-extreme non-
dominated vectors y′ = g(x′) and y′′ = g(x′′)
(see Figure 3). It is known from linear program-
ming that x is an optimal solution for the prob-
lem

min f2(x) = f2(x′)+ d(f1(x)− f1(x′))
subject to : x∈X

0≤ x≤ u
(2)

if and only if y = f(x) is in the line segment
[y′, y′′]. Thus both x′ and x′′ are optimal flows.
Besides, there is no optimal solution, x′′′, such
that f1(x′′′) < f1(x′′).

First we prove that for all optimal solu-
tions x(1), x(2) of (2) either (x(1), x(2)) is a

cycle-sequence or x(2) is in a cycle-sequence
(x(1), x(3)). The residual network, G(x(1)), has
at least one cycle of cost zero; otherwise, con-
sidering x(1) as the best flow for this prob-
lem, the second best flow (computed for exam-
ple by using the second best network flow algo-
rithm Hamacher (1995)) would have a cost
greater than the cost of the flow x(1), but this
would mean that problem (2) had only one
optimal solution, which is not true. Consider a
cycle-adjacent solution, x(1,1), of x(1). If x(1,1) =
x(2) or x(2) is a cycle-intermediate solution of
(x(1), x(1,1)) then our prove is done. Otherwise,
consider the augmenting flow of δ(1) = min{rij :
(i, j) ∈W (1)} units that leads to the flow x(1,1)

through the cycle corresponding to the cycle of
cost zero W (1) in G(x(1)). Consider the parti-
tion of X into two sets, B(1) and B(2), according
with the direction of the cycle in the network
G:

(1) if its direction is the same as (i, j), let B(1) =
{x : x∈X and 0≤ xij ≤ aij}, where aij is the
flow of the arc (i, j) in solution x(1)

(2) otherwise B(1) = {x : x ∈ X and aij ≤ xij ≤
uij}

and B(2) = X \B(1), x(1) ∈B(1), x(1,1) ∈B(2) and
x(2) is either in B(1) or B(2).

a) If x(2) ∈B(1), consider x(1) as the best solution
of the problem min

x∈B(1)
f2(x) and find the second

best solution, x(1,2), for this problem (at least
x(2) exists). If this solution is x(2) or x(2) is in
the cycle-sequence (x(1), x(1,2)) then the proof
is done. Otherwise, consider the augment-
ing flow of δ(1,2) = min{ri1j1 : (i1, j1)∈W (1,2)}
units that leads to the flow x(1,2) through the
cycle corresponding to the cycle of cost zero
W (1,2) in G(x(1)). Consider the partition of
B(1) into sets B(1,1) and B(1,2) as in 1.

b) if x(2) is in B(2) consider x(1,1) as the best solu-
tion for the problem min

x∈B(2)
f2(x) and compute

the second best solution x(1,1,1). If x(1,1,1) =
x(2) or x(2) is the chain (x(1,1), x(1,1,1)) then the
prove is done. Otherwise, consider the aug-
menting flow of δ(1,1,1) = min{ri2j2 : (i2, j2) ∈
W (1,1,1)} units that leads to the flow x(1,1,1)

through the cycle corresponding to the cycle
of cost zero W (1,1,1) in G(x(1,1)). Consider the
partition of B(2) into sets B(2,1) and B(2,2) as
in 1.
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Repeating this process we will find a cycle-
sequence (x(1), x(3)) such that x(2) = x(3) or such
that x(2) is in the chain (x(1), x(3)), since before
find a solution with worse cost the second best
algorithm finds all solutions with the optimal
cost.

We can now say that any optimal solution
x of (2)is in a cycle-sequence (x′, x′′). In fact
we know that x is in a cycle-sequence (x′, x′′′)
and the cycle-sequence (x′, x′′) including the
solutions of both cycle-sequences (x′, x′′′) and
(x′′′, x′′).

Q.E.D.

The algorithm to find all supported non-
dominated vectors proposed is stated as follows.
1. Compute the optimal value, f∗1 (x), of the

problem min
x∈X

f1(x). The negative cycle algo-
rithm can be used in this step.

2. Compute the optimal value, f∗2 (x), of the
problem min

x∈X
f1(x). The negative cycle algo-

rithm (NCA) can also be used in this step.
3. Compute all the non-dominated supported-

extreme vectors, i.e., the extreme points of
the set Conv(ND(Y ) + R2

=. This can be
done using, for example, a dichotomic search
or a primal-dual algorithm for the bi-criteria
minimum cost flow network problem (see
Lee and Pulat (1991) ).

4. For two consecutive extreme supported non-
dominated vectors, say y′ and y′′, compute
the objective function that leads to have y′

and y′′ as two alternative optima.
5. Look at the residual network for the cycles

with cost zero. This leads to all the alterna-
tive optimal in segment line [y′, y′′].

6. Repeat for all the consecutive ND solutions.

3. Illustrative example
1. We begin by computing the optimal value

for the problem with the first criteria
f1(x) = 15x12 + 26x13 + 25x23 + 23x34 +
12x35 +25x45 using the cycle-canceling algo-
rithm (see Ahuja et al. (1993)). x = (x12 =
7, x13 = 3, x23 = 0; x24=7, x34 = 0, x35 = 3,
x45 = 7 is a feasible flow in the network (Fig-
ure 6 (a)). The residual network (Figure 6
(b)) has only one negative cycle, the cycle
1−3−5−4−2−1. δ = min{2,3,7,7,7}= 2.
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Figure 4 A bi-criteria example.

Augmenting two units of flow in the cycle
the solution in Figure 6 (c) is obtained. The
residual cycle associated with this solution,
x(1) = (5,5,0,5,0,5,5), is in Figure 6 (d) and
it has no negative cycle. Therefore this is
an optimal solution. The optimal value is
f∗1 (x(1)) = 390 and f∗2 (x(1)) = 455.

2. Second the optimal value for the problem
with the second criteria, f1(x) = 2x12 +
19x13+10x23+15x24+22x34+27x35+28x45,
is computed. Consider the same feasible
solution as in 1. The residual network, in
Figure 7 (b), has two negative cycles: 1 −
2 − 3 − 1 and 2 − 3 − 5 − 4 − 2. We con-
sider the first cycle. Augmenting δ = 2 units
in this cycle the solution in Figure 7 (c) is
obtained. The associated residual network,
Figure 7 (d), has one negative cycle, the
cycle 2 − 3 − 5 − 4 − 2. Augmenting δ = 1
units of flow in this cycle the solution x(91) =
(10,0,4,6,0,4,6) is obtained and this is the
optimal solution. We have f(x(91) = y(91) =
(448,426)

3. The vectors y(1) and y(91) are in the same
straight line, 1

3
f1(x) + 2

3
f2(x) = 19

3
x12 +

64
3
x13+15x23+10x24+ 67

3
x34+22x35+27x45.

Consider the minimum flow problem with
the same constraints as the initial problem
and this function as objective function. All
the vectors y = (y1, y2) in the line between
y(1) and y(91) are non-dominated vectors and
the corresponding x solutions such that y =
f(x) are optimal solutions for this problem.
Therefore, the residual networks associated
with these points have no negative cycle.
Next, all the non-dominated vectors are
found considering first the solution x((1)) =
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(5,5,0,5,0,5,5), then all the solutions com-
ing when the flow is augmented by δ1 units,
δ1 = 1,2, · · · , δ, δ := min{rij : (i, j) ∈W}, in
the cycle, W , with cost zero (see Figure 5).

The residual network associated with the
solution x(1), Figure 8 (b), has three cycles
with cost zero: 1− 2− 3− 1, 1− 2− 4− 5−
3 − 1 and 3 − 5 − 4 − 2 − 3. The flow can
be augmented until 4, 2 and 1 units in the
first, second and third cycles, respectively.
The optimal solutions 28,52,71 and 85 are
obtained in the first cycle, 25 and 47 in the
second cycle and 5 in the third cycle.

Consider the residual network (Figure 8
(f)) associated with solution 5. That net-
work has also three cycles with cost zero:
1− 2− 3− 1, 1− 2− 4− 5− 3− 1 and 2−
4 − 5 − 3 − 2. The flow can be augmented
until 3, 3 and 1 units in the first, second and
third cycle, respectively. The optimal solu-
tions 32,56 and 75 are obtained in the first
cycle, 28, 49 and 66 in the second cycle and
1 in the third cycle.

Consider now the residual network (Fig-
ure 9 (a)) associated with solution 47. That
network has three cycles with cost zero: 1−
2−3−1, 1−3−5−4−2−1 and 2−3−5−
4− 2. The flow can be augmented until 3,
2 and 3 units in the first, second and third
cycles, respectively. The optimal solutions
66,80 and 89 are obtained in the first cycle,
25 and 1 in the second cycle and 49, 52 and
56 in the third cycle.

The residual network (Figure 9 (d)) asso-
ciated with solution 89 has two cycles with
cost zero: 1− 3− 2− 1 and 2− 3− 5− 4− 2.
The flow can be augmented until 3 and 1
units in the first and second cycles, respec-
tively. The optimal solutions 80,66 and 47
are obtained in the first cycle, 91 in the sec-
ond cycle.

The residual network (Figure 9 (f)) asso-
ciated with solution 91 has three cycles with
cost zero: 1− 3− 2− 1, 1− 3− 5− 4− 2− 1
and 2− 4− 5− 3− 2. The flow can be aug-
mented until 4, 2 and 1 units in the first, sec-
ond and third cycles, respectively. The opti-
mal solutions 82,68,49 and 25 are obtained
in the first cycle, 85 and 75 in the second
cycle and 89 in the third cycle.

The residual network (Figure 9 (h)) asso-
ciated with solution 75 has three cycles with
cost zero: 1− 2− 4− 5− 3− 1, 1− 3− 2− 1
and 2− 4− 5− 3− 2. The flow can be aug-
mented until 2, 3 and 3 units in the first,
second and third cycles, respectively. The
optimal solutions 85 and 91 are obtained in
the first cycle, 56, 32 and 5 in the second
cycle and 71, 68 and 66 in the third cycle.

The residual network (Figure 10 (b)) asso-
ciated with solution 85 has four cycles with
cost zero: 1− 2− 4− 5− 3− 1, 1− 3− 2− 1,
1− 3− 5− 4− 2− 1 and 2− 4− 5− 3− 2.
The flow can be augmented until 1, 4, 1 and
2 units in the first, second, third and fourth
cycles, respectively. The optimal solutions
91 is obtained in the first cycle, 71, 52, 28
and 1 in the second cycle, 75 in the third
cycle, 82 and 80 in the fourth.

The residual network (Figure 10 (d)) asso-
ciated with solution 66 has four cycles with
cost zero: 1− 2− 3− 1, 1− 3− 2− 1, 1− 3−
5− 4− 2− 1 and 2− 3− 5− 4− 2. The flow
can be augmented until 2, 1, 3 and 3 units
in the first, second, third and fourth cycles,
respectively. The optimal solutions 80 and
89 are obtained in the first cycle, 47 in the
second cycle, 49, 28 and 5 in the third cycle
and 68, 71 and 75 in the fourth cycle.

The residual network (Figure 10 (e)) asso-
ciated with solution 80 has four cycles with
cost zero: 1− 2− 3− 1, 1− 3− 2− 1, 1− 3−
5−4−2−1 and 2−3−5−4−2. The flow can
be augmented until 1, 2, 3 and 3 units in the
first, second, third and fourth cycles, respec-
tively. The optimal solutions 89 is obtained
in the first cycle, 66 and 47 in the second
cycle, 68, 52 and 32 in the third cycle and
82 and 85 in the fourth cycle.

The residual network (Figure 10 (g)) asso-
ciated with solution 32 has four cycles with
cost zero: 1− 2− 3− 1, 1− 2− 4− 5− 3− 1,
1− 3− 2− 1 and 2− 4− 5− 3− 2. The flow
can be augmented until 2, 3, 1 and 2 units
in the first, second, third and fourth cycles,
respectively. The optimal solutions 56 and
75 are obtained in the first cycle, 52, 68 and
80 in the second cycle, 5 in the third cycle
and 28 and 25 in the fourth cycle.
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The residual network (Figure 11) associ-
ated with solution 28 has four cycles with
cost zero: 1− 2− 3− 1, 1− 2− 4− 5− 3− 1,
1− 3− 5− 4− 2− 1 and 2− 4− 5− 3− 2.
The flow can be augmented until 4, 1, 1 and
2 units in the first, second, third and fourth
cycles, respectively. The optimal solutions
49, 68, 82 and 91 are obtained in the first
cycle, 32 in the second cycle, 1 in the third
cycle and 28 and 32 in the fourth cycle.

1

85 47 5

28

52

71

25

80 89 56 75 66

91

25

32

32

56

28

49

66

80

49

52

49

68

82

85

68 71

82

52

68

28

82 71

i

Figure 5 Connection between solutions.

Conclusions
This paper shows that the set of supported non-
dominated vectors in integer bi-criteria flow
problem is connected. At it presents an algo-
rithm for computing all such supported points.
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Figure 6 Computing f∗1 (x)(a) Feasible flow; (b) Residual network; (c) ; (d)
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Figure 7 Computing f∗2 (x) (a) Feasible flow. (b) (c) ; (d)
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Figure 8 Computing f∗2 (x) (a) Feasible flow. (b) (c) ; (d)
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Figure 9 Computing f∗2 (x) (a) Feasible flow. (b) (c) ; (d)



Eusébio and Figueira: Bi-criteria network flows
Working Paper 2, pp. 1–14, 2007 CEG-IST 13

i j

1

3

2 4

5

(cij, rij)bi bj

(
19

3

, 2
)

(−
19

3

, 8
)

( 6
4

3 , 3)(
−

6
4

3 , 2)

(
−

15
,4)

(10, 3)

(−10, 4)

(
6
7

3
, 8

)

(−22, 6
)

(27, 4)

(
−

27, 4)

i j

1

3

2 4

5

λ(c1ij − c2ij) + c2ij

[lij, uij ]

19

3

[0,
10

] 8

64
3

[0,5] 2

1
5

[0
,4

]
1

10

[0,7] 7

6
7

7

[0
,8
]

0

22

[0,6
] 3

27[0,8]
7

i

i j

1

3

2 4

5

(cij, rij)bi bj

(
19

3

, 1
)

(−
19

3

, 9
)

( 6
4

3 , 4)(
−

6
4

3 , 1)

(
−

15
,4)

(10, 2)

(−10, 5)

(
6
7

3
, 8

)

(22,
1)

(−22, 5
)

(27, 3)

(
−

27, 5)

i j

1

3

2 4

5

λ(c1ij − c2ij) + c2ij

[lij, uij ]

19

3

[0,
10

] 9

64
3

[0,5] 1

1
5

[0
,4

]
2

10

[0,7] 7

6
7

7

[0
,8
]

0

22

[0,6
] 3

27[0,8]
7

i

(a) (b)

i j

1

3

2 4

5

(cij, rij)bi bj

(
19

3

, 1
)

(−
19

3

, 9
)

( 6
4

3 , 4)(
−

6
4

3 , 1)

(
−

15
,4)

(10, 2)

(−10, 5)

(
6
7

3
, 8

)

(22,
1)

(−22, 5
)

(27, 3)

(
−

27, 5)

i j

1

3

2 4

5

λ(c1ij − c2ij) + c2ij

[lij, uij ]

19

3

[0,
10

] 9

64
3

[0,5] 1

1
5

[0
,4

]
2

10

[0,7] 7

6
7

7

[0
,8
]

0

22

[0,6
] 3

27[0,8]
7

i

i j

1

3

2 4

5

(cij, rij)bi bj

(
19

3

, 2
)

(−
19

3

, 8
)

( 6
4

3 , 3)(
−

6
4

3 , 2)

(15
,3)

(
−

15
,1)

(−10, 7)

(
6
7

3
, 8

)

(22,
3)

(−22, 3
)

(27, 1)

(
−

27, 7)

i

(c) (d)

i j

1

3

2 4

5

(cij, rij)bi bj

(
19

3

, 1
)

(−
19

3

, 9
)

( 6
4

3 , 4)(
−

6
4

3 , 1)

(15
,2)

(
−

15
,2)

(−10, 7)

(
6
7

3
, 8

)

(22,
3)

(−22, 3
)

(27, 1)

(
−

27, 7)

i j

1

3

2 4

5

λ(c1ij − c2ij) + c2ij

[lij, uij ]

19

3

[0,
10

] 6

64
3

[0,5] 4

1
5

[0
,4

]
2

10

[0,7] 4

6
7

7

[0
,8
]

0

22

[0,6
] 6

27[0,8]
4

i

i j

1

3

2 4

5

(cij, rij)bi bj

(
19

3

, 1
)

(−
19

3

, 9
)

( 6
4

3 , 4)(
−

6
4

3 , 1)

(15
,2)

(
−

15
,2)

(−10, 7)

(
6
7

3
, 8

)

(22,
3)

(−22, 3
)

(27, 1)

(
−

27, 7)

i j

1

3

2 4

5

λ(c1ij − c2ij) + c2ij

[lij, uij ]

19

3

[0,
10

] 6

64
3

[0,5] 4

1
5

[0
,4

]
2

10

[0,7] 4

6
7

7

[0
,8
]

0

22

[0,6
] 6

27[0,8]
4

i

(e) (f)

i j

1

3

2 4

5

(cij, rij)bi bj

(
19

3

, 4
)

(−
19

3

, 6
)

( 6
4

3 , 1)(
−

6
4

3 , 4)

(15
,2)

(
−

15
,2)

(10, 3)

(−10, 4)

(
6
7

3
, 8

)

(−22, 6
)

(27, 4)

(
−

27, 4)

i j

1

3

2 4

5

λ(c1ij − c2ij) + c2ij

[lij, uij ]

19

3

[0,
10

] 6

64
3

[0,5] 4

1
5

[0
,4

]
0

10

[0,7] 6

6
7

7

[0
,8
]

0

22

[0,6
] 4

27[0,8]
6

i

i j

1

3

2 4

5

(cij, rij)bi bj

(
19

3

, 4
)

(−
19

3

, 6
)

( 6
4

3 , 1)(
−

6
4

3 , 4)

(15
,2)

(
−

15
,2)

(10, 3)

(−10, 4)

(
6
7

3
, 8

)

(−22, 6
)

(27, 4)

(
−

27, 4)

i j

1

3

2 4

5

λ(c1ij − c2ij) + c2ij

[lij, uij ]

19

3

[0,
10

] 6

64
3

[0,5] 4

1
5

[0
,4

]
0

10

[0,7] 6

6
7

7

[0
,8
]

0

22

[0,6
] 4

27[0,8]
6

i

(g) (h)
Figure 10 Computing f∗2 (x) (a) Feasible flow. (b) (c) ; (d)
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Figure 11 Computing f∗2 (x) (a) Feasible flow. (b) (c) ; (d)


