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Abstract

This paper presents a method for identifying all the efficient solutions and
non-dominated vectors for integer bi-criteria “minimum cost” network
flow problems. The method combines a network simplex algorithm, the
ε-constraint method and a branch-and-bound algorithm. The set of all
non-dominated vectors in the criterion space is determined by solving an
ε-constraint problem with branch-and-bound techniques. By exploring
the branch-and-bound then all the efficient solutions can be defined. The
main advantage of the proposed method concerns the identification of
non-integer solutions exploiting only network structures. Computational
results are also reported in this paper.

Keywords: Multicriteria linear and integer programming, Bi-criteria
network flows, Network simplex algorithm, Efficient/non-dominated so-
lutions
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Introduction

Studies of the characterization of the efficient set and design of new approaches
for multiple criteria combinatorial problems are scarce. There are, of course, many
questions which remain open in this field (see [8] for a review). In this paper a
method for identifying the non-dominated vectors set and the efficient solutions set
for the bi-criteria “minimum cost” network flow problem is presented. The method
is based on ε-constraint and branch-and-bound techniques. This method is also valid
for more general linear integer bi-criteria problems, but in such cases LP-relaxation
must be solved by linear programming algorithms that may not be very efficient.
The present paper shows how the LP-relaxation can be easily computed exploiting
the particular structure of networks and continues the work [6]. The method has
been implemented and tested and the results are shown in Section 5. It is well
known that, in general, the number of non-dominated vectors is significantly fewer
than the number of efficient solutions (see [4]) and the proposed algorithm can be
used to corroborate this fact as it can be seen in Section 4.

The paper starts with section 1 where definitions and notation, required in the
remain sections, are introduced. Section 2 contains a short presentation of the
network simplex method. The proposed method is presented in Section 3 and it is
illustrated in section 4. Some computational results are reported in Section 5.

1 Concepts: Definitions and notation

Let G = (S,A) be a directed and connected graph, where S is a finite set of nodes or
vertices with cardinality |S| = m, and A is a collection of ordered pairs of elements
of S called arcs, with cardinality |A| = n.

A graph G′ = (S ′,A′) is called a subgraph of G = (S,A) if S ′ ⊆ S and A′ ⊂ A.
It is a spanning subgraph of G if S ′ = S. A path P is a sequence of vertices and
arcs, i1−a1− i2−a2− . . .− is−1−as−1− is, without repetition of vertices and where
for which 1 ≤ k ≤ s− 1 either ak = (ik, ik+1) ∈ A, or ak = (ik+1, ik) ∈ A. A directed
path is a path without backwards arcs. A cycle C is a closed path where the only
repeated vertex is the starting and the end point that coincide. A directed cycle is
a closed directed path. When in a given graph G there is always a path linking any
two different vertices of G, the graph is called connected. A tree T = (V, E) is a
subgraph without cycles where V ⊆ S and E ⊂ A. A tree T is called a spanning
tree when it spans the set of vertices S of G, that is V = S. A spanning tree is
denoted by T = (S, E). Consider (k, l) a given arc belonging to the set A but not in
E . Then, there is a unique cycle C when the arc (k, l) is added to E . The orientation
of C is the same as (k, l). In a cycle C a partition of its vertices can be made by
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separating the arcs having the same orientation as C from the arcs in the opposite
direction. The collection of all possible cycles of this type is called fundamental cycle
basis (for more details about network optimization, see [2, 1]). All these definitions
are essential for a better understanding of the network simplex method, presented
in Section 2.

A directed graph with numerical values assigned to its vertices and/or arcs is
called network. Let G = (S,A) be a network with two “costs” c1ij and c2ij , a lower
bound lij and an upper bound or capacity uij associated with every arc (i, j) ∈ A.
The numerical values lij and uij respectively denote the minimum and the maximum
amount that must flow on the arc (i, j). Finally, let xij be the amount of flow on the
arc (i, j). A numerical value bi is also associated with each vertex i ∈ S denoting
its supply (if bi > 0) or its demand (if bi < 0). A vertex with bi = 0 is called a
transshipment vertex. The bi-criteria “minimum cost” network flow problem can be
stated as follows:

min f1(x) =
∑

(i,j)∈A
c1ijxi,j

min f2(x) =
∑

(i,j)∈A
c2ijxij

subject to :∑

j | (i,j)∈A
xij −

∑

k | (k,i)∈A
xki = bi, ∀i ∈ S

lij ≤ xij ≤ uij, ∀(i, j) ∈ A

(1)

In what follows, the assumptions below must be taken into account: The graph
is directed and connected; all the numerical values for the costs, lower and upper
bounds on the arcs and supplies/demands on the vertices are integral and finite;
the condition

∑
i∈S bi = 0 must be fulfilled; the integer bi-criteria “minimum cost”

network flow problem has at least two feasible solutions and the minimum values
for the individual objective functions are different.

Problem (1) can be presented in a more dense form as follows:

“ min ” F (x) = (f1(x), f2(x))
subject to :

x ∈ X ←
{
x ∈ Rm|Ax = b, l ≤ x ≤ u

}
,

(2)

where, x = (xi1j1, . . . , xinjn) ∈ Rn, is the vector of decision variables; X is the set of
feasible solutions of (1); A is the m× n node-arc incidence matrix; l is the vector of
lower bounds; u is the vector of upper bounds; b is the vector of supplies/demands
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on vertices; F (x) =
(
f1(x), f2(x)

)T
is the vector of objectives to be “minimized”;

Y = F (X) is the set of all feasible vectors y in R2, where y = (y1, y2)
T with

yq = fq(x) for q = 1, 2.

Some concepts of multi-criteria programming must also be reviewed for a better
understanding of the next sections (see [13, 12] and [5]). Dominance is a key concept
in multiple criteria decision analysis. Let us define this concept for the general
multiple criteria case with r criteria.

Definition 1.1 (Dominance ) Consider y′ and y′′ two criterion vectors. Then, y′

dominates y′′ iff y′ ≤ y′′ and y′ �= y′′, that is, y′q ≤ y′′q for all q = 1, . . . , r with at
least one strict inequality.

Definition 1.2 (Non-dominated vector) A vector y′ ∈ Y is called non-dominated
(ND) iff there does not exist another vector y ∈ Y such that y ≤ y′ and y �= y′. Oth-
erwise, y′ is a dominated criterion vector.

A distinction between efficient solutions in decision variable space and non-
dominated vectors in criteria space can be made. Efficient solutions are crucial
for the usefulness of multiple criteria methods. This concept was first introduced
by [10]. Thus, these solutions are called Pareto optimal, and also non-inferior or
functional efficient solutions.

Definition 1.3 (Efficient solution) A solution x′ ∈ X is said to be efficient iff
it is impossible to find another solution x ∈ X with a better evaluation of a given
criterion without deteriorating the evaluations of at least another criterion.

In multiple criteria linear integer programming, two types of non-dominated
vectors can be distinguished: supported and unsupported non-dominated vectors.

Let
Y � = Conv(ND(Y ) +Rp

�)

where, Rp
� = {y ∈ Rp|y � 0} and ND(Y ) + R

p
� = {y ∈ Rp : y = y′ + y′′, y′ ∈

ND(Y ) and y′′ ∈ Rp
�}, y � 0 if yq ≥ 0, q = 1, 2 · · · , p and Conv stands for convex

hull.
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Definition 1.4 (Supported ND) Let y denote a non-dominated criterion vector.
Then, if y is on the boundary of Y �, y is a supported non-dominated criterion vector.
Otherwise, y is an unsupported non-dominated criterion vector.

Definition 1.5 (Supported-extreme ND) Let y be a supported non-dominated
criterion vector. Then, y is a supported-extreme vector if it is an extreme point of
Y �. Otherwise, y is a supported non-extreme vector.

Inverse images of supported non-dominated criterion vectors are said to be sup-
ported efficient points and inverse images of unsupported non-dominated criterion
vectors are said to be unsupported efficient points.

Let: ND(Y ) be the set of all the non-dominated vectors of Y ; NDS(Y ) be the
set of all the supported non-dominated vectors of Y ; NDU(Y ) be the set of all the
unsupported non-dominated vectors of Y , that is, NDU(Y ) = ND(Y ) \NDS(Y );
NDE(Y ) be the set of all supported-extreme non-dominated vectors; EF (X) be
the set of all the efficient solutions of X; EFS(X) be the set of all supported
efficient solutions; EFU(X) be the set of all unsupported efficient solutions, that is,
EFU(X) = EF (X) \ EFS(X).

In multiple criteria linear programming several techniques (scalar optimization
problems) can be used in order to characterize efficient solutions (non-dominated
vectors) like, for example, weighted-sum approaches, Tchebycheff metrics based
methods, ε-constraint methods, and so on (see [12]). Among the existing meth-
ods, the ε-constraint approach can be easily used in multiple criteria integer prob-
lems without any additional restrictions. Efficient solutions can be characterized as
optimal solutions for the ε-constraint problem.

The ε-constraint problem associated with bi-criteria (1) can be stated as follows,

min f1(x)
subject to :

x ∈ X
f2(x) ≤ ε,

(3)

where, ε is a scalar. It varies among all the values for which (3) remains feasible. In
order to identify a set of efficient solutions, a sequence of problems (3) is solved for
each different value of ε ([3]). For integer bi-criteria linear programming problems,
the entire non-dominated set ND(Y ) can be easily determined by solving a sequence
of problems (3).
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Theorem 1.1 ([7]) Consider ε ≥ min f2(x). If the solution x∗ solves problem (3)
and when x∗ is not unique it leads to a minimal value for criterion f2(x), then x∗

solves (1), that is, x∗ is an efficient solution for (1).

Proof.
Suppose now that x∗ does not solve the problem. Another solution x̂ can then be

considered so that only one of the following two cases can occur:

• f1(x̂) < f1(x∗) and f2(x̂) ≤ f2(x∗) which contradicts the fact that x∗ solves (3), or

• f2(x̂) < f2(x∗) and f1(x̂) ≤ f1(x∗), which contradicts the hypothesis that x∗ is
optimal for (3) with the smallest value for f2(x).

The theorem is proved by the two cases above.

Problem (3) will be used in the algorithm outlined in Section 3 to determine all
the non-dominated vectors and all efficient solutions for problem (1).

2 Network simplex method: A remind

Let us now succinctly recall the network simplex method on minimum cost network
flow problems (see Figure 1). The basic idea for any variant of the network simplex
method is a Spanning Tree Structure (STS), (T , L, U). Such a structure (or solution)
is obtained when, for any arc not belonging to this tree, the flow value is fixed at
its lower bound level or at its upper bound level. All the arcs fixed at their lower
bound level belong to the set L, while all the arcs fixed at their upper bound level
belong to the set U . The remaining arcs are those belonging to the spanning tree
T . A minimum cost network flow problem has always at least one STS optimal
solution (see [1]). It is possible to find an optimal STS by shifting from one STS to
another, successively. At each iteration, we exchange a pair of arcs (one arc entering
STS and one arc coming out of STS). Any STS corresponds to one feasible basic
solution in linear programming, and each shift from one STS to another coincides
with one pivoting operation in the standard simplex method. The initialization of
the algorithm consists of finding one feasible STS (or equivalently, a feasible basic
solution in the standard simplex method). Two vectors are associated with this STS,
the flow x (primal solution) and the potential π (dual solution). Each iteration of
the method consists of: (1) identifying one eligible arc (k, l) with (k, l) /∈ T ; (2)
adding the arc (k, l) to T and finding an arc (p, q) coming out of T ; and, updating
STS and the primal and dual solution (x, π).

An arc, (i, j), not belonging to T is said to be eligible if:
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i) Its reduced cost, c̄ij , is strictly negative and its flow is at its lower bound, that
is, c̄ij < 0 and (i, j) ∈ L.

ii) Its reduced cost is strictly positive and its flow is at its upper bound, that is,
c̄ij > 0 and (i, j) ∈ U .

The reduced cost of a given arc (i, j) is defined as follows:

c̄ij = cij − πi + πj,

where, πi and πj are the dual variables associated with the vertices i and j, respec-
tively. It should be noted that for all the arcs (i, j) ∈ T the reduced cost c̄ij = 0.

Simplex method.
{ Computing a minimum cost flow. }
(1)begin
(2) let (T ,L,U) be a starting feasible STS;
(3) let x be the flow and π the dual variable associated with (T ,L,U);
(4) while (not optimal solution) do
(5) begin
(6) select an entering arc (k, l) not in T ;
(7) add (k, l) to T and remove (p, q) from T ;
(8) update the STS and the solutions x and π;
(9) end
(10) end

Figure 1: Network simplex algorithm.

At each iteration, the network simplex method shown in Figure 1 always gives
an integer solution for the minimum cost network flow problem. But it is possible
to obtain non-integer solutions between two adjacent STSs. Let us recall that when
moving from one STS to an adjacent one, an amount of flow, �, must be sent along
the orientation of cycle C. This quantity � is integer. But, what happens if a
non-integer amount of flow is sent along C? It is obvious that a non-integer solution
will be obtained. This solution has exactly |C| non-integer variables, but it does not
define a spanning tree structure. This idea is very important if we wish to obtain
non-integer solutions for the LP-relaxation of problem (3).

6



3 Outline of the method

This section outlines an approach for the search of all the non-dominated vectors,
ND(Y ) and all efficient solutions,EF (X). The method solves a sequence of problems
(3) and uses the branch-and-bound algorithm to determine its integer optimal solu-
tions. Non-dominated vectors are determined by decreasing order of the values for
the second objective function. The potential zones for the search of non-dominated
vectors are identified by a set of triangles built from the supported non-dominated
vectors associated with adjacent STSs. This procedure can be described as follows:

1. Identify two adjacent STSs and the associated non-dominated vectors, y′ =
(y′1, y

′
2) and y′′ = (y′′1 , y

′′
2), suppose that y′2 ≥ y′′2 .

2. If y′ �= y′′ the triangle with vertices y′, y′′ and (y′′1 , y
′
2) is the region of potential

non-dominated vectors since by definition all non-dominated vector y = (y1, y2)
such y′′2 ≤ y2 ≤ y′2 is in this region.

3. For each triangle, search all the non-dominated vectors using a sequence of prob-
lems (3).

a) Solve the problem (3) using ε = y′2 − 0.5. All non-dominated vectors have
integer coordinates in the two-dimensional coordinate system with axes y1 =
f1(x) and y2 = f2(x), therefore there are not non-dominated vectors y =
(y1, y2) such y′2 − 1 < y2 < y

′
2 and all non-dominated vectors in this triangle

have second coordinate less than y′2 − 0.5.

b) If the non-dominated vector found in 3a is y′′ then identify a new pair of adja-
cent STSs and the associated non-dominated vectors and repeat 2, case there
is some, or stop if not. Otherwise let y′′′ = (y′′′1 , y

′′′
2 ) be the non-dominated

vector found in 3a. Solve the problem (3) using ε = y′′′2 − 0.5 and repeat 3b.

This method is actively dependent of the computation of the STSs. The network
simplex method turned out to be fast and strongly enough to avoid cycling and
stalling when built observing some rules such as working with Strongly Feasible
Basis or using the Least Recently Considered entering rule (see [2]).

The main advantage of the algorithm is related to the way in which non-integer
solutions are determined, exploiting only network structures and thus avoiding the
need to solve these problems with LP-codes.

The example presented in Section 4 shows, step by step, how the method works.
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4 An illustrative example

This section illustrates the way how the proposed algorithm works. Consider the
bi-criteria “minimum cost” network flow problem in Figure 2. This example has

i j

1

3

2 4

5

(c1
ij , c

2
ij)

[lij , uij ]

bi bj

(3
,5
)

[0
,1
0]

(8,1)[0,5]

(5,5)

[0,4]

(3,9)

[0,7]

(2
,7
)

[0
,8
]

(10,
2)

[0,6]

(1,4)[0,8]10 -10

Figure 2: A bi-criteria example.

93 feasible solutions that are presented in Table 3 (Appendix A). Among the 93
solutions only 10 are efficient. These 10 efficient solutions correspond one to one to
10 non-dominated vectors . Figure 4 presents all the non-dominated vectors.

First, we shall show how the set NDE(Y ) can be determined by parametric
programming. In the example, NDE(Y ) = {y48, y4, y1, y5} as can be seen in Figure
4. In order to obtain all the vectors, we first identify y48, then y4 and so on. Let us
show how to determine the first two vectors of NDE(Y ), y48 and y4:

• First, f1(x) is minimized. Its optimal value can be obtained at two different
points y48 and y90, where f ∗1 = 96, but only y48 gives the minimal value for
f2(x), f̂2 = 144. Vector y90 is thus discarded and y48 is saved. The STS
corresponding to the vector y48 is presented in Figure 3. The arcs represented
by the lines in bold are those belonging to the spanning tree, T .

• Second, from y48 an adjacent STS leading to the next extreme non-dominated
point of Conv(Y ) must be identified. STSs corresponding to the vectors y4,
y47 and y90 can be reached from y48 by identifying the fundamental cycle basis,
but only vector y4 is interesting. How can this vector be obtained? As we can
see in Figure 4, the slope of the line connecting y48 and y4 is the lowest. In
order to identify this slope we may use the information given by the reduced
costs on the arcs not belonging to T . Let us recall that the slope of the line
connecting y48 to y47 is m1 = 132−144

104−96
= −12

8
= −1.5, while the slope of the

line connecting y48 to y4 is m2 = 135−144
103−96

= −9
7

= −1.286. Both slopes can be
obtained by the ratios r(2, 4) = 6/− 4 = −1.5 and r(4, 5) = 9/− 7 = −1.286,
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respectively. The lowest is the ratio r(2, 4). So, the arc (2, 4) forms a cycle
allowing to move from y48 to y4.

1

2 4

3

5

[0,
10

] 7(3,
5)

[0, 5] 3

(8, 1)

[0
, 8

]
1(2
, 7

)

[0, 6
] 2

(10,
2)

[0, 7] 7

(3, 9) 〈−4, 6〉

[0
,4

]
0

(5
,5

)〈0
,9〉

[0, 8] 8

(1, 4) 〈−
7, 9〉

π1(1) = 0

π1(2) = −3 π1(4) = −10

π1(3) = −8

π1(5) = −18

π2(1) = 0

π2(2) = −5 π2(4) = −8

π2(3) = −1

π2(5) = −3

Figure 3: Primal and dual solutions for y48.

0

f2(x)

f1(x)

(100.33, 137.5)
(104, 137.5)

y48 = (96, 144)

y27 = (100, 138)

y4 = (104, 132)

(104, 144)

y47 = (103, 135)

y31 = (104, 141)

y66 = (103, 144)

f2(x) ≤ 137.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

Figure 4: Points in criteria space.
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1

2 4

3

5
[0,

10
]5

{+2} [0, 7]

5 {+2}

[0
,
8]

3
{−

2}

[0, 6]
2

2 units

a) y4 = (104, 132)

[0, 5]

5 {−2} 1

2 4

3

5
[0,

10
]

7

[0, 5]

3 [0
,
8]

1

[0, 6]
2

b) y48 = (96, 144)

Figure 5: Adjacent spanning tree solutions 4 and 48.

Finally, to complete the illustration of the methods we need to show how the
optimal integer solution for (3) can be determined by using the branch-and-bound
technique and the network simplex algorithm of Figure 1.

This approach can be used to find all non-dominated solutions for problem (1)
as well as a set of non-dominated solutions in a zone of interest. In practice it is
frequent for decision makers to define certain zones of interest for a local search.
The proposed method is appropriate to situations of this kind.

Let us suppose that we need to determine all the non-dominated vectors inside
the triangle formed by the points (96, 144), (104, 144) and (104, 132). Figure 4
presents this triangle. The same triangle is represented in detail on the upper right
corner of Figure 4. Imagine we have already computed vectors y48 and y4 and the
associated STSs. Next step is to identify vector y47 which is the optimal integer
solution of (3), where ε = 137.5. Before reaching vector y47, several steps were
executed:

1. First, consider the problem (3) with ε = 137.5. In our example this problem
is denoted by A, and our list W is updated so that W = {A}. The feasible
region is given by the dark area in the triangle placed on the upper right of
Figure 4.

2. Second, the optimal non-integer solution of A must be determined while A is
removed from W . In order to compute the optimal value of A, a simple tech-
nique can be used. We only need to identify the two nearest extreme vectors
of the non-integer solution for A. These two extreme vectors correspond to
the STSs 48 and 4 (see Figure 4). This means that the non-integer solution for
A is between STSs 48 and 4. STS 48 is on the left of the optimal non-integer
solution while STS 4 is on the right. The cycle allowing to move from 4 to 48
is C = {(1, 2), (2, 4), (3, 4), (1, 3)}, where the arc (k, l) is the arc (1, 3). Figure
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5 presents these two adjacent STSs. The amount sent along C is � = 2. This
means that when we send 2 units from STS 4 along C, STS 48 is reached and
the cost for the second criterion increases in the quantity 144−132 = 12, that
is, an increase of 6 for each unit sent along C. So, if we want an increase of
137.5 − 132 = 5.5 in the second criterion, we must send � = 5.5/6 = 0.9167
along C. In this case we obtain a non-integer solution with exactly |C| = 4
non-integer variables (see Table 5). The branch-and-bound tree is given in
Figure 7.

3. Third, we proceed to a partition of A into two subproblems, B and C. The
branching variable is x(1, 3) = 4.08333. Subproblem B is defined by intro-
ducing constraint x(1, 3) = 5, while subproblem C is defined with the help of
constraint 0 ≤ x(1, 3) ≤ 4. Defining these two subproblems in this way, we can
guarantee that STSs 48 and 4 are always feasible for B and C, respectively.

4. Fourth, we need to determine the bounds for both subproblems, B and C.
Subproblem B has an integer solution. Now, B is the incumbent problem
with cost equal to 104 (see Appendix B and Table 5).

5. Fifth, let us study now subproblem C. Appendix C contains the feasible
region for C in criteria space. Let us recall that STS 48 remains feasible
for subproblem C. So, we can start by using this solution and then move
to 27 which is now a STS, but it is still on the left (or above the line for
f2(x) = 137.5) of the non-integer optimal solution for C. Therefore, we need
to continue in order to obtain a STS on the right of the non-integer optimal
solution for C. When moving to the adjacent solution on the boundary of
Conv(Y ), STS 25 is attained (see Figures 11 and 12 on Appendix C). Now,
we proceed as in 2 and C is added to the list W for further analysis (see also
Figure 6 and Table 5).

6. We proceed in the same manner until the optimal solution is obtained. The
tree shown in Figure 6 gives us all the iterations needed to solve (3) where
ε = 137.5. The corresponding solutions are presented in Table 5.

In the general case, after identifying the several triangles, it is not known where
the non-dominated vectors are, inside each triangle, and we must go through all the
area looking for non-dominated vectors. In our example the triangle has vertices
y48 = (96, 144), (104, 144) and y4 = (104, 132) with the upper vertex with y48

2 = 144
and the lower with y4

2 = 132. Between the straight lines y2 = 143 and y2 = 144 we
know there is not any non-dominated vector since y2 has to be integer. Thus if the
problem (3) is solved with ε = 143.5 the non-dominated vector on the left below the
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IS - Integer Solution

INF - Infeasible Solution

A(48 − 4)

f1 = 100.33

x13 = 50 ≤ x13 ≤ 4

B(4)

f1 = 104

IS

C(25 − 27)

2 ≤ x34 ≤ 80 ≤ x34 ≤ 1

f1 = 100.39

D(42 − 27)

3 ≤ x35 ≤ 60 ≤ x35 ≤ 2

f1 = 100.92

E(26 − 48)

x13 = 40 ≤ x13 ≤ 3

f1 = 100.77

F (26)

f1 = 107

IS

INF

G(47 − 48)

x34 = 1x34 = 0

f1 = 101.06

H(61 − 48)

f1 = 107.92

INF

I(47)

f1 = 103

IS

Optimal

J(30)

f1 = 111

IS

INF

K(27)

f1 = 100

IS

INF

Figure 6: Branch-and-bound iterations.

straight line y2 = 143.5 will be found. This non-dominated vector is y27 = (100, 138)
(see Figure 7). The next non-dominated vector is in triangle below straight line
y2 = 138. Consider ε = 137.5 and solve the problem (3). The non-dominated vector
y47 = (103, 135) is obtained. Finally, the problem (3) with ε = 134.5 give rise to the
non-dominated vector y4 = (104, 132) the lowest vertex of the triangle. Thus our
exploration of this triangle ends and the algorithm moves for the next triangle.

The algorithm computes also all the efficient solutions. As example the al-
gorithm was run for problem in Figure 8. The set of 14 non-dominated vec-
tors: {(290, 356), (292, 350), (293, 331), (295, 325), (296, 306), (298, 300), (299, 281),
(301, 275), (302, 256), (304, 250), (316, 244), (328, 238), (340, 232), (352, 226)} (see
Figure 9) corresponds to a set of 74 efficient solutions (see Table 6). Getting all
efficient solutions takes a larger CPU time. To understand how the algorithm works
consider the problem (3) with ε = 280.5. The branch-and-bound tree is given in Fig-
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Figure 7: Non-dominated vectors.

ure 13 (see Appendix E). There are 3 efficient solutions the ones in nodes 10, 18 and
28. If we intend to compute only the set of non-dominated vectors then the parts
of the tree below nodes 14 and 22 could be cut because in these nodes, f1 = 300.34,
and the adjacent STSs used to compute this value have f2 ≥ 275, which is the
f2 value for the incumbent solution. Then any solution in these branches would
have f1 ≥ 301 and f2 ≥ 275. Therefore it was avoided to continue exploring these
branches searching for a better solution.

5 Computational Experiments

The computational experiments were designed on the basis of a set of 30 instances
for each problem type. Each instance was generated by using the NETGEN network
generator (see [9]) after some changes for this particular problem, the bi-criteria min-
imum cost flow problem. Each problem type has all arcs capacitated with minimum
value 0 and maximum value less or equal to 50. Tables 1 and 2 present the problem
type number (N), average number of nodes (m) and arcs (n) for the 30 instances;
the minimum number (Min), the average number (Av), and the maximum number
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(Max) of non-dominated vectors in each set; the minimum number, the average
number and the maximum number of efficient solutions in each set; the average dif-
ference between the average number of efficient solutions and the average number of
non-dominated vectors (Dif Av); the minimum, average and maximum CPU time,
in seconds, to find all non-dominated vectors and to all the efficient solutions for
each problem set; and the average difference between the average CPU time to find
the efficient solutions and the non-dominated vectors of each set.

The following comments on the results should be pointed out:

1. The CPU time grows with the increasing of the instances size.
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Table 1: Computational results.

ND solutions EF solutions Dif
N m n Min Av Max Min Av Max Av
1 10 25 4 35.50 104 4 37.50 112 2.00
2 10 40 25 85.07 215 27 155.60 1683 70.53
3 20 50 7 44.27 71 7 57.10 170 12.83
4 10 25 37 94.33 174 37 145.17 317 50.83
5 30 60 2 35.27 111 2 42.57 153 7.30
6 30 100 27 80.90 196 35 116.53 364 35.63
7 30 150 72 107.80 184 77 203.00 458 95.20
8 30 200 77 126.97 201 111 249.10 509 122.13
9 40 80 9 32.90 61 9 37.93 81 5.03

10 40 150 30 80.77 146 31 125.20 344 44.43
11 40 200 52 110.13 176 59 189.83 389 79.70
12 40 250 54 123.97 176 66 233.40 460 109.43
13 50 100 6 31.93 58 6 35.50 76 3.57
14 50 200 44 89.23 123 58 125.77 282 36.54

Table 2: Computational results (continuation).

CPU Time (sec.)
ND Solutions Ef Solutions Dif

N Min Av Max Min Av Max Av
1 0.00 0.24 2.45 0.00 0.28 2.50 0.04
2 0.25 3.09 11.11 0.49 4.58 23.75 1.48
3 0.02 1.23 3.14 0.02 1.70 5.19 0.47
4 1.14 35.05 185.28 1.88 52.63 248.58 17.58
5 0.00 1.39 8.58 0.00 1.71 11.55 0.32
6 1.05 22.49 94.70 2.09 32.36 126.06 9.87
7 32.38 150.10 531.80 64.67 247.64 828.92 97.53
8 73.42 452.14 1095.16 127.73 759.50 1801.88 307.35
9 0.09 1.91 5.84 0.17 2.47 7.83 0.57

10 12.39 83.63 236.17 15.39 124.96 405.52 41.32
11 60.33 356.29 765.31 101.48 572.29 1192.19 216.01
12 200.36 961.84 2119.11 267.61 1695.70 3486.17 733.87
13 0.09 3.69 15.03 0.13 4.93 20.64 1.24
14 48.95 229.22 658.89 69.86 363.48 821.34 134.26

2. Dense instances contains more non-dominated and efficient solutions and take
more time for resolution.

3. There is a significant difference between the number of non-dominated vectors
and efficient solutions, which obviously leads to higher CPU time for comput-
ing efficient solutions. The biggest difference between the number of efficient
solutions, and the number of non-dominated solutions occurs for an instance
with 10 nodes and 42 arcs where the former is 1683 and the last 215.
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4. We imposed a CPU time of 1 hour. Only one instance of problem type number
12 approached this time. For this maximum CPU time the available memory
requirements were enough.

Conclusions

Multiple criteria “minimum cost” network flow problems are known to be hard to
solve. [11] proves, for a particular instance with only two criteria, that the number
of extreme non-dominated vectors grows exponentially with the number of vertices
of the network. However, the proposed method appears to be able to find both non-
dominated vectors and efficient solutions for small and medium size instances in a
small amount of time. The method is also of great interest, since the initial searching
region of non-dominated vectors can be broken into small regions, exploring only
the desirable regions, enable its use with intelligent interactive methods helping the
choice of the best solution at any time, according with who has to choose.
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Appendices

A Set of all Feasible Solutions

This appendix contains all the solutions concerning the example presented in Section
6. Efficient solutions (non-dominated vectors) are in bold.

Table 3: Solutions of the bi-criterion network flow on Figure 2.

lij 0 0 0 0 0 0 0
uij 10 5 4 7 8 6 8
Sol. (1,2) (1,3) (2,3) (2,4) (3,4) (3,5) (4,5) f1(x) f2(x)

1 5 5 0 5 0 5 5 125 105
2 5 5 0 5 1 4 6 118 114
3 5 5 0 5 2 3 7 111 123
4 5 5 0 5 3 2 8 104 132
5 5 5 1 4 0 6 4 136 99
6 5 5 1 4 1 5 5 129 108
7 5 5 1 4 2 4 6 122 117
8 5 5 1 4 3 3 7 115 126
9 5 5 1 4 4 2 8 108 135

10 5 5 2 3 1 6 4 140 102
11 5 5 2 3 2 5 5 133 111
12 5 5 2 3 3 4 6 126 120
13 5 5 2 3 4 3 7 119 129
14 5 5 2 3 5 2 8 112 138
15 5 5 3 2 2 6 4 144 105
16 5 5 3 2 3 5 5 137 114
17 5 5 3 2 4 4 6 130 123
18 5 5 3 2 5 3 7 123 132
19 5 5 3 2 6 2 8 116 141
20 5 5 4 1 3 6 4 148 108
21 5 5 4 1 4 5 5 141 117
22 5 5 4 1 5 4 6 134 126
23 5 5 4 1 6 3 7 127 135
24 5 5 4 1 7 2 8 120 144
25 6 4 0 6 0 4 6 114 120
26 6 4 0 6 1 3 7 107 129
27 6 4 0 6 2 2 8 100 138
28 6 4 1 5 0 5 5 125 114
29 6 4 1 5 1 4 6 118 123
30 6 4 1 5 2 3 7 111 132
31 6 4 1 5 3 2 8 104 141
32 6 4 2 4 0 6 4 136 108
33 6 4 2 4 1 5 5 129 117
34 6 4 2 4 2 4 6 122 126
35 6 4 2 4 3 3 7 115 135
36 6 4 2 4 4 2 8 108 144
37 6 4 3 3 1 6 4 140 111
38 6 4 3 3 2 5 5 133 120
39 6 4 3 3 3 4 6 126 129

continued on the next page
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lij 0 0 0 0 0 0 0
uij 10 5 4 7 8 6 8
Sol. (1,2) (1,3) (2,3) (2,4) (3,4) (3,5) (4,5) f1(x) f2(x)

40 6 4 3 3 4 3 7 119 138
41 6 4 3 3 5 2 8 112 147
42 6 4 4 2 2 6 4 144 114
43 6 4 4 2 3 5 5 137 123
44 6 4 4 2 4 4 6 130 132
45 6 4 4 2 5 3 7 123 141
46 6 4 4 2 6 2 8 116 150
47 7 3 0 7 0 3 7 103 135
48 7 3 0 7 1 2 8 96 144
49 7 3 1 6 0 4 6 114 129
50 7 3 1 6 1 3 7 107 138
51 7 3 1 6 2 2 8 100 147
52 7 3 2 5 0 5 5 125 123
53 7 3 2 5 1 4 6 118 132
54 7 3 2 5 2 3 7 111 141
55 7 3 2 5 3 2 8 104 150
56 7 3 3 4 0 6 4 136 117
57 7 3 3 4 1 5 5 129 126
58 7 3 3 4 2 4 6 122 135
59 7 3 3 4 3 3 7 115 144
60 7 3 3 4 4 2 8 108 153
61 7 3 4 3 1 6 4 140 120
62 7 3 4 3 2 5 5 133 129
63 7 3 4 3 3 4 6 126 138
64 7 3 4 3 4 3 7 119 147
65 7 3 4 3 5 2 8 112 156
66 8 2 1 7 0 3 7 103 144
67 8 2 1 7 1 2 8 96 153
68 8 2 2 6 0 4 6 114 138
69 8 2 2 6 1 3 7 107 147
70 8 2 2 6 2 2 8 100 156
71 8 2 3 5 0 5 5 125 132
72 8 2 3 5 1 4 6 118 141
73 8 2 3 5 2 3 7 111 150
74 8 2 3 5 3 2 8 104 159
75 8 2 4 4 0 6 4 136 126
76 8 2 4 4 1 5 5 129 135
77 8 2 4 4 2 4 6 122 144
78 8 2 4 4 3 3 7 115 153
79 8 2 4 4 4 2 8 108 162
80 9 1 2 7 0 3 7 103 153
81 9 1 2 7 1 2 8 96 162
82 9 1 3 6 0 4 6 114 147
83 9 1 3 6 1 3 7 107 156
84 9 1 3 6 2 2 8 100 165
85 9 1 4 5 0 5 5 125 141
86 9 1 4 5 1 4 6 118 150
87 9 1 4 5 2 3 7 111 159
88 9 1 4 5 3 2 8 104 168
89 10 0 3 7 0 3 7 103 162
90 10 0 3 7 1 2 8 96 171
91 10 0 4 6 0 4 6 114 156
92 10 0 4 6 1 3 7 107 165
93 10 0 4 6 2 2 8 100 174

Source :Figueira 2002
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c1(i, j) 3 8 5 3 2 10 1
c2(i, j) 5 1 5 9 7 2 4

Solution x(1, 2) x(1, 3) x(2, 3) x(2, 4) x(3, 4) x(3, 5) x(4, 5) f1(x) f2(x)

A (4-48) 5.91667 4.08333 0 5.91667 1.08333 2 8 100.33331 137.5
B (4) 5 5 0 5 3 2 8 104 132
C (25-27) 6 4 0 6 1.94444 2.05556 7.94444 100.38892 137.5
D (42-27) 6 4 0.08333 5.91667 2 2.08333 7.91667 100.91663 137.5
E (26-48) 6.56667 3.43333 0 6.56667 1 2.43333 7.56667 100.76663 137.5
F (26) 6 4 0 6 1 3 7 107 129
G (47-48) 7 3 0 7 0.27778 2.72222 7.27778 101.05554 137.5
H (61-48) 7 3 1.08333 5.91667 1 3.08333 6.91667 107.91663 137.5
I (47) 7 3 0 7 0 3 7 103 135
J (30) 6 4 1 5 2 3 7 111 132
K (27) 6 4 0 6 2 2 8 100 138

Table 5: Solutions A to K.
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Figure 10: Points in criteria space concerning solution B.
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C Criteria Space for Subproblem C
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Figure 11: Points in criteria space concerning solution C.
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Figure 12: Adjacent spanning tree solutions 25 and 27.
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D Efficient Solutions

Table 6: Efficient solutions of problem in Figure 8.

uij 6 6 5 4 5 4 5 1 6 5
N (1,2) (1,3) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (4,6) (5,6) y1 y2

1 6 2 0 0 4 0 1 1 1 5 290 356
2 6 2 0 1 3 0 1 1 2 4 290 356
3 6 2 0 2 2 0 1 1 3 3 290 356
4 6 2 0 3 1 0 1 1 4 2 290 356
5 6 2 0 4 0 0 1 1 5 1 290 356
6 6 2 1 0 3 0 2 1 1 5 290 356
7 6 2 1 1 2 0 2 1 2 4 290 356
8 6 2 1 2 1 0 2 1 3 3 290 356
9 6 2 1 3 0 0 2 1 4 2 290 356

10 6 2 2 0 2 0 3 1 1 5 290 356
11 6 2 2 1 1 0 3 1 2 4 290 356
12 6 2 2 2 0 0 3 1 3 3 290 356
13 6 2 3 0 1 0 4 1 1 5 290 356
14 6 2 3 1 0 0 4 1 2 4 290 356
15 6 2 4 0 0 0 5 1 1 5 290 356
16 6 2 0 0 4 0 1 0 2 4 292 350
17 6 2 0 1 3 0 1 0 3 3 292 350
18 6 2 0 2 2 0 1 0 4 2 292 350
19 6 2 0 3 1 0 1 0 5 1 292 350
20 6 2 0 4 0 0 1 0 6 0 292 350
21 6 2 1 0 3 0 2 0 2 4 292 350
22 6 2 1 1 2 0 2 0 3 3 292 350
23 6 2 1 2 1 0 2 0 4 2 292 350
24 6 2 1 3 0 0 2 0 5 1 292 350
25 6 2 2 0 2 0 3 0 2 4 292 350
26 6 2 2 1 1 0 3 0 3 3 292 350
27 6 2 2 2 0 0 3 0 4 2 292 350
28 6 2 3 0 1 0 4 0 2 4 292 350
29 6 2 3 1 0 0 4 0 3 3 292 350
30 6 2 4 0 0 0 5 0 2 4 292 350
31 5 3 0 3 0 0 2 1 4 2 293 331
32 5 3 0 2 1 0 2 1 3 3 293 331
33 5 3 0 1 2 0 2 1 2 4 293 331
34 5 3 0 0 3 0 2 1 1 5 293 331
35 5 3 1 2 0 0 3 1 3 3 293 331
36 5 3 1 1 1 0 3 1 2 4 293 331
37 5 3 1 0 2 0 3 1 1 5 293 331
38 5 3 2 1 0 0 4 1 2 4 293 331
39 5 3 2 0 1 0 4 1 1 5 293 331
40 5 3 3 0 0 0 5 1 1 5 293 331
41 5 3 0 0 3 0 2 0 2 4 295 325
42 5 3 0 1 2 0 2 0 3 3 295 325
43 5 3 0 2 1 0 2 0 4 2 295 325
44 5 3 0 3 0 0 2 0 5 1 295 325
45 5 3 1 0 2 0 3 0 2 4 295 325
46 5 3 1 1 1 0 3 0 3 3 295 325
47 5 3 1 2 0 0 3 0 4 2 295 325
48 5 3 2 0 1 0 4 0 2 4 295 325

continued on the next page
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uij 6 6 5 4 5 4 5 1 6 5
N (1,2) (1,3) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) (4,6) (5,6) y1 y2

49 5 3 2 1 0 0 4 0 3 3 295 325
50 5 3 3 0 0 0 5 0 2 4 295 325
51 4 4 0 2 0 0 3 1 3 3 296 306
52 4 4 0 1 1 0 3 1 2 4 296 306
53 4 4 0 0 2 0 3 1 1 5 296 306
54 4 4 1 1 0 0 4 1 2 4 296 306
55 4 4 1 0 1 0 4 1 1 5 296 306
56 4 4 2 0 0 0 5 1 1 5 296 306
57 4 4 0 2 0 0 3 0 4 2 298 300
58 4 4 0 1 1 0 3 0 3 3 298 300
59 4 4 0 0 2 0 3 0 2 4 298 300
60 4 4 1 1 0 0 4 0 3 3 298 300
61 4 4 1 0 1 0 4 0 2 4 298 300
62 4 4 2 0 0 0 5 0 2 4 298 300
63 3 5 0 0 1 0 4 1 1 5 299 281
64 3 5 0 1 0 0 4 1 2 4 299 281
65 3 5 1 0 0 0 5 1 1 5 299 281
66 3 5 0 0 1 0 4 0 2 4 301 275
67 3 5 0 1 0 0 4 0 3 3 301 275
68 3 5 1 0 0 0 5 0 2 4 301 275
69 2 6 0 0 0 0 5 1 1 5 302 256
70 2 6 0 0 0 0 5 0 2 4 304 250
71 2 6 0 0 0 1 4 0 3 3 316 244
72 2 6 0 0 0 2 3 0 4 2 328 238
73 2 6 0 0 0 3 2 0 5 1 340 232
74 2 6 0 0 0 4 1 0 6 0 352 226

24



E Branch-and-bound tree.
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Figure 13: Branch-and-bound example for problem in Figure 8.
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