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Abstract 

 

This paper presents a model to schedule school buses transportation routes. Student’s daily 

routes defined between student’s homes, schools and extra curricula activities are analysed 

while accounting for three different objectives: number of vehicles, route total time and 

average passenger travelling time. A combined multiobjective function is defined. As solution 

method to this problem, a heuristic algorithm was developed. This combines a set of heuristic 

procedures with a simulated annealing algorithm. The developed algorithm applicability and 

efficiency is studied on the solution of a real case-study of a students transportation company 

that operates in the city of Lisbon in Portugal. As results, it was found an improvement on the 

economics and service level up to 3% and 28%, respectively, when compared to the real 

current routes. 
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Introduction 

 

The well known Vehicle Routing Problem (VRP), initially studied in Dantzig and Ramser (1959) 

and widely discussed in Laporte (1992), is the source of the School Bus problem. The school 

Bus problem can then be viewed as one of the VRP special applications, where the objective 

involves the definition of student’s transportation routes. A route is defined from student’s 

homes to schools and extra-curricula activities.  

 

In the literature some works exist on the treatment of this problem that differ on the type of 

problem definition, on the objectives treated, on the model details, and on the algorithms used 

to find a solution.  

 

As to the problem type, two main types can be identified. A first one involves the study of a 

single school scenario (Bennett and Gazis, 1972) while the second one treats a multi school 

planning scenario (Newton and Thomas, 1974). On the latter two different approaches can be 

distinguished based respectively on the school or on the students home. In the first one, a 

problem for each school is solved and the creation of mixed routes is not possible. Therefore 

students that attend different schools can not share the same vehicle (Bodin and Berman, 

1979). On the other hand, the approach based on student’s home, considers the resolution of 

the problem student by student and therefore the sharing of resources (buses) is allowed 

(Braca et al, 1994). 

 

Regarding the objectives, several examples are mentioned on the literature. These go from 

economics factors to the level of service to customers. Braca et al. (1994) considers as only 

objective the minimization of number of vehicles while Bowerman et al. (1995) besides the 

minimization of vehicles also considers the minimization of the walking distances between the 

pick up points and the student’s homes. The travelling time per student inside the bus, the 

total journey time as well as the balance between the number of passengers and the journey 

time are also considered. The last objectives are also studied in Lyo and Fu (2002) where they 

are formulated within a multiobjective formulation. 

 

As to model details different restrictions have been considered by the published works. 

Newton and Thomas (1974) considered an upper limit on the travel per student. Braca et al, 

(1994) looked into limits on the capacities of the vehicle both as minimum and maximum 

values as well as to the existence of time windows. Bowerman et al, (1995) introduced the 

notion of maximum route duration. 

 

Due to the complexity of the problem in study, several algorithms have been developed to 

solve it. For the problems modelled according to the school based approach, it can be 
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highlighted the work of Bennett and Gazis (1972) that used the methodology proposed by 

Clarke and Wright (1963). The authors attribute stopping points to each route and then re-link 

them in order to fulfil the problem restrictions. The Lin-3-opt (Lin, 1965) exchange procedure 

is then applied to improve the initial solution. Bodin and Berman (1979) used the method 

proposed by Newton and Thomas (1974), starting the algorithm with a TSP solution with the 

Lin-3-opt and then breaking the solution into several routes so as to satisfy the problem 

restrictions. 

 

On the problems based on the student’s home, Braca et al. (1994) solved it in a single step. 

Firstly, the authors build up routes randomly selected between homes and schools. After that 

pairs of homes and schools that minimize the total journey distance are inserted assuring that 

problems restrictions were satisfied. 

 

Metaheuristics approaches such as scatter search, simulated annealing or tabu search are also 

widely used to solve School Bus problems. Examples of applications using such techniques can 

be listed in the works of Corberán et al. (2002) and Spada et al. (2003). 

 

Following the above works this paper looks into the school bus scheduling problem and 

considers firstly the need to allocate customers to the transportation vehicles and then the 

definition of the sequence of nodes to be visited by each vehicle. A generic model is developed 

where several types of restrictions are considered. These involve limits on the travelling time 

per passenger; the transport capacity of each vehicle; the possibility of having pick ups and 

deliveries throughout the route and finally, the existence of time windows associated with pick 

up and delivery moments. As main objectives the service level and economic issues are both 

considered. Specifically the total travelling time spent on each journey per student, the 

number of vehicles and the total routing time of the entire fleet are modelled. Besides these 

objectives it is also considered and identified as secondary indicators, some performances 

measures related exclusively with the service level. To solve the proposed model a solution 

method is developed. This considers a heuristic algorithm that combines a set of heuristics, 

designed exclusively for the problem in study, coupled with a generic metaheuristics, the 

simulated annealing algorithm. As final result a set of “optimal” routes for each objective are 

obtained. This gives the possibility to the planner to choose which routes fit better his(her) 

preferences. The model and algorithm developed are applied to a real case-study of a students 

transport company located in Lisbon Portugal.  

 

The paper is structured as follows. In the next section the case-study is characterised. Then in 

third section the mathematical formulation is presented. This is followed by the algorithm 

description and the analysis of the results obtained. The paper concludes with some generic 

conclusions and the identification of future lines of research. 
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Case Study 

 

The case-study studied in this paper is obtained from a real problem observed at a Portuguese 

company whose main activity is the daily transport of students to schools, extra-curricular 

activities and their return home. This activity and its proper characteristics are subject to a 

number of restrictions so as to guarantee the clients service level and attain certain 

objectives. These are described bellow. 

 

Daily Operation 

 

The company operation, that is going to be closely analysed in the paper, can be broke in two 

time periods: 

 Morning period: 7:00 am to 10:00 am; 

 Afternoon period: 14:00 pm to 19:00 pm. 

 

In the first period, the usual operation consists in the students pick up from their homes and 

on their delivery to schools or colleges,  while in the  second period the operation  is mainly 

characterised by the pick up of students from schools to home or in after school extra 

activities. Nevertheless, in the latter is still possible to make some home pick ups and school 

deliveries (especially for the ones who have afternoon school schedules). 

 

The definition and planning of the set of routes of this company, is made by a number of 

planners whose activity is entirely manually and is based on their experience achieved through 

the time. It consists on the simulation and effective experimentation of innumerable possible 

combinations. This results as very time consuming since it implies the full allocation of several 

resources to a large number of clients. Furthermore, has as main drawback the impossibility of 

a quick response to a possible client order.  

 

Restrictions 

 

The definition of routes is subject to a number of restrictions that must be considered and fully 

respected. These involve: 

 Transportation duration limits per passenger; 

 Finite and differentiated transportation capacity limit per vehicle; 

 Time windows associated to each customer (related to pick up and delivery node). 
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For formulation purposes, it is necessary to take in account the sequential relations between 

nodes to be visited, in order to assure that for each customer the pick up point is firstly 

considered and just after the delivery node appears within the route defined. 

 

Planners Objectives 

 

From the transport company point of view, there are two basic objectives to be achieved: 

economics and level of service. 

 

From the economics perspective, the target is to satisfy all the demand at a minimal cost. This 

implies the minimization of the necessary vehicles in operation (1) reducing the investments 

costs in equipment and wages with the vehicle crew. This can be written as follows 

 

1

K

i
i

NV k
=

=∑ in which i∈K { }1,...,K                                                       (1) 

 

where K is the number of available vehicles to the operation and NV the total number of 

vehicles. 

 

The evaluation of the variable costs is done by assuming that the main sources of costs are 

the travelling costs. These costs can be materialized by the value of the fuel necessary to the 

journeys and depreciation of vehicle on route. Knowing that travelling costs increase with the 

travelled distances and assuming that there is a constant average speed between the several 

nodes it is defined as indicator the total number of minutes to perform all operation (2), which 

should be minimized. 

 

0 0 0

K N N
k

ij ij
k i j

NTM c x
= = =

= ∑ ∑ ∑                 (2) 

 

where Cij is the time distance between nodes i and j, in minutes and NTM the total time in 

operation measured in minutes. 

 

      1, case arch (i,j) belongs to route made by vehicle k, 

k
ijx  =  

       0, otherwise. 
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The evaluation of the costumer service is measured taking into account the time spent in 

journey (3) by each passenger. A theoretical upper bound exists which should never be 

achieved. This is defines as the “impatience maximum limit” given by: 

 

0 0 0 0

( . ) ( . )
N N N N

j ji i ij
j i i j

TTD T D T P
= = = =

= −∑ ∑ ∑ ∑             (3) 

 

where: 

Dji – delivery in node j having as origin i, in units; 

Pij – pick up in node i and delivery in j, in units; 

Ti – spent time until node i (included i) in minutes; 

Tj – spent time until node j (included j) in minutes; 

V – set of customer pick up and delivery nodes; 

N = | V |. 

 

Therefore and as metric for this criterion several possibilities may arise, as for example the 

maximum travelling time among all passengers. However in this work the chosen measure is 

the average travelling time (4). This choice is based on the fact that exist several transport 

services for which it will be very difficult to decrease the transport time since they are very far 

away for their destiny. This metric is then given by: 

 

2*TTDTDM
N

=                (4) 

 

where:  

V - set of customer pick up and delivery nodes  

N = | V | 

 

Beyond the metrics presented above there are others indicators evaluated in the decision 

process in order to incorporate other perspectives in the planning process. These are the 

secondary indicators and can be defined as: 

 

 Minutes in late arrivals; 

 Minutes in early arrivals; 

 Waiting time for vehicle; 

 Vehicle immobilization time during course; 

 Vehicle capacity utilization rate. 
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Purpose of Work 

 

The objective of this work is the development of a model that can be used by the planner as a 

tool to help his(her) decision making process where two distinguished perspectives are 

accounted for. These are respectively a strategic long run approach and an operational and 

short run purpose.  

 

On the strategic perspective the planner should be able to plan in advance the long run supply 

capacity requirements based on historical data and new client’s previsions. Different scenarios 

can then be defined and evaluated. On the operational point of view the planner should be 

able to execute the operational routing planning, considering scenarios where the effective 

demand is known. The process should be considered as wide as possible where the integration 

of primary and secondary performances indicators within a acceptable time horizon must be 

accounted for. 

 

Mathematical Formulation 

 

Based on the problem described above a mathematical formulation is developed. The distance 

between the several nodes is evaluated using the time distance as the unit of measure. The 

average travelling time between two nodes, is given by the sum of the expectable course time 

(6) and the service time (5), which is the necessary time to allow the entry or exit of a 

customer to/from the vehicle. 

 

Average Travelling Time (between nodes i and j) 

ij ij ijC CS CP= +  (minutes)              (5) 

 

where,  

 

Expectable Course Time (between nodes i and j) 

*60ij
ij

ij

d
CP

SP
=  (minutes)              (6) 

 

dij – is the geographical distance between nodes i and j (evaluated in Km); 

SPij – is the expected average speed of vehicle in normal conditions at a certain hour of day 

between nodes i and j (evaluated in Km/hour). 

 

There are as many pick up and delivery points as the number of customers to be transported. 

In the cases in which the customer location (origin or destiny) is geographical identical, it is 
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considered that the course time is equal to zero and that the only distance between these two 

matching points is the service time. 

  

Notation 

 

i,j – nodes that identify the origin and destination of a route; 

k – transportation vehicle; 

Ok – set of vehicles origin points; 

V – set of customers pick up and delivery points; 

VO – set of customers pick up and delivery points plus set of vehicles origin points V0 = V ∪  

Ok; 

Cij – distance between nodes i and j, in minutes; 

CPij – expectable course time (between nodes i and j, in minutes); 

CSij – expectable time to pick up or delivery customer in node j having as origin node i, in 

minutes;  

Di – delivery in node i in units; 

Dij – delivery in node i having as origin j, in units; 

dij – geographical distance between nodes i and j, in kilometres; 

K – maximum number of vehicle involved in operation, in units; 

L – maximum limit of transportation time per passenger, in minutes;  

N – total number of pick up and delivery points N = |V|; 

Pi – pick ups in node i in units; 

Pij – pick up in node i having as destiny j, in units; 

Qk – transportation capacity of vehicle k, in units; 

RTi – time window associated to node i, in minutes; 

SPij – average speed between nodes i e j, in Km/Hour. 

 

Variables   

 

kk – number of vehicles k used; 

Ti – time spent until node i (included i); 

tpk
ij – stopped time of vehicle k during arch (i,j); 

 

      1, if arch (i,j) belongs to route made by vehicle k, 

k
ijx  =  

       0, otherwise. 

 

Yij – number of pick ups made until node i (included i) and transported in arch (i,j); 

Zij – number of deliveries made until node i (included i) 
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Objective Function 

As previously mentioned three objectives are evaluated: the minimization of the number of 

vehicles (7), the total course time in route (8) and the average travelling time per passenger 

(9). These are defined above: 

 

Min 
1

K

k
k

NV k
=

=∑                (7) 

 

Min 
0 0 0

K N N
k

ij ij
k i j

NTM c x
= = =

=∑ ∑ ∑                (8) 

  

Min 
0 0 0 0

2* ( . ) ( . )
N N N N

j ji i ij
j i i j

T D T P
TDM

N
= = = =

 
− 

 =
∑ ∑ ∑ ∑

             (9) 

 
 

Multiobjective Function (FAM) 

 

The objectives considered are aggregated into a single objective where their importance is 

weight based on three given parameters: 

 

 

( )Min FAM NV NTM TDMβ λ δ= × + × + ×              (10) 

 

Where: 

β - Reflects the importance of the number of vehicles in FAM; 

λ - Reflects the importance of total course time in route in FAM; 

δ - Reflects the importance of average travelling time per passenger in FAM. 

 

Restrictions 

 

Apart from the objective function and having in mind its characteristics different restrictions 

are defined. These are defined below: 

 

0 1
1

N K
k
ij

i k
x

= =

=∑ ∑    j∀               (11) 
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1

N N
k k
ij ji

i O i
x x

= =

=∑ ∑    j∀  and k∀              (12) 

 

1 1

K K
k
oj k

O k
x k

= =

=∑ ∑   j∀               (13) 

 

1

K

k
k
k K

=

≤∑                (14) 

 

*60ij
ij

ij

d
CP

SP
=                (15) 

  

ij ij ijC CS CP= +               (16) 

 

1
+

N
k k

j i ij ij ij
j

T T tp C x
=

= + ∑    j∀              (17) 

 

0

N
k k

i ij ij ij j
i

T tp c x RT
=

+ + ≤∑   j∀              (18) 

 

0

N
k k

j ij ij ij i
j

T tp c x RT
=

− − ≤∑   i∀              (19) 

 

0

N
k k

j ij ij ij i
j

T tp c x RT
=

− − ≥∑   i∀              (20) 

 

0 0

N N
k k

ij ij ji ji i
j j
Y x Y x P

= =

= +∑ ∑   i∀               (21) 

 

1

N

i ij
j

P P
=

= ∑  i∀                (22) 

 

0 0

N N
k k

ij ij ji ji i
j j
Z x Z x D

= =

= +∑ ∑   i∀               (23) 

 

1

N

i ij
j

D D
=

= ∑  i∀               (24) 

 

1

K
k

ij ij k ij
k

Y Z Q x
=

− ≤∑   j∀  and i∀             (25) 

 

( . ) ( . )j ji i ijT D T P≥  j∀  and i∀                        (26) 
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( . ) ( . )j ji i ijT D T P L− ≤  j∀  and i∀             (27) 

 
k
ijx  ∈ (0,1)   j∀ , i∀  and k∀                        (28) 

 
Yij   ∈ Integers   j∀  and i∀                        (29)  

 
Zij ∈ Integers   j∀  and i∀                        (30)  

 
Ti ≥ 0    i∀                  (31)  
 

Restriction (11) assures that each node is visited for just one vehicle, while restriction (12) 

guarantees that it is the same vehicle that arrives and departs from each node. The restriction 

(13) shows the numbers of started routes while (14) assure that only K vehicles are available.  

 

Restrictions (15) and (16) specify that the time distances between the nodes result from the 

sum of course and service time.  

 

The equation (17) is a stock equation where the route time is updated summing the course 

time and the time of vehicle immobilization corresponding to the waiting to reach next node. 

Restriction (18) guarantees the delivery time windows. Restriction (18) and (19) assure the 

fulfilment of the pick up time windows.  

 

In order to ensure the pick up, delivery and the update of flow as well as stock functions, 

restrictions (20) and (22) are used. Equations (22) and (23) ensure the completeness of pick 

ups destinies and delivery origins. Equation (25) ensures the fulfilment of capacities 

restrictions associated to each vehicle.  

 

Equation (26) assures the precedence of pick up concerning the delivery while restriction (27) 

limits the maximum travelling time per passenger.  

 

Finally, equations (28), (29), (30) and (31) define the nature of the decision variables 

integrated in the problem. 

 

Solution Algorithm 

 

One approach for the presented problem could pass by the enumeration of all admissible 

solutions and choosing the ones that achieved the best numerical results for the objectives in 

cause. However, this method is too inefficient in computational terms and unbearable for route 

planning with many passengers. This because the problem can be labelled as NP-hard 



  12 

combinatory, in which the solution range increases at an exponential rate with the increase of 

variables in analysis (Lenstra and Rinnooy Kan, 1981).  

 

In this paper we present a heuristic algorithm in which the achievement of the optimal solution 

it is not guaranteed. However, the algorithm produces as output a set of admissible solutions 

that have an expectable closure to the optimum for each objective and are obtained with a 

very efficient procedure in computational terms. 

The algorithm is constructed considering two major blocks (Figure 1): Construction and 

Exploring. 

 

Figure 1 – Algorithm Description 

 

The construction block is responsible for the creation of an initial solution via an Initial 

Heuristic module, where all passengers with origin and destiny nodes are allocated to a certain 

vehicle. In this initial allocation, all restrictions are respected except the number of available 

vehicles. As an extreme the result could have as many routes as the number of passengers. 

This restriction will be recovered in the Route Linking module. 

 

The exploring block has as unique module the Solution Optimization, in which a Simulated 

Annealing algorithm is used as solution technique to optimize the actual solution. Exchanges 

and transfers between the passengers’ positions among the routes are tested. The possibility 

of non admissible solutions could be accepted, as current solutions, and a penalization in 

objective function evaluation is then considered.  

 

Initial Heuristic 

 

Within the initial heuristic the initial allocation is preceded by passengers and vehicles sorting. 

The passengers arrangement has as criteria the following aspects: 

 Destiny time window (Ascending); 

 Time distance between origin and destiny (Descending); 

 Difference between destiny and origin time windows (Ascending). 

 

As to the vehicles sorting, the only criterion is their passenger transportation capacity. 

 

After obtaining the separate lists it is necessary to proceed the initial allocation (Figure 2). The 

first node to be placed is the origin of the first passenger in the list. For this introduction it is 

verified the fulfilment of all restrictions and if this is not possible the next position will be 

tested (Step 1). After origin introduction, the associated destiny is tested as close right 

neighbour in the same route. Every restriction is validated in order to proceed to the allocation 
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and if any is not respected the allocation in the next position is tested (Step 2). After testing 

every position and if the problem is still impossible, the allocation of origin and destiny is 

tested in a next route (Step 3). An illustrative example is shown in (Figure 2). 

 

Figure 2 – Initial heuristic example 

 

As output from this block will result a set of routes combining a solution, respecting all 

restrictions but the number of available buses. The respect of the origin time window will 

always be done and can be responsible for the creation of stopping moments during the route. 

 

 Route Linking 

 

Whenever the initial solution uses virtual vehicles, that is, when the used vehicles are more 

then the available, it is necessary to link so many routes as the exceed number. This module 

is also used whenever necessary to evaluate a new solution set with a less vehicle. 

 

Before linking virtual routes created in the previous module, it is necessary to sort the 

vehicles. This is done through the following criteria: 

 Vehicles capacity (Ascending); 

 Number of passengers on route (Ascending); 

 Route time length (Ascending); 

 Passengers travelling time (Ascending). 

 

The route linking procedure is shown in Figure 3, where the first two routes from the sorted 

list are selected (Step 1) and the first from the list will be collated to the end of the second 

one, resulting in a single route (Step 2). This procedure will be repeated until the number of 

routes is equal to the number of available vehicles, and the capacity of this merged vehicle is 

equal to the higher capacity of the involved vehicles. 

 

Figure 3 – Route linking example 

 

After this module, it’s only guaranteed the fulfilment of number of vehicles restriction and the 

sequentially relations between origin and destiny nodes. 

 

Solution Optimization 

 

As referred above the meta-heuristic Simulated Annealing, initially presented in Kirkpatrick et 

al. (1983) and in Cerny (1985), is used in order to optimize a set of routes for the established 

objectives: total course time (30) and average travelling time per passenger (31). 
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1 1 ( )kFO FO k UnrespConst= + ∑             (30) 

2 2 ( )kFO FO k UnrespConst= + ∑             (31) 

 

where: 

1
kFO  - Value of penalized objective function for total course time; 

1FO  - Value of objective function for total course time; 

2
kFO  - Value of penalized objective function for travelling average time per passenger; 

2FO  - Value of objective function for travelling average time per passenger; 

K  - Penalization coefficient;  

UnrespConst - Number of non respected restrictions in solution. 

 

For single objective problems, the acceptation of the candidate solution as current solution is 

given trough the comparison of the value of p with a randomly generated number with a (0-1) 

uniform distribution (32). 

  

*( ) ( )min 1,exp F Fp
T

  ϒ − ϒ =   
   

            (32) 

 

In this multi-objective problem the solution evaluation is done trough the comparison of the 

value of p with a random number. 

 

*1 11 min 1,exp
k kFO FOp
T

  − =   
   

            (33) 

 

*2 22 min 1,exp
k kFO FOp
T

  − =   
   

            (34) 

 

1 2
2

p pp +
=                (35) 
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Both objectives are evaluated (33 and 34) simultaneously in a single solution, and the 

acceptation probability arises from the average of individual probabilities of each objective 

(35) when evaluated in a single and individual way (Suman and Kumar, 2005). 

  

The Simulated Annealing is based on two fundamental concepts that were worked and 

analysed on this application: diversification and intensification. In the algorithm, the 

diversification is achieved with the “temperature” evolution (Figure 4). A bigger value 

corresponds to a more probable acceptation of a worst solution, but more important, widely 

diverse solutions are considered. Whenever an admissible solution is reached, the algorithm 

temperature is increased to one thousand times its value (partial reheating) and by total 

reheating, it is understood the procedure of re-established the initial temperature with the 

intention of a completely new solution search. These procedures enable the algorithm to 

diversify the search through a wider range of potential solutions. 

 

Figure 4 – Temperature evolution 

 
The concept of intensification is worked using searching techniques with different 

neighbourhood universes (Figure 5). In a first phase it is possible to explore exchanges and 

transfers between every element in the system (Pure Randomly Generation). However, every 

time the number of iterations, since the last decrease of non respected restrictions, reaches 

the value of a certain parameter it can only explore the elements that do not respect the 

problems restriction (Restricted Randomly Generation). 

 

Figure 5 – Intensification strategies 

 

This strategy is used until a decrease on the number of non respected restrictions is verified or 

until an admissible solution becomes the current solution. In both cases the algorithm 

temperature gets a partial reheating and Pure Randomly Generation is used again. 

 

After the definition of which randomly generation type is to be used, two neighbourhood 

structures are designed to search solutions. In each iteration only one structure can be used. 

This is randomly selected amongst the two following: 

 Exchange passengers between routes or its position within a route; 

 Transfer passenger for another route or position within a route without 

exchange. 

 

The criteria chosen for exchange neighbourhood structure definition are the following: 

 Vehicle(s) selection; 

 Origin nodes selection; 
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 Destiny nodes localization. 

 

The vehicle selection is completely randomly with the probability linked with the course 

duration of each vehicle: 

 

( )
( )

i

i

CourseDur
CourseDur∑

λ

λ               (36) 

 

where: 

CourseDur  – Course duration of vehicle i; 

λ  - Parameter that defines the probability of i selection, between 0 1λ≤ ≤ . 

 

The passenger selection would be made through the selection of origin nodes and is also 

linked with the spent time on travelling: 

 

( )
( )
Destiny Origin

Destiny Origin

T T
T T

−

−∑
α

α               (37) 

 

where: 

( )Destiny OriginT T−  - Passenger travelling time; 

α  - Parameter that define the probability of origin node selection, between 0 1α≤ ≤ . 

 

The destiny node must be allocated to the new route and must in its position be restricted to 

the right of its associated origin node. 

 

1
1RighPnt +

               (38) 

 

where RighPnt  is the number of pick up or deliveries nodes in the right of exchanged node. 

 

In Figure 6, it is shown an example of the exchange structure neighbourhood procedure, 

where origin nodes from passenger A and C are randomly selected to exchange position 

between routes. Positions of related destiny nodes are also randomly selected from right 

neighbourhood of the exchanged node. 

 

Figure 6 – Passengers exchange 
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The criteria to transfer neighbourhood structure definition are the following: 

 Vehicle selection; 

 Origin node to transfer selection; 

 Origin node localization on new route; 

 Destiny node localization on new route. 

 

The origin node and vehicle selection is similar to the procedure describe in the previous 

neighboured structure. This is randomly selection depending on travelling time and course 

duration, respectively. In this structure is also possible to select the same vehicle for the 

transfer, enabling the possibility of a certain vehicle being passenger “exporter” and 

“importer”. 

 

As to origin node a new localization will be selected according to the following probability: 

1
2 1NumPax +

               (39) 

 

where NumPax  is the number of existing passengers in “importer” route before transfer. 

 

As to the destiny node a new localization is selected according to the following probability: 

1
1RighPnt +

               (40) 

 

where RighPnt  is the number of pick up or deliveries nodes in the right of transferred node. 

 

In Figure 7, there is an example of the transfer structure neighbourhood procedure, where the 

origin node from passenger A is randomly selected to be moved to vehicle 2, right next to 

passenger’s C origin. Position of A’s destiny is also randomly generated from the right 

neighbourhood space of transferred node. 

 

Figure 7 – Passengers transfer 

 

Routes Re-Linking 

 

In the problem in study, the solution is based on the achievement of the best results for the 

three different objectives. Since in the previous module, two of then are closely worked out in 

the Routes Linking module only the vehicle number minimization is now considered. 
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As result of the Solution Optimization, the best solutions for each objective for a certain 

number of vehicles are saved. The best solution for each one will be used as seed for the 

creation of a new current solution with less one vehicle.  

 

The rules for this module are similar to the ones explained before in the Route Linking module. 

This cycle will be used as long as admissible solutions are obtained in the previous Solution 

Optimization or when the current number of vehicles is equal to one. 

 

Experimental Results 

 

The algorithm presented is applied to a real case-study of a Portuguese school bus company. 

Therefore, the collected data is based on real routes of an area of the city of Lisbon. The 

transport of 28 passengers through 4 vehicles, each one with a 6 person transport capacity is 

considered. The planning period is the morning block, between 6:30 and 10:00 hours. 

 

The primary objectives values from the current real routes are presented in Table 1. It can be 

highlighted the 403 minutes for total course time and the 24,29 minutes per passenger 

average travelling time. 

 
Table 1 – Primary objectives values of the real problem 

 

The secondary indicators values collected are presented in Table 2. The vehicle capacity 

utilization rate is 28,12%, the average passenger waiting time is 7,39 minutes, the early 

arrivals is of 31,32 minutes and the vehicle stopping time during course is 65 minutes. 

 

 
Table 2 – Secondary objectives values of the real problem 

 

The application of the proposed algorithm resulted in better results that are presented Table 3 

for the five best solutions for each objective achieved (course duration and average travelling 

time).  

 

 
Table 3 – Solutions for 28 passengers and 4 vehicles 

 

When comparing the Course Duration best result (391 min) with the current real solution (403 

min), an improvement of 2,97% is observed. As to the Average Travelling Time it is possible 

to create 28,69% shorter routes spending on bus around 17 minutes. 
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Furthermore, for the same group of passengers it was identified the possibility of just using 3 

vehicles to execute the transport. The five best results respectively for course duration and 

average travelling time are presented in Table 4. 

 

 
Table 4 – Solutions for 28 passengers and 3 vehicles 

 

According to results achieved (Table 4), it is possible to improve the Course Duration in 4,96% 

and the Average Travelling Time in more than 22% when compared with current practise. 

However, and more important than the objectives improvement is the fact that the actual 

transport could be done with just 3 vehicles, while guaranteeing the service level to customers 

and saving relevant costs.  

 

It is clear to observe an evident trade off between the two analysed objectives. With an 

increase on Average Travelling Time there is a significant reduction in Course Duration and 

vice-versa (Figure 8). 

 

Figure 8 – Trade off between objectives 

 

To a better evaluation of the algorithm performance on a wider range of situations, it was 

defined a partition on collected routes and the values of the primary and secondary objectives 

are presented in Table 5: 

 Nine passengers (Current route 3); 

 Sixteen passengers (Current route 2 + route 3); 

 Twenty two passengers (Current route 2 + route 3 + route 4). 

 
Table 5 – Current partition solution 

 

In Table 6 are presented the bests results for each objective and for each partition on initial 

sample. As can be observed the algorithm reach for every case better results than the current 

solution. 

 

Table 6 – Achieved partition solution 
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Results Discussion 

 

In Cordeau et al. (2002) is described an analysis of heuristics for the VRP resolution compiled 

from the literature. Recovering this methodology, the developed algorithm is evaluated 

according to the following criteria: efficacy, efficiency, simplicity and flexibility. 

 

As to the efficacy, it is relevant to compare the obtained results with the optimal solution to 

each tested data instance. However, there is no clear idea about which is the optimal solution, 

in this circumstance and therefore the comparison will be exclusively done with the actual 

routes practised by the company. For these cases the algorithm achieved, for every instance, 

better results for both objectives when compared with the solution presented by the company 

(Table 7). 

 
Table 7 – Collected values and achieved results 

 

The tests were executed in a computer with a Pentium IV with 2.8Ghz processor, which 

represent that for a problem with 28 passengers 1 000 iterations consume 7,4 seconds of CPU 

time.   

 
Figure 9 – Evolution of CPU time by problem dimension 

 

It is clear the quasi linear relation between CPU time and the dimension of problem (Figure 9). 

This relation reveals a certain inefficiency of algorithm when planning high complexity routes 

however it was also identified that very good solutions are achieved before 100 000 iterations 

(12 minutes of processing), which it is far more efficient when compared with the time spent 

by the actual manual procedure of planning routes (more than 12 men working hours). 

 

As to the simplicity criterion the algorithm can be evaluated according to the number and 

complexity of parameters. In this case even that existing 11 parameters to define for each 

execution, it was detected an evident stability of the performance of algorithm to most of 

them. 

 

Finally, the flexibility can be explained by the capacity of the algorithm to adapt to real data. 

The case study presented in this paper is referring to collected data from a company operating 

in city of Lisbon and it is also expectable that the algorithm will have good performances with 

other data instance as long as they respect the data input structure. 
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Conclusions 

 

A heuristics algorithm to model the routing and schedule of school buses has been developed 

along this paper. Three different objectives were considered: number of vehicles, route total 

time and average passenger travelling time. A combined multiobjective function is defined 

where different parameters are used to model each criterion importance. 

 

The proposed heuristic algorithm combines a set of heuristic procedures with a simulated 

annealing algorithm. Being based in a metaheuristic, the best result achieved can not be 

catalogued as even a local optimum for a certain objective, however it is extremely efficient 

searching for admissible solutions, which in highly constrained problem is an added value 

specially. This was particular clear for the case-study solved when comparing the algorithm 

performance with the actual planning situation in the company. 

 

The obtained results compared with the actual solutions represent huge improvements to each 

objective, and will serve as a useful tool to the decision aid process, complementing the 

planner personal experience. It is also relevant to highlight the compute efficiency that allows 

the quick comparison of multiple scenarios. 
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Figure 4 
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Figure 5 
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Figure 8 
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Figure 9 
 

0

1

2

3

4

5

6

7

8

9 16 22 28

CPU Time (sec)

 
 
 



  32 

Tables 

 

 

Table 1 

Course Duration 
(min)

Average Travelling 
Time (min)

Route 1 87 12,83
Route 2 97 29,57
Route 3 130 29,67
Route 4 89 21,50
Total 403 24,29  
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Table 2 

 

Passengers Capacity 
Utilization

Waiting 
Time (min)

Early Arrivals 
(min)

Stopping 
Time (min)

Route 1 6 14,75% 9,17 18,33 50
Route 2 7 35,57% 5,71 32,57 0
Route 3 9 34,23% 2,78 32,22 15
Route 4 6 24,16% 14,50 41,50 0
Total 28 28,12% 7,39 31,32 65  
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Table 3 
 

Course 
Duration (min)

Average Travelling 
Time (min) Passengers Utilization 

Capacity
Waiting 

Time (min)
Early Arrivals 

(min)
Stopping 

Time (min)

391,00 21,18 28 25,28% 15,50 24,21 76,00
396,00 22,25 28 26,22% 15,14 23,50 76,00
399,00 25,68 28 30,03% 10,21 25,00 115,00
401,00 25,75 28 29,97% 10,29 24,86 115,00
406,00 21,18 28 24,34% 13,79 25,93 81,00

512,00 17,32 28 15,79% 12,71 30,86 115,00
486,00 17,36 28 16,67% 10,07 33,46 88,00
483,00 17,50 28 16,91% 10,07 33,32 91,00
525,00 17,86 28 15,87% 13,57 29,46 105,00
582,00 18,04 28 14,46% 14,86 28,00 33,00  
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Table 4 

 
Course 

Duration (min)
Average Travelling 

Time (min) Passengers Utilization 
Capacity

Waiting 
Time (min)

Early Arrivals 
(min)

Stopping 
Time (min)

383,00 30,82 28 37,55% 9,54 20,54 51,00
388,00 30,64 28 36,86% 10,07 20,18 51,00
391,00 25,57 28 30,52% 14,36 20,96 25,00
394,00 25,36 28 30,03% 14,82 20,71 25,00
396,00 22,32 28 26,30% 9,32 29,25 48,00

433,00 18,93 28 20,40% 15,00 26,96 63,00
429,00 19,07 28 20,75% 15,50 26,32 60,00
413,00 19,11 28 21,59% 14,64 27,14 68,00
436,00 19,14 28 20,49% 16,36 25,39 53,00
413,00 19,46 28 21,99% 14,64 26,79 53,00  
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Table 5 

 
Course 

Duration (min)
Average Travelling 

Time (min) Passengers Utilization 
Capacity

Waiting Time 
(min)

Early Arrivals 
(min)

Stopping Time 
(min)

130 29,67 9 34,23% 2,78 32,22 15,00
227,00 29,63 16 34,82% 4,06 32,38 15,00
316,00 27,41 22 31,91% 6,91 34,86 15,00  
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Table 6 
Course 

Duration (min)
Average Travelling 

Time (min) Passengers Utilization 
Capacity

Waiting Time 
(min)

Early Arrivals 
(min)

Stopping Time 
(min)

105,00 36,67 9 52,38% 3,89 21,67 50,00
125,00 23,89 9 28,67% 3,33 35,00 25,00
197,00 33,06 16 44,75% 8,44 21,94 50,00
252,00 23,06 16 24,40% 14,81 25,56 10,00
307,00 27,09 22 32,36% 12,27 26,77 50,00
402,00 21,23 22 19,36% 15,32 29,59 20,00  
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Table 7 

Passengers Vehicles Objectives Collected 
Values

Achieved 
Results Gap %

Course Duration 
(min) 130 105 19,23%

Average Travelling 
Time (min) 29,67 23,89 19,47%

Course Duration 
(min) 227,00 197 13,22%

Average Travelling 
Time (min) 29,63 23,06 22,16%

Course Duration 
(min) 316,00 307 2,85%

Average Travelling 
Time (min) 27,41 21,23 22,54%

Course Duration 
(min) - 383 -

Average Travelling 
Time (min) - 18,93 -

Course Duration 
(min) 403 391 2,98%

Average Travelling 
Time (min) 24,29 17,32 28,68%
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