
A Two-phase Heuristic for the Biobjective 0/1 Knapsack

Problem
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Abstract

We report an experimental analysis on the connectedness of the efficient set for

several benchmark instances of the Biobjective 0/1 Knapsack Problem with respect to

the k-Hamming neighborhood. Our results indicate that efficient solutions are strongly

clustered with respect to small distance bounds. Based on these findings, we propose a

two-phase heuristic that obtains a set of supported solutions in a first phase, followed by

a local search procedure that collects further nondominated solutions. Our numerical

results show that this approach reaches good solution quality on instances where state-

of-the-art algorithms fail to solve.

Keywords: Multiple Objective Programming, Knapsack Problems, Local Search

1 Introduction

For a given efficient set of a instance of Multiobjective Combinatorial Optimization Problem
(MCOP), a graph can be constructed such that each node represents an efficient solution
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and an edge connects two nodes if the corresponding efficient solutions are neighbors for
a given neighborhood [5]. We say that the efficient set is connected with respect to the
neighborhood if the underlying graph is also connected, that is, there is a path between any
two nodes. Worst-case results have been shown that the efficient set for many MCOPs are
not connected in general with respect to different notions of neighborhood [5, 6].

We extend the notion of connectedness given above. The efficient set is represented as a
complete, undirected and weighted graph G, where each node corresponds to a solution and
each weight wij corresponds to the shortest distance between a pair of efficient solutions i and
j with respect to some neighborhood. The distance between i and j is the minimum number
of neighboring solutions to be visited to go from i to j. From the resulting graph, and for
a given distance bound k, a disconnected graph Gk is obtained from G by extracting those
edges whose weights are larger than k. A cluster is then a maximally connected component
of Gk [10]. Note that if the number of clusters containing the efficient set is small for small
distance bounds, then local search algorithms would be able to find most of the elements of
the efficient set by starting from one or more efficient solutions [1, 7, 12].

In this paper we investigate the degree of clustering of the efficient set for the Biobjective
0/1 Knapsack Problem (BKP) with respect to the k-Hamming neighborhood; we say that
two solutions are k-Hamming neighbors if their Hamming distance is less than or equal to k.
Our experimental analysis on several benchmark instances suggests that the efficient set is
strongly clustered for small Hamming distance bounds. Based on these findings, we present
a two-phase heuristic that collects a set of supported solutions in the first phase, and it
proceeds by exploring further nondominated solutions by means of local search using a k-
Hamming neighborhood for small k. Furthermore, our numerical study on large benchmark
instances shows that this approach reaches reasonably good solution quality on instances
where state-of-the-art algorithms fail to solve.

2 The Biobjective 0/1 Knapsack Problem

The Biobjective 0/1 Knapsack Problem can be formulated as follows:

max f1(x1, x2, . . . , xn) =
n∑
j=1

p1
jxj

max f2(x1, x2, . . . , xn) =
n∑
j=1

p2
jxj

subject to:
n∑
j=1

wjxj ≤W

xj ∈ {0, 1}, j = 1, 2, . . . , n

(1)
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where, pij is the profit or value of item j on objective i, i = 1, 2; xj is the decision variable
associated to item j, where xj = 1 if item j is included in the knapsack and xj = 0 otherwise;
wj is the weight of item j and W denotes the overall knapsack capacity. We assume that
all the data are positive integers and that wj < W , for j = 1, 2, . . . , n with

∑n
j=1 wj > W .

Let X = {x = (x1, x2, . . . , xn) :
∑n
j=1 wj ≤ W, xj ∈ {0, 1}, j = 1, 2, . . . , n} denote

the set of feasible solutions, X ⊆ Nn. The image of the feasible solutions when using the
objective functions f1 and f2 defines the feasible region in the objective space, denoted here
by Z ⊆ N2. We say a feasible solution x ∈ X is efficient if there does not exist another
feasible solution x′ ∈ X such that z′ = f(x′) ≤ z = f(x) and z′ 6= z. The set of all
efficient solutions will be denoted by XE . We say that a vector z ∈ Z is nondominated
if there is some efficient solution x ∈ XE such that z = f(x), and we denote the set of
all nondominated vectors by ZND. Let Conv(Z) denote the convex hull of set Z. Each
nondominated vector z ∈ ZND located in the frontier of Conv(Z) is called nondominated
supported vector or solutions; otherwise it is called unsupported nondominated vector.

Besides being an NP-hard problem, the BKP can also have an efficient set of size given
by the binomial coefficient

(
n

bn/2c
)

[4]. Gorski et al. [6] showed that the efficient set for the
BKP is not connected in general with respect to the Mixed Integer Linear Programming
(MILP)-based neighborhood; two knapsack solutions x and x′ are neighbors for the MILP-
based neighborhood if x′ can be obtained from x by replacing one item in x with one
item in x′. The authors report an extensive experimental analysis on randomly generated
BKP instances with bounded cardinality and 0/1-Multiple Choice Knapsack Problems. For
the same notion of neighborhood, a local search algorithm was proposed for the BKP with
bounded cardinality and equally-weighted items that is able to explore the connectedness
property [12].

3 Cluster Analysis

The goal of the analysis that follows is to study the relation between the Hamming distance
bound and the number of clusters of efficient solutions. We choose the benchmark instances
available from the literature [2, 3] and that are described as follows: i) Type A instances with
each p1

j , p
2
j , and wj generated according to an uniform distribution in the range [1, 1000]; ii)

Type B instances with each p1
j , p

2
j , and wj generated according to an uniform distribution

in the range [111, 1000], [p1
j − 100, p2

j + 100], and [1, 1000], respectively, which induces a
positive correlation between profits; iii) Type C instances with each p1

j , p
2
j , and wj generated

according to an uniform distribution in the range [1, 1000], [max{900 − p1
j ; 1},min{1100 −

p1
j ; 1000}], and [1, 1000], respectively, which induces a negative correlation between profits.

For all types of instances, W is half of the sum of the weights wj .
Two dynamic programming algorithms proposed by Bazgan et al. [2] and by Captivo
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et al. [3] were used for generating the efficient set. The first is an extension of a dynamic
programming algorithm for the single objective case [8]. The second solves the BKP con-
verted into a Biobjective Shortest Path Problem over an acyclic network. Since the original
implementations only maintain the nondominated vectors during the run, we modified them
in order to output also the efficient set. However, we noticed that these modifications imply
much more use of memory. After some preliminaries experiments on a Intel Dual Core
Pentium processor with 3 GHz and 1MB of cache and 1 GB RAM, we were only able to
solve the following instance types and sizes:

• Type A, n = {70, 150} [3];

• Type A, n = {100, 200} [2];

• Type B, n = {100, 200, 250, 300}, extracted from Type B instances [2];

• Type C, n = {30, 40, 50}, extracted from Type C instances [2];

• Type C, n = 100 [2].

The numerical experiments were performed on 10 instances of each type and size. On a
first phase, we computed the Hamming distance between each pair of efficient solutions. The
resulting square matrix is the adjacency matrix for the complete undirected weighted graph
G and from which maximally connected components are extracted for each distance bound.
We implemented an efficient disjoint-set algorithm that computes the maximally connected
components incrementally, and that terminates once all efficient solutions are located in a
single cluster. Finally, for each distance bound, we counted the number of clusters with
more than one element, as well as the number of efficient solutions inside each cluster.

Table 1 shows the average number of clusters and percentage of efficient solutions in the
clusters for several distance bounds. The numerical results clearly indicate that efficient
solutions are strongly clustered for small distance bounds, maximum k = 5. Moreover, we
did not detect any significant difference between instances types, despite the fact that the
number of efficient solutions differ considerably between different instance types. These
results suggest that local search algorithms may be a good approach for this problem, once
one or more efficient solutions are found. In the next section we describe a two-phase
heuristic that takes advantage of these findings.

4 A Two-Phase Heuristic

The two-phase heuristic for the BKP is based on the local search approaches for the Biobjec-
tive Minimum Spanning Tree Problem [1, 7]. In the first phase, a set of supported solutions
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is obtained by solving several weighted sum formulations. For our particular case, we modi-
fied a dynamic programming implementation for the single objective 0/1 Knapsack Problem
from Pisinger [11] and implemented a dichotomic search that is able to obtain all supported
extreme solutions, as described by Hamacher and Ruhe [7].

The output of the first phase is used as input for the second phase. The initial set of
solutions is then extended by an iterative procedure that explores the neighborhood of its
elements [9]. At each iteration, the algorithm works as follows: i) a non-visited solution s

is chosen from the set of solutions S; ii) the set of neighbors of s that are nondominated
with respect to all solutions in S are added to S and those that are dominated are removed;
iii) the solution s is flagged as visited. We used an AVL tree for maintaining S, which
allows O(|S| log |S|)-time complexity for every update. Note that this local search always
terminates [9]. In addition, if the efficient set is connected with respect to some definition of
neighborhood, this local search will terminate when the efficient set is found. However, the
heuristic may take exponential time to terminate if the efficient set is of exponential size.

5 Numerical Experiments

The goal of this experimental analysis is to analyse the performance of the two-phase heuris-
tic on a benchmark set of instances. In addition, we analyse several neighborhoods for the
second phase and relate their performance with different type of instances.

5.1 Neighborhood Definitions

The k-Hamming neighborhood was considered for the second phase, where two solutions are
k-Hamming neighbors if their Hamming distance is less or equal than k. Some preliminary
experiments indicated that searching for all neighbors for k = 5 was too time consuming.
Therefore, we considered the k-Hamming neighborhood for k = {2, 3, 4}; we denote them by
2-opt, 3-opt, and 4-opt, respectively. Note that the time complexity for finding the best
neighbor is O(nk). In addition, we considered the MILP-based definition of neighborhood
that we call 2h-opt, that is, all solutions that can be obtained by exchanging xi with xj ,
xi 6= xj , i < j. Finally, we also considered two extensions of the 2h-opt neighborhood:
i) 3h-opt that consists of all neighbors that can be obtained by changing the value of xl
at each 2h-opt neighbor, j < l, plus all 2h-opt neighbors; ii) 4h-opt that consists of all
neighbors that are obtained by changing the value of xm at each 3h-opt neighbor, l < m,
plus all 2h-opt and 3h-opt neighbors. The time complexity for finding the best neighbor is
O(n2), O(n3), and O(n4) for the 2h-opt, 3h-opt and 4h-opt neighborhoods, respectively.
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5.2 Experimental Results and Discussion

The code was written in C and compiled using GCC 4.1.2 with optimization level 3. The
program was run under Debian GNU/Linux on an computer with 1GB RAM and with an
Intel Dual Core Pentium processor with 3 GHz and 1MB of cache. We define a time limit
of 7200 secs.; if the algorithm does not terminate within that time limit, it outputs the set
of solutions obtained at that limit. For each output, we computed the following indicators:
i) Number of runs that terminated before the time limit; ii) CPU-time taken by the first
phase and by both phases; iii) Maximum size of the output at the end of the first phase
and at the end of the second phase; iv) Percentage of efficient solutions returned at the end
of the first phase and at the end of the second phase; v) ε-indicator [13] at the end of the
second phase. We used the nondominated vectors returned by the dynamic programming
approach [2] to compute the values of the ε-indicator.

The experimental results are shown in Table 3. We can observe that the first phase
takes less than one second to terminate. However, this is not susprising as the percentage of
efficient solutions that are supported is considerably low, in many cases less than 10% of the
efficient set. Moreover, this percentage reduces as the instance size increases. Therefore,
approaches that rely only on solving weighted scalarizations should have a very limited
performance. On the other hand, the table indicates that the second phase is able to attain
many unsupported solutions, more noteworthly on instances of type A and C.

The table also shows that this heuristic is able to attain around 99% of the efficient set
for the smallest instances of Type A and B under the 4h-opt neighborhood, and between
83% and 94% under the 3-opt and 3h-opt neighborhoods. For larger instances of Type
A and C, this heuristic under the 3h-opt neighborhood always terminates before reaching
the time limit, as opposed to larger neighborhoods. Moreover, the solution quality obtained
under the 3h-opt neighborhood didn’t differ too much from the solution quality obtained
under the 3-opt neighborhood. For larger instances of Type B, both 2-opt and 2h-opt

neighborhoods are the only feasible choices. They perform extremely fast although the
solution quality is relativelly low as compared to the remaining larger neighborhoods. Note
that results obtained with the 2h-opt neighborhood match the negative results on the
connectedness of the efficient set BKP with respect to the MILP-based neighborhood [6].
In fact, we found not even a single instance where a connected efficient set was found under
the 2h-opt neighborhood.

Finally, Table 2 shows that our two-phase heuristic needs much less memory that the
dynamic programming algorithm [2], as it maintains much less solutions during the run.
Using the two-phase heuristic under 3-opt and 3h-opt neighborhood, the maximum values
for the size of the efficient set are almost reached, especially for the Type A and C instances
(less than 20% deviation from the maximum values for the size of the efficient set). We
remind that the dynamic programming algorithm is not able to solve instances larger than
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100 items with the modification described on Section 3.

6 Concluding Remarks

The heuristic approach proposed here presents a quite reasonable performance for a wide
range of instances of the Biobjective 0/1 Knapsack Problem. We remark that state-of-the-art
exact algorithms are not able to go beyond 100 items due to memory reasons, whereas some
variants of the two-phase heuristic are able to tackle problems with 4000 items. Although
not tested here, the same approach can deal with more objectives. In that case, only the
dichotomic search procedure has to be modified.

Aknowledgements The authors also aknowledge A. Hugot and J. L. Santos for kindly
providing us the code.
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[9] L. Paquete, T. Schiavinotto, and T. Stützle. On local optima in multiobjective combi-
natorial optimization problems. Annals of Operations Research, pages 83–97, 2007.
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Type Size k = 2 k = 3 k = 4 k = 5

#Gk %opt #Gk %opt #Gk %opt #Gk %opt

A 70 10.7 71% 2.0 96% 1.1 100% 1.0 100%

100 25.4 75% 3.4 95% 1.0 100% 1.0 100%

150 41.3 67% 6.2 94% 1.2 100% 1.0 100%

200 89.0 64% 14.5 92% 1.3 100% 1.1 100%

B 100 1.1 58% 1.2 86% 1.0 98% 1.0 100%

200 2.0 50% 1.9 74% 1.3 97% 1.0 100%

250 2.8 39% 2.9 68% 1.2 95% 1.0 100%

300 4.2 38% 5.1 75% 1.4 99% 1.0 100%

C 30 4.9 94% 1.4 99% 1.2 100% 1.0 100%

40 7.5 93% 2.2 99% 1.2 100% 1.0 100%

50 11.4 92% 1.8 98% 1.1 100% 1.0 100%

100 52.3 87% 15.5 95% 2.4 100% 1.0 100%

Table 1: Average number of clusters (#Gk) and percentage of efficient solutions in clusters
(%opt) for several distance bounds.

Type Size |XND| [2] 2h-opt 2-opt 3h-opt 3-opt 4h-opt

A 100 251 17134.7 205 206 232 243 250

300 1651 898524.7 1073 1073 1538 1587 1645

500 2997 5120514.7 2022 2022 2706 2810 371

700 5939 18959181.7 3393 3393 5033 5003 213

B 1000 218 134107.2 88 88 147 165 50

2000 630 1595436.1 239 239 380 380 45

3000 1140 6578947.2 456 456 456 456 63

4000 1752 18642759.0 722 722 722 722 87

C 100 737 103921.5 661 663 726 726 736

300 3297 3481238.4 2654 2654 2855 2902 1925

500 9029 21282280.5 6852 6852 7375 7375 345

Table 2: Maximum values for the size of the efficient set (|XND|), average values for the
maximum number of solutions maintained during the run of the algorithm from Bazgan et
al. [2], and maximum values for the maximum number of solutions maintained during the
run of the two-phase heuristic, for several neighborhoods. The values are computed over
each group of 10 instances of a given type and size.
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