
A negative-cycle algorithm for computing all

the supported efficient solutions in

multi-objective integer network flow

problems

Augusto Eusébio∗† José Rui Figueira†‡

June 27, 2008

∗Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Morro do Lena - Alto
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‡Associate Researcher at LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de

Tassigny, 75 775 Paris Cedex 16, France.



Abstract

This paper presents a new algorithm for identifying all the supported non-

dominated vectors (or outcomes) in the objective space, as well as the corre-

sponding efficient solutions in the decision space, for the multi-objective integer

network flow problem. Identifying the set of supported non-dominated vectors

is of the utmost importance for obtaining a first approximation of the whole

set of non-dominated vectors. This approximation is crucial, for example, in

the two-phase methods that first compute the supported non-dominated vec-

tors and then the unsupported non-dominated ones. Our approach is based

on the negative-cycle algorithm used in single objective minimum cost flow

problems, applied to a sequence of parametric problems. The proposed ap-

proach uses the connectedness property of the set of supported non-dominated

vectors/efficient solutions to find all the integer solutions in the maximal non-

dominated/efficient facets.

Keywords: Multi-objective linear and integer programming, Multi-objective

network flows, Negative-cycle algorithms, Parametric programming
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Introduction

Network flow models are frequently encountered in the literature in the field of network

optimization. These models are, in general, used to model a variety of real-world decision-

making problems in a wide range of areas, such as transportation, telecommunications,

biology, medicine, economics and finance, for example (see [1]). However, the methods,

algorithms, and applications commonly found in the literature are mostly designed to

optimize a unique objective function, whereas reality is, by its very nature, primarily

multidimensional. Thus, it would seem that multi-objective network flow models would

be more appropriate for modelling real-world decision-making situations in the field of

network optimization. Despite the above incongruity, research applying multi-objective

network flow models to real-world network decision-making is rather scarce.

In our review of the literature, relatively few works were found that extend the min-

imum cost network flow problem to several objectives, and these deal with only two

objectives. (For a recent survey on the topic, see [12].) The multi-objective network

flow (MONF) problem can also be expressed as a mathematical programming model,

which has two variants: the linear MONF problem (MOLNF) and its integer version

(MOINF). MOLFN problems contain only supported non-dominated vectors/efficient so-

lutions. MOINF problems, on the other hand, contain both unsupported and supported

non-dominated vectors/efficient solutions, which can be geometrically characterized as fol-

lows: the unsupported non-dominated vectors are located inside the feasible region in the

objective space, while the supported vectors are found on the boundaries of the convex

hull of this feasible region. Supported non-dominated vectors correspond to the optimal

solutions of a sequence of single objective parametric network flow problems. To the best

of our knowledge, there is no specific method designed to determine all the non-dominated

vectors in the objective space (nor the corresponding efficient solutions in the decision or

variable space) for MOINF problems, though the following algorithms have been proposed

for the bi-objective integer network flow (BOINF) problem:

1. An explicit enumeration algorithm [8, 10], which first uses the k-best flow algorithm

proposed by Hamacher [11] to explicitly explore the feasible region in both the ob-

jective and decision spaces by enumerating all the feasible flows one by one and
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then uses a filtering procedure [8] to retain only the non-dominated vectors/efficient

solutions.

2. An implicit enumeration algorithm [5, 7], which solves a sequence of e-constraint

problems by computing optimal non-integer solutions with a network simplex al-

gorithm and then determining optimal integer solutions with a branch-and-bound

technique. Despite its use of a branch-and-bound technique, this implicit algorithm

has the advantage of computing non-dominated vectors/efficient solutions without

destroying the network structure.

3. Two-phase algorithms [14, 16], which apply an out-of-kilter or a network simplex

method in the first phase to compute the supported non-dominated vectors/efficient

solutions, and then apply the connectedness property to the non-dominated vectors

in the second phase to obtain the unsupported non-dominated vectors.

Despite their conceptual interest, the two-phase algorithms have proved to be inap-

propriate for solving BOINF problems [15]. One of the main drawbacks of these 2-phase

algorithms is related to the way the supported solutions are computed. As we will also

show in this paper, these algorithms are not able to find all the supported non-dominated

vectors. The other two types of algorithms are appropriate for solving BOINF problems

(i.e., the correctness of these algorithms can be proved).

In this paper, we present an algorithm that can be used to compute the supported

non-dominated vectors/efficient solutions for both MOINF and BOINF problems. Iden-

tifying the whole or partial set of supported non-dominated vectors or outcomes and the

corresponding efficient solutions in the decision space has several advantages: (1) the algo-

rithm can be used to compute all the supported solutions in the first phase of a two-phase

approach for MOINF problems, (2) it can be used to provide a first approximation of the

non-dominated set for the MOINF problems, and (3) it can serve as an interactive proce-

dure in methods that provide a detailed “view” of the supported non-dominated vectors

in regions of the objective space that are of particular interest to the decision-maker.

The algorithm that we propose is based on a negative-cycle algorithm rather than on

a simplex or an out-of-kilter algorithm, thus providing an alternative that, to our best

knowledge, has not been applied to MOINF problems before. The proposed algorithm
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is the first step towards the development of more negative-cycle algorithms for solving

MOINF problems. It has several advantages. For example, it can deal with more than

two objectives, and it is easy to implement.

The paper is organized as follows. Section 1 presents the concepts, definitions, and

notation used in MOINF problems. Section 2 introduces our new algorithm for finding all

the supported non-dominated vectors/efficient solutions. Section 3 offers an illustrative

example. Section 4 reports some computational results, and the last section provides our

conclusions.

1 The multi-objective network flow problem

The MOINF can be modeled by using the concepts of network optimization. Let N =

(G, (c1, c2, · · · , cp), l, u, b) denote a network, where G = (S,A) is a directed and connected

graph; S = {1, 2, · · · , k, · · · , m}, with m ≥ 2, is a finite set of elements called nodes or

vertices; A =
{

(i1, j1), (i2, j2), · · · , (i, j), · · · , (in, jn)
}

, with n ≥ 1 is a collection of

ordered pairs of nodes called arcs; c1, c2, · · · , cp, l and u are vectors such that for each arc

(i, j) ∈ A, c1
ij , c

2
ij , · · · , cp

ij are the unit “costs” (associated to the objectives) along the arc

(i, j), lij and uij are the lower and upper bound or capacity, respectively, for the arc (i, j);

and each component of the vector b, bk, is the available supply (if bk > 0) or the demand

(if bk < 0) at node k ∈ S (if bk = 0 it is considered as a transhipment node). We assume

that m ≤ n,
∑

k∈S bk = 0, and that all the values for the ”costs”, lower, and upper bounds

on the arcs, and supplies/demands on the vertices, are finite and integer; all arc “costs”

are also non-negative. Consider, without loss of generality, that lij = 0, ∀(i, j) ∈ A. Figure

1 shows an example of a bi-objective network flow problem.
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Figure 1: A bi-criteria example.

The MOINF problem associated with the network N can also be stated as a multi-

objective integer linear programming problem as follows.

“minimize”
( ∑

(i,j)∈A
c1
ijxij ,

∑

(i,j)∈A
c2
ijxij , · · · ,

∑

(i,j)∈A
cp
ijxij

)
(1)

subject to:
∑

(k,j)∈A
xkj −

∑

(i,k)∈A
xik = bk, ∀k ∈ S (1.a)

0 ≤ xij ≤ uij , ∀(i, j) ∈ A (1.b)

xij integer , ∀(i, j) ∈ A (1.c)

When considering the matricial notation, this problem can be defined in a more compact

way as follows.

“min ” f(x) = Cx

subject to: x ∈ XI
(2)

where, C is the “cost” matrix with rows c1, c2, · · · , cp, with ck = (ck
i1j1

ck
i2j2

· · · ck
injn

),

for k = 1, 2, · · · , p and XI =
{
x = (xi1j1 , · · · , xinjn) :

∑
(k,j)∈A

xkj −
∑

(i,k)∈A
xik = bk, ∀k ∈

S, 0 ≤ xij ≤ uij , xij integer ,∀(i, j) ∈ A}
is the feasible region in the variable space. Let

Y I = f(XI) =
{
y = (y1, y2, · · · , yp) : y1 =

∑
(i,j)∈A c1

ijxij , y2 =
∑

(i,j)∈A c2
ijxij , · · · , yp

=
∑

(i,j)∈A cp
ijxij

}
be the feasible region in the objective space. The set XI (Y I) contains

thus the feasible solutions in the decision space, Nn
0 (objective space, Np

0). The elements

of XI (Y I) will be called feasible solutions (feasible vectors). Let X = Conv(XI) and
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Y = Conv(Y I) be the convex hulls of the sets XI and Y I , respectively. The MONF

problem has X and Y as feasible regions in the decision and objective spaces, respectively.

Consider two feasible vectors y′ and y′′ in Y I (Y ) for the MOINF (MONF) problem.

The vector y′ dominates y′′ iff y′ 5 y′′ and y′ 6= y′′, that is, y′q ≤ y′′q for all q = 1, 2, · · · , p

with at least one strict inequality. The vector y′ is called non-dominated iff there does not

exist another vector y in Y I (Y ) such that y 5 y′ and y 6= y′. Otherwise, y′ is a dominated

vector. The set of all non-dominated vectors in Y I is denoted by ND(Y I). A solution x′

in XI (X) is said to be efficient iff it is impossible to find another solution x in XI (X)

with a better performance on a given objective without deteriorating the performances

of at least one of the remaining objectives. In other words x′ is an efficient solution if

y′ = f(x′) is a non-dominated vector in Y I (Y ).

The following theorem shows that the set of efficient solutions, in X, can be obtained

by solving a parametric problem (see [17], page 215).

Theorem 1.1 A feasible solution x ∈ X is efficient if and only if there exists a

λ ∈ Λ =

{
λ ∈ Rp :

p∑

k=1

λk = 1 and λk > 0, k = 1, 2, · · · , p

}

such that x minimizes the weighted-sum linear programme min
{
λT Cx : x ∈ X

}
.

As it was pointed out in the introduction, in MOINF problems two types of non-

dominated vectors can be distinguished: supported and unsupported non-dominated vec-

tors. Let Y = = Conv(ND(Y I) +Rp
=) where, Rp

= = {y ∈ Rp|y = 0} and ND(Y I) +Rp
= =

{y ∈ Rp : y = y′+y′′, y′ ∈ ND(Y I) and y′′ ∈ Rp
=}, y = 0 if yq ≥ 0, q = 1, 2, · · · , p. A non-

dominated vector y on the boundary of Y = is said to be a supported non-dominated vector.

Otherwise, y is an unsupported non-dominated vector. A supported non-dominated vector

y associated with an extreme point of Y = is said to be a supported-extreme vector. Oth-

erwise, y is a supported non-extreme vector. Inverse images of supported non-dominated

vectors are said to be supported efficient solutions and inverse images of unsupported

non-dominated vectors are said to be unsupported efficient solutions.

It is well known that the set X is a polytope, since the bounds lij and uij are finite.

Consequently, Y is a polytope too. Let us consider the concepts of face, facet, maximal,

and maximally non-dominated facets as in [17].
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Let F ⊂ Y and H be a supporting hyperplane of Y . F is a facet of Y iff there exists

an H such H ∩Y = F . F is said to be an r-facet of Y if F is of dimensionality r. Extreme

points are 0-facets and 1-facets are edges. When Y ⊂ R3 a 2-facet is called a face. A

r − facet, F ⊂ Y , is a maximal facet iff there does not exist another s − facet, G ⊂ Y ,

such that F ⊂ G and r < s. A facet is said to be non-dominated if all its points are

non-dominated. A r-facet, F ⊂ Y , is a maximally non-dominated facet iff there is no

non-dominated s-facet, G ⊂ Y , such that F ⊂ G and r < s. We will use the expression

maximally efficient facet of X as the inverse image of a maximally non-dominated facet

of polytope Y .

An intermediate vector is a point of an r−facet, r > 1, that belongs to the line segment

between two adjacent vertices. It is known that all vertices of polytope X are associated

with feasible solutions that have integer coordinates [2]. Each vertex of the polytope Y is

the image of at least a vertex of the polytope X, but one vertex of Y can be image of more

than one vertex of X, and not all vertices of X have as image a single vertex of Y . Vertices

of Y can be images of non-extreme points of X. Not all supported non-dominated vectors

are images of extreme points or intermediate efficient points. To illustrate this concept

we consider the example of Figure 1. The BOINF problem associated with this network

is the following:

“ min ” (15x12 + 26x13 + 25x23 + 23x34 + 12x35 + 25x45,

2x12 + 19x13 + 10x23 + 15x24 + 22x34 + 27x35 + 28x45)

subject to: x12 +x13 = 10

−x12 +x23 +x24 = 0

−x13 −x23 +x34 +x35 = 0

−x24 −x34 +x45 = 0

x35 +x45 = 10

0 ≤ x12 ≤ 10; 0 ≤ x13 ≤ 5; 0 ≤ x23 ≤ 4; 0 ≤ x24 ≤ 7;

0 ≤ x34 ≤ 8; 0 ≤ x35 ≤ 6; 0 ≤ x45 ≤ 8, and integer.
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which is equivalent to the following linear programming.

“min ” (15x12 + 26x13 + 25x23 + 23x34 + 12x35 + 25x45,

2x12 + 19x13 + 10x23 + 15x24 + 22x34 + 27x35 + 28x45)

subject to: x12 +x13 = 10

x13 +x23 +x24 = 10

x24 +x34 +x35 = 10

x24 +x34 −x45 = 0

0 ≤ x12 ≤ 10; 0 ≤ x13 ≤ 5; 0 ≤ x23 ≤ 4; 0 ≤ x24 ≤ 7;

0 ≤ x34 ≤ 8; 0 ≤ x35 ≤ 6; 0 ≤ x45 ≤ 8, and integer.

Considering the variables x12, x23, x35, and x45 as slack variables in the first, second,

third, and fourth constraints, respectively, the feasible region can be represented in R3 by

using only 3 decision variables, x13, x24 and x34 (see [2]). The convex hull of the feasible

region is the polytope in Figure 2(a). The supported efficient solutions are represented in

Figure 2(b) by the points numbered 1, 2, · · · , 18.

0
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Figure 2: (a) Feasible region and (b) efficient solutions.

Figures 3(a) and (b) represent the set of feasible vectors and non-dominated vectors,

respectively, in the objective space. This example shows several supported non-dominated

vectors that are not image of intermediate solutions. These vectors are represented in

Figure 3(b) by the points: 4, 7, 8, 11, 12, and 15. All these points are images of non inter-

mediate solutions. The algorithms [14, 16] are not able to find these points. For example,

the solution 4 (Figure 3(b)) is not an intermediate solution, it cannot be obtained as a
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linear combination between two adjacent extreme points. It is rather a linear combination

between two intermediate solutions. These kind of operations are not performed in algo-

rithms [14, 16]. Those algorithms are thus inappropriate for solving bi-objective network

flow problems.
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Figure 3: (a) Feasible region and (b) non-dominated vectors.

2 A negative-cycle algorithm for MOINF problems

This section presents a new algorithm to find all supported non-dominated vectors and all

efficient solutions for MOINF problems. The algorithm makes use of the connectedness

of the solutions associated with directed cycles of cost zero in residual networks. This is

proved in Theorem 2.1.

Consider the network N and a feasible solution x0 for the single objective integer

network flow (SOINF) problem, i.e., the problem with the same set of constraints as in

(1), but with only one objective. The residual network, N (x0), with respect to the given

flow x0 is the network that results from N by replacing each arc (i, j) with two arcs (i, j)

and (j, i): the arc (i, j) has a cost value cij and a residual capacity rij = uij − x0
ij , and

the arc (j, i) has a cost value −cij and a residual capacity rij = x0
ij . The residual network

consists only of the arcs with a positive residual capacity. It can be shown that every flow

x in the network N corresponds to a flow x′ in the residual network N (x0) [1]. The sum
∑

γijcij for all arcs (i, j) in a cycle is called cost of the cycle, where γij is equal to 1 if

the arc (i, j) is a direct or forward arc in the cycle and γij is equal to −1 if the arc (i, j)

is a reverse or backward arc in the cycle. A cycle (not necessarily directed) in N is called
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augmenting cycle with respect to a flow x if when augmenting a positive amount of flow

on the arcs in the cycle, the new flow remains feasible. Therefore, an augmenting cycle

cannot contain backward arcs (i, j) such that xij = lij or forward arcs such that xij = uij .

Each augmenting cycle with respect to a flow x corresponds to a directed cycle in the

residual network N (x), and vice-versa [1, 2].

The optimality of a solution, x∗, for SOINF problem can be evaluated through the cost

of the directed cycles in the residual network. It is well known that a feasible solution x∗ is

an optimal solution if and only if the residual network N (x∗) contains no negative directed

cycles. We define the reduced cost of an arc (i, j) as the quantity c̄ij = cij−πi +πj , where

πi is the linear programming dual variable corresponding to the constraint of node i in

equations (1.a). This definition is applicable to the residual network as well as the original

one. The solution x∗ is an optimal solution for SOINF problem iff c̄ij ≥ 0 for every arc

(i, j) in N (x∗). Let W denote a directed cycle in the residual network. It is also well

known that
∑

(i,j)∈W

c̄ij =
∑

(i,j)∈W

cij . Henceforth, we will use only directed cycles in the

residual network and we will write cycle instead of directed cycle.

Consider the SOINF problem associated with a network N .

Definition 2.1 Let x′ and x′′ be two feasible solutions for the SOINF problem. The

solution x′′ is said to be a cycle-adjacent solution of x′ if x′′ is obtained from x′ by aug-

menting δ units of flow in a cycle in N corresponding to a cycle W in N (x′), where

δ = min{rij : (i, j) ∈ W}. The solution obtained by augmenting δ1 units of flow in this

cycle, where 0 < δ1 < δ, δ1 integer, is called cycle-intermediate solution of (x′, x′′).

Proposition 2.1 If x′′ is a cycle-adjacent solution of x′ then either x′ is a cycle-adjacent

solution of x′′ or x′ is a cycle-intermediate solution of (x′′, x′′′), where x′′′ is a cycle

adjacent solution of x′′.

Proof: If x′′ is a cycle-adjacent solution of x′ then there is a cycle, i1 − a1 − i2 − a2 · · · −
is − as − i1 (ak = (ik, ik+1) or ak = (ik+1, ik), k = 1, 2, · · · , s − 1 and as = (is, i1) or

as = (i1, is)), in the network N such that augmenting δ units of flow along this cycle

leads to the solution x′′. Consider the solution x′′ and the former cycle with an opposite

direction, i1−as−is · · ·−a2−i2−a1−i1. The same δ units of flow in this cycle lead to x′. If
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W is the corresponding cycle in the residual network N (x′′) and δ = min{rij : (i, j) ∈ W}
then x′ is a cycle-adjacent solution of x′′. If δ < min{rij : (i, j) ∈ W}, x′ is a cycle-

intermediate solution of (x′′, x′′′), where x′′′ is a cycle-adjacent solution of x′′.

¤

Proposition 2.2 Let x′ and x′′ be two adjacent extreme points of polytope X. If x′′ is a

cycle-adjacent solution of x′ then x′ is also a cycle-adjacent solution of x′′.

Proof: It is known that if x′ and x′′ are adjacent extreme points there is at least one aug-

menting cycle in N that allows to obtain one solution from the other. These augmenting

cycles are associated with cycles W and W ′ in N (x′) and N (x′′), respectively, that define

x′′ as a cycle-adjacent of x′ and x′ as a cycle-adjacent of x′′, respectively.

¤

Consider the parametric integer network flow problem:

min
p∑

k=1

λkc
kx

subject to: x ∈ B(k)

(3)

for some λ = (λ1, λ2, · · · , λp) ∈ Λ and B(k) ⊆ XI .

In what follows we assume that problem (1) has more than one supported non-

dominated vector. We use the term cycle-sequence as a sequence of optimal solutions

x(1), x(2), · · · , x(p) for problem (3), with B(k) = XI , such that for each pair, (x(q), x(q+1)),

x(q+1) is a cycle-adjacent solution of x(q), q = 1, 2, · · · , p − 1 for some problem of type

(3). A solution x ∈ XI is said to be in a cycle-sequence x(1), x(2), · · · , x(p) if x is one of

the solutions x(1), x(2), · · · , x(p) or if x is a cycle-intermediate solution of (x(q), x(q+1)), for

some q = 1, 2, · · · , p− 1.

The supported non-dominated vectors are on the boundary of Y =. Next we show that

the set of supported non-dominated vectors for the MOINF problem is connected.

Theorem 2.1 Let y′ = f(x′) and y′′ = f(x′′) be two supported-extreme non-dominated

vectors for problem (1), in the same maximally non-dominated facet, FY , on the boundary

of Y =. Then, any supported non-dominated vector in FY is image of an efficient solution

in a cycle-sequence x′, · · · , x′′.
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Proof: For each maximally efficient facet, FX of X, f(FX) is a maximally non-dominated

facet of Y ; and for each maximally non-dominated facet, FY of Y , f−1(FY ) ∩ X is a

maximally efficient facet of X (see [3]). Furthermore, it is known that the points of

a maximally efficient facet, FX , are optimal solutions of problem (3) for a fixed λ0 =

(λ0
1, λ

0
2, · · · , λ0

p) ∈ Λ (see, for example, [9]). We are only interested in the points in FX

and FY that have integer components.

Next we will show that given an optimal solution of problem (3), with B(k) = XI ,

we can find all the remaining optimal solutions in XI through the cycles of cost zero

associated with the residual network of solutions already found. We assume, without loss

of generality, that between two nodes, i and j, in the network N , there is only one arc,

either the arc (i, j) or the arc (j, i).

Given two optimal solutions x(1), x(2) of (3), with λ = λ0 and B(k) = XI , either

x(1), · · · , x(2) is a cycle-sequence or x(2) is in a cycle-sequence x(1), · · · , x(3). In fact, the

residual network, N (x(1)), has at least one cycle of cost zero; otherwise, considering x(1)

as the best flow for this problem, the second best flow (computed for example by using

the second best network flow algorithm [11]) would have a cost greater than the cost of

the flow x(1), but this would mean that problem (3), with B(k) = XI , had only one

optimal solution, which is not true. Consider a cycle-adjacent solution, x(1,1), of x(1)

obtained through the cycle of cost zero W (1) in N (x(1)). If x(1,1) = x(2) or x(2) is a

cycle-intermediate solution of (x(1), x(1,1)) and the prove is done. Otherwise, consider the

augmenting flow with δ = rpq = min{rij : (i, j) ∈ W (1)} units that leads to the flow x(1,1).

Consider the partition of XI into two sets, B(1) and B(2), according to the direction of

the corresponding cycle in the network N :

(1) if its direction is the same as (p, q), i.e., the arc (p, q) exists in the network N , consider

B(1) = {x : x ∈ XI and lpq ≤ xpq ≤ apq}, where apq is the flow of the arc (p, q) in

solution x(1);

(2) otherwise, consider B(1) = {x : x ∈ XI and aqp ≤ xqp ≤ uqp}, where aqp is the flow of

the arc (q, p) in solution x(1);

and B(2) = XI \ B(1). It can be seen that x(1) ∈ B(1), x(1,1) ∈ B(2) and x(2) is either in

B(1) or B(2).
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a) If x(2) ∈ B(1), consider x(1) as the best solution of the problem min
x∈B(1)

p∑
k=1

λkc
kx and the

new network N associated with this problem. Find a cycle-adjacent solution, x(1,2),

of x(1) through the cycle of cost zero W (1,2) in N (x(1)) (x(1,2) exists, since x(2) has

the same cost as x(1)). If this solution is x(2) or x(2) is a cycle-intermediate solution

of (x(1), x(1,2)) then the proof is done. Otherwise, consider the augmenting flow of

rpq = min{rij : (i, j) ∈ W (1,2)} units that leads to the flow x(1,2). Consider the

partition of B(1) into sets B(1,1) and B(1,2) in the same way as the partition of XI was

done in B(1) and B(2).

b) if x(2) is in B(2) consider x(1,1) as the best solution for the problem min
x∈B(2)

p∑
k=1

λkc
kx and

the new network N associated with this problem. Compute a cycle-adjacent solution,

x(1,1,1), of x(1,1) through the cycle of cost zero W (1,1,1) in N (x(1,1)). If x(1,1,1) = x(2) or

x(2) is a cycle-intermediate solution of (x(1,1), x(1,1,1)) then the prove is done. Otherwise,

consider the augmenting flow of rpq = min{rij : (i, j) ∈ W (1,1,1)} units that leads to

the flow x(1,1,1). Consider the partition of B(2) into sets B(2,1) and B(2,2) in the same

way as the partition of XI was done in B(1) and B(2).

Repeating this process we will find a cycle-sequence x(1), · · · , x(3) such that x(2) = x(3) or

such that x(2) is in the cycle-sequence x(1), · · · , x(3).

We conclude that any optimal solution x of (3), with B(k) = XI , is in a cycle-sequence

x′, · · · , x′′. In fact we know that x is in a cycle-sequence x′, · · · , x′′′ and the cycle-sequence

x′, · · · , x′′ can be subdivided into two cycle-sequences x′, · · · , x′′′ and x′′′, · · · , x′′. Thus

the cycle-sequence x′, · · · , x′′ contains x and the prove is done.

¤

We can now say that the set of all supported non-dominated vectors for the MOINF

problem is connected since the extreme points of the maximally non-dominated facets are

connected.

The proof of Theorem 2.1 gives rise to the following algorithm that finds all supported

non-dominated vectors/efficient solutions for the MOINF problem. Consider the paramet-

ric problem (3), with B(k) = XI , for some fixed λ associated with the maximally efficient

facet FX ∈ X, and a non-dominated vector y′ = f(x′) such that x′ ∈ F . Theorem 2.1 says

12



that all the non-dominated solutions in FX for the MOINF problem are in a cycle-sequence

x′, ..., x′′.

The values of λ’s for each efficient facet are computed through the cost of a cycle in

the residual network. We can begin by computing the non-dominated vector associated

with the minimum of p-th objective by solving problem (3), for values of λ1, λ2, · · · , λp−1

positive and sufficiently close to 0 and such that λp = 1 − λ1 − λ2 − · · · − λp−1. This

problem can be solved by using the negative-cycle algorithm. Let x(1) be the solution

found. This solution has no negative cycles and
∑

(i,j)∈W

p∑
k=1

λkc
k
ij ≥ 0, for any cycle W

in N (x(1)). This system of inequalities allows the determination of a vector λ associated

with the maximally efficient facet containing x(1). T. Gal [9], shows how this can be done

for all maximally efficient facets.

Step 1. of the algorithm computes all the λ’s associated with the maximally effi-

cient facets. The maximally efficient facets, in Y , and the corresponding λ’s can be

computed as in [9]. When the problem has only two objectives, Step 1. can begin by

computing all the extreme non-dominated supported vectors, i.e., the extreme points of

the set Conv(ND(Y I) + R2). This can be done by using, for example, a dichotomic

search or a parametric problem solved through a negative-cycle algorithm or a primal-

dual algorithm (see, for example, [4, 6]). The maximally non-dominated facets are now

line segments connecting two adjacent non-dominated vectors, since the only time Y will

have a maximally non-dominated facet of dimension 0 is when the number of extreme

non-dominated vectors is one. Suppose that the slope of one of this segments is d, then

the vector λ associated to this maximally non-dominated facet is λ = ( d
d−1 , 1 − d

d−1). If

the MOINF has three objectives then the problem can have maximally non-dominated

facets that are faces or line segments. The faces are part of a plane whose equation is

Ay1 + By2 + Cy3 = D, A, B,C > 0. In this case we have λ = ( A
A+B+C , B

A+B+C , C
A+B+C ).

If the maximally non-dominated facet is a line segment there is, in general, several vectors

λ. The candidates are found among the perpendicular vectors to the line segment, such

that λk > 0, k = 1, 2, · · · , p and
p∑

k=1

λk = 1.
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Algorithm 1: MOINF cost-zero algorithm.

Step 1. Compute the set of all λ’s λ(1), λ(2), · · · , λ(t) associated with

the maximally efficient facets F1, F2, · · · , Ft, and one extreme

point for each facet, x(1), x(2), · · · , x(t), respectively. Let E :=

{(x(1), λ(1), XI), (x(2), λ(2), XI), · · · , (x(t), λ(t), XI)}, where x(k) is

such that f(x(k)) = y(k), k = 1, 2, · · · , t.

Let Ys(Xs) be the set of supported non-dominated vectors (efficient

solutions) of the MOINF problem. Ys := {y(1′), y(2′), · · · , y(t′)} and

Xs = {x(1′′), x(2′′), · · · , x(t′′)}. These solutions are the same as in E

without repetitions.

Step 2. While E 6= ∅ do

E := E \ {(x(k), λ(k), B)}.

Consider the problem min
x∈B

p∑
k=1

λkckx for λ = λ(k) and the correspond-

ing network N .

If there exists a cycle-adjacent solution, x(k′), of x(k) associated with

a cycle of cost zero W in N (x(k)), and with an arc (p, q) such

that rpq = min{rij : (i, j) ∈ W}:

(a) Add (x(k), λ(k), B(1)) and (x(k′), λ(k), B(2)) to the set E,

where

B(2) = B \B(1) and

B(1) = {x ∈ B : 0 ≤ xpq ≤ apq} if the arc (p, q) ∈ N or

B(1) = {x ∈ B : aqp ≤ xqp ≤ uqp} otherwise, where apq

(aqp) is the flow of the arc (p, q) ((q, p)) in solution x(k).

(b) If y(k′) is not in Ys, set Ys := Ys ∪ {y(k′)}. If x(k′) is not in

Xs, set Xs := Xs ∪ {x(k′)}
(c) For each cycle-intermediate solution x(k′′) of (x(k), x(k′))

such that y(k′′) is not in Ys do Ys := Ys ∪ {y(k′′)}. If x(k′′)

is not in Xs, set Xs := Xs ∪ {x(k′′)}.
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3 An Illustrative Example

Consider the MOINF problem with three objectives as in Figure 4 below.
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Figure 4: MOINF problem.

In the first step the maximally efficient facets for this problem are found. These facets

are the two faces [ABCDEF ] and [CDIH] and the line segment [IJ ]. They are depicted

in Figure 5 (a) and (b) in the decision and objective spaces, respectively (see the gray

polygons). The point C associated with efficient solution x(1) = (7, 3, 0, 7, 0, 3, 7) belongs to

the two faces and the point I associated with the solution x(3) = (10, 0, 3, 7, 1, 2, 8) belongs

to the line segment [IJ ]. The λ’s associated with those facets are λ(1) = (44
63 , 1

9 , 4
21), λ(2) =

(76
99 , 1

9 , 4
33) and λ(3) = (11

13 , 1
13 , 1

13), respectively. Thus E = {(x(1), λ(1), XI), (x(1), λ(2), XI),

(x3, λ(3), XI)}, Ys = {y(1), y(3)} = {(445, 536, 74), (442, 560, 71)} and Xs = {x(1), x(3)} =

{(7, 3, 0, 7, 0, 3, 7), (10, 0, 3, 7, 1, 2, 8)}

0
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Figure 5: Efficient solutions and non-dominated vectors for MOINF in Figure 4.
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It.1: In the second step of the algorithm the element (x(1), λ(1), XI) = ((7, 3, 0, 7, 0, 3, 7),

(44
63 , 1

9 , 4
21), XI) in E is considered and we set E := {(x(1), λ(2), XI), (x(3), λ(3), XI)}.

Consider the auxiliary problem associated with the first face.

min 44
63f1(x) + 1

9f2(x) + 4
21f3(x)

= 115
9 x12 + 46

3 x13 + 23
9 x23 + 512

63 x24 + 19
3 x34 + 208

9 x35 + 1105
63 x45

subject to: x12 + x13 = 10

−x12 +x23 +x24 = 0

−x13 −x23 +x34 +x35 = 0

−x24 −x34 +x45 = 0

−x35 −x45 = −10

x12 ≤ 10, x13 ≤ 5, x23 ≤ 4, x24 ≤ 7, x34 ≤ 8, x35 ≤ 6, x45 ≤ 8

x12, x13, x23, x24, x34, x35, x45 ≥ 0 and integer.

The residual network associated with the solution x(1) (Figure 6 (a)) is in Figure 6

(b). Consider the cycle-adjacent solution x(4) = (10, 0, 3, 7, 0, 3, 7) obtained through

the cycle of cost zero 1−2−3−1. (x(1), x(4)) has x(5) = (8, 2, 1, 7, 0, 3, 7) and x(6) =

(9, 1, 2, 7, 0, 3, 7) as intermediate solutions. The corresponding non-dominated vec-

tors are y(4) = (442, 560, 71), y(5) = (444, 544, 73), and y(6) = (443, 552, 72).
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Figure 6: (a)Solution x(1); (b)N (x(1)).
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The new set E is

E =
{

(x(1), λ(1), B(1) = {x ∈ XI : 0 ≤ x12 ≤ 7}),

(x(4), λ(1), B(2) = {x ∈ XI : 8 ≤ x12 ≤ 10}),

(x(1), λ(2), XI),

(x(3), λ(3), XI)
}

.

We have Ys = {y(1), y(3), y(4), y(5), y(6)} and Xs = {x(1), x(3), x(4), x(5), x(6)}

It.2: As E 6= {} the algorithm continues considering (x(1), λ(1), B(1)) ∈ E. E := E \
{(x(1), λ(1), B(1))}.

The residual network associated with the solution x(1) (Figure 7 (a)), in the new

network associated with B(1), is presented in Figure 7 (b). Consider the cycle-

adjacent solution x(7) = (5, 5, 0, 5, 0, 5, 5) obtained through the cycle of cost zero

1 − 3 − 5 − 4 − 2 − 1. (x(1), x(7)) has x(8) = (6, 4, 0, 6, 0, 4, 6) as intermediate so-

lution. The corresponding non-dominated vectors are y(7) = (455, 480, 70), and

y(8) = (450, 508, 72).-
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Figure 7: (a)Solution x(1); (b)N (x(1)).
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The new set E is

E =
{

(x(1), λ(1), B(1,1) = {x ∈ XI : 0 ≤ x12 ≤ 7 and 0 ≤ x13 ≤ 3}),

(x(7), λ(1), B(1,2) = {x ∈ XI : 0 ≤ x12 ≤ 7 and 4 ≤ x13 ≤ 5}),

(x(4), λ(1), B(2) = {x ∈ XI : 8 ≤ x12 ≤ 10}),

(x(1), λ(2), XI),

(x(3), λ(3), XI)
}

.

The new sets Ys and Xs are Ys = {y(1), y(3), y(4), y(5), y(6), y(7), y(8)} and Xs = {x(1),

x(3), x(4), x(5), x(6), x(7), x(8)}

It.3: As E 6= {} the algorithm continues considering (x(1), λ(1), B(1,1)) ∈ E. E := E \
{(x(1), λ(1), B(1,1))}.

Consider the cycle-adjacent solution x(9) = (7, 3, 3, 4, 0, 6, 4) obtained through the

cycle of cost zero 2− 3− 5− 4− 2 in the network associated with B(1,1). (x(1), x(9))

has x(10) = (7, 3, 1, 6, 0, 4, 6), and x(11) = (7, 3, 2, 5, 0, 5, 5) as intermediate solu-

tions. The corresponding non-dominated vectors are y(9) = (457, 476, 65), y(10) =

(449, 516, 71), and y(11) = (453, 496, 68).

The new set E is

E =
{

(x(1), λ(1), B(1,1,1) = {x ∈ XI : 0 ≤ x12 ≤ 7 and 0 ≤ x13 ≤ 3 and 0 ≤ x35 ≤ 3}),

(x(9), λ(1), B(1,1,2) = {x ∈ XI : 0 ≤ x12 ≤ 7 and 0 ≤ x13 ≤ 3 and 4 ≤ x35 ≤ 6}),

(x(7), λ(1), B(1,2) = {x ∈ XI : 0 ≤ x12 ≤ 7 and 4 ≤ x13 ≤ 5}),

(x(4), λ(1), B(2) = {x ∈ XI : 8 ≤ x12 ≤ 10}),

(x(1), λ(2), XI),

(x(3), λ(3), XI)
}

.

The new sets Ys and Xs are Ys = {y(1), y(3), y(4), y(5), y(6), y(7), y(8), y(9), y(10), y(11)}
and Xs = {x(1), x(3), x(4), x(5), x(6), x(7), x(8), x(9), x(10), x(11)}

It.4: As E 6= {} the algorithm continues considering (x(1), λ(1), B(1,1,1)) ∈ E and let

E = E \ {(x(1), λ(1), B(1,1,1))}.

There is no cycles of cost zero in the residual network associated with B(1,1,1).
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It.5: As E 6= {} the algorithm continues considering (x(9), λ(1), B(1,1,2)) ∈ E. E :=

E \ {(x(9), λ(1), B(1,1,2))}.

Consider the cycle-adjacent solution x(10) = (7, 3, 1, 6, 0, 4, 6) obtained through the

cycle of cost zero 2−4−5−3−2 in the network associated with B(1,1,2). (x(9), x(10))

has x(11) as intermediate solution.

The new set E is

E =
{

(x(9), λ(1), B(1,1,2,1) = {x ∈ XI : 0 ≤ x12 ≤ 7 and 0 ≤ x13 ≤ 3 and x35 = 6}),

(x(10), λ(1), B(1,1,2,2) = {x ∈ XI : 0 ≤ x12 ≤ 7 and 0 ≤ x13 ≤ 3 and 4 ≤ x35 ≤ 5}),

(x(7), λ(1), B(1,2) = {x ∈ XI : 0 ≤ x12 ≤ 7 and 4 ≤ x13 ≤ 5}),

(x(4), λ(1), B(2) = {x ∈ XI : 8 ≤ x12 ≤ 10}),

(x(1), λ(2), XI),

(x(3), λ(3), XI)
}

.

The sets Ys and Xs are kept the same.

It.6: (· · · )

The remaining non-dominated vectors/efficient solutions are computed in a similar

way.

4 Computational Experiments

Algorithm 1 has been implemented for the BOINF problem using C programming lan-

guage. The computer used for the experiments is equipped with an Intel Pentium processor

with 2.5GHz and 2GB RAM and runs under the OS X operating system.

A set of 150 instances of the bi-objective network flow problem was generated using the

NETGEN network generator after modifications to make it applicable for this particular

problem. Five types of problems with 30 instances each were considered according to

the number of nodes and the number of arcs of the network. The coefficients of the

objective function were randomly generated (uniform distribution) from the integer set

{0, 1, 2, · · · , 100}. All arcs are capacitated. The remaining parameters of the generated

problems are listed in Table 1 following the conventions of NETGEN (see [13]).
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Table 1: Problem parameters.

Problem Nodes Arcs Sources Sinks Total % Skeleton Arcs Capacity

Type Supply with with uij

max c1
ij max c2

ij

1 10 40 5 4 100 20 20 0 – 20

2 20 100 7 5 200 30 30 0 – 30

3 30 300 8 12 300 25 25 0 – 30

4 40 600 12 14 400 20 30 0 – 40

5 50 1000 15 15 600 25 25 0 – 40

Table 2 shows the average number of supported non-dominated vectors (SN), the

average number of efficient solutions (SE) and the average CPU time, in seconds, obtained

for each problem type.

Table 2: Problem parameters.

Problem Number of Average number of Average CPU time

type nodes arcs SN SE (seconds)

1 10 24 33,03 33,03 0,01

2 20 100 119,73 120,40 0,17

3 30 300 274,00 299,27 1,55

4 40 600 466,93 515,77 4,46

5 50 1000 759,83 951,90 14,11

This algorithm appears to be able to find supported non-dominated vectors and sup-

ported efficient solutions for small and medium size instances in a small amount of CPU

time. The computation of each supported non-dominated vector took an average CPU

time of 0.007 seconds. This time grows with the number of nodes and arcs as it is shown

in Table 3.
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Table 3: Problem parameters.

Problem type 1 2 3 4 5

CPU time (s) /SN 0.0004 0.0014 0.0057 0.0094 0.0186

Conclusions

In this paper, we proposed an algorithm for finding all supported non-dominated vec-

tors/efficient integer solutions for MOINF problems. To the best of our knowledge, there

is no other method specifically devoted to determining these vectors/solutions. The al-

gorithm identifies the zero-cost cycles in a residual network and uses the connectedness

property of the supported efficient solutions. It provides an alternative to other algorithms

using simplex-based proofs. This algorithm can deal with more than two objectives and

is able to avoid the degeneracy problems that have been highlighted in the simplex based

methods. In our opinion, the proposed algorithm is the first step in the development of

more negative-cycle algorithms for solving MOINF problems.

References

[1] R. Ahuja, T.L. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, New Jersey, 1993.

[2] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali. Linear Programming and Network Flows.

John Wiley & Sons, New Jersey, 3rd edition, 2005.

[3] J.P. Dauer and R.J. Gallagher. A combined constraint-space, objective space ap-

proach for determining high-dimensional maximal efficient faces of multiple objective

linear programs. European Journal of Operational Research, 88:368–381, 1996.

[4] M. Ehrgott. Multicriteria Optimization. Springer-Verlag, Berlin, 2nd edition, 2005.
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[6] A. Eusébio, J.R. Figueira, and M. Ehrgott. A primal-dual simplex algorithm for

bi-objective network flow problems, 2008. Submitted.

[7] J.R. Figueira. On the integer bi-criteria network flows problem: A branch-and-bound

approach. Faculdade de Economia da Universidade de Coimbra, Coimbra, Portugal.

Working Paper No. 3/2000 [revised version: Cahier du LAMSADE, No. 191/2002,
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