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Motivation

Embedded systems must often meet deadlines

faster may not be fast enough

Need to be able to analyze execution time

worst-case, not typical

Need techniques for reliably improving execution time
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Program-Level Performance Analysis

Need to understand performance in detail

real-time behavior, not just typical
on complex platforms

Program performance 6= CPU performance

the way we use pipeline or cache
we must analyze the entire program
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Run Times Will Vary

Program execution times depend on several factors

Input data values

different values, different execution paths

Cache behavior

also dependent on input values

Instruction level

floating-point operations
pipelining effects
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Measuring Program Speed

CPU simulator

clearly slower than executing
I/O may be hard
may not be totally accurate

Hardware profiler/timer

requires board with timer connected to bus
instrumented program to start/stop timer

Logic analyzer

connected to cpu bus
relies on indentifiable event on bus
limited logic analyzer memory depth
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Program Performance Metrics

Average-case execution time

for typical input data values, whatever they are

Worst-case execution time

longest execution time for any possible input sequence
important to assert deadlines

Best-case execution time

for any possible input sequence
relevant to better timing of the tasks
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Performance Analysis

Elements of program performance:

execution time = program path + instruction timing

Path depends on data values

choose which case you are interested in

Instruction timing depends on pipelining and cache behavior
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Programs and Performance Analysis

It is hard to get accurate estimates of total execution time from
a high-level language

Best results come from analyzing optimized instructions, not
high-level language code

non-obvious translations of HLL statements into instructions
code may move
cache effects are hard to predict

However, some aspects of program performance can be
estimated by looking at the HLL program
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Program Paths

Consider for loop

for (i=0, f=0; i<N; i++)

f = f + c[i]*x[i];

Loop initiation block
executed once

Loop test executed N+1
times

Loop body and variable
update executed N times

Control Data FlowGraph (CDFG)
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Measuring the Longest Path Length

Must work on the optimized CDFG

compiler can change the original CDFG

Choosing the longest path may not correspond to the longest
execution time

the time also depends on the timing of the instructions
the simplest estimate is to assume that every instruction takes
the same amount of time
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Instruction Timing

Not all instructions take the same amount of time

but we can look them up

Instruction execution times are not independent

but we can consider their effects

Execution time may depend on operand values

this is more tricky but usually the variances are not that large
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Trace-Driven Performance Analysis

Trace: a record of the execution path of a program

Trace gives execution path for performance analysis

A useful trace:

requires proper input values
is large (gigabytes)
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Trace Generation

Hardware capture

logic analyzer
hardware assist in CPU

Software

PC sampling
instrumentation instructions
simulation
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CPU Simulation

Some simulators are less accurate

Cycle-accurate simulator provides accurate clock-cycle timing

simulator models CPU internals
simulator writer must know how CPU works
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Software Performance Optimization

How to optimize software performance

Loop optimizations

Cache optimizations

Other performance optimizations strategies
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Loop Optimizations

Loops are good targets for optimization

Basic loop optimizations:

code motion

induction-variable elimination

strength reduction (x*2 → x<<1)
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Code Motion

Move unnecessary code out
of a loop

Consider loop:

for (i=0; i<N*M; i++)

z[i] = a[i] + b[i];

Don’t recompute N*M in
each iteration
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Induction Variable Elimination

Induction variable: variable that depends on loop index

Consider loop:

for (i=0; i<N; i++)

for (j=0; j<M; j++)

z[i][j] = b[i][j];

Don’t recompute i*M+j for each array in each iteration

Share induction variable between arrays, or

Increment at end of loop body
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Cache Analysis

Loop nest: set of loops, one inside other

Perfect loop nest: no conditionals in nest

Because loops use large quantities of data, cache conflicts are
common

Changing the order of the loops can sometimes optimize cache
performance
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Array Conflicts in Cache (1/3)

for (j=0; j<M; j++)

for (i=0; i<N; i++)

a[i][j] = b[i][j] * c;

Can be changed to:

for (i=0; i<N; i++)

for (j=0; j<M; j++)

a[i][j] = b[i][j] * c;
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Array Conflicts in Cache (2/3)

for (i=0; i<N; i++)

for (j=0; j<M; j++)

a[i][j] = b[i][j] * c;
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Array Conflicts in Cache (3/3)

Array elements conflict because they are in the same line, even if
not mapped to same location

Solutions:

move one array
pad array
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Performance Optimization Strategies

Does the code really need to be accelerated?

maybe that is not the code where your program spends the most
time

Profilling may help you determine which part of your code needs
to be optimized

You may be able to optimize the algorithm

fewer instructions
use of static memory instead of allocated

Look at the implementation of the program
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Performance Optimization Hints

Use registers efficiently

Use page mode memory accesses

rearrange the variables so that more can be referenced
contiguously

Analyze cache behavior

instruction conflicts can be handled by rewriting code,
rescheduling
conflicting scalar data can easily be moved
conflicting array data can be moved, padded
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Energy/Power Optimization

Energy: ability to do work

most important in battery-powered systems

Power: energy per unit time

important even in wall-plug systems—power becomes heat
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Measuring Energy Consumption

Execute a small loop, measure current
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Sources of Energy Consumption

Relative energy per operation (Catthoor et al’98):

memory transfer: 33
external I/O: 10
SRAM write: 9
SRAM read: 4.4
multiply: 3.6
add: 1
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Cache Behavior is Important

Energy consumption has a sweet spot as cache size changes

cache too small: program thrashes, burning energy on external
memory accesses

cache too large: cache itself burns too much power
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Optimizing for Energy (1/2)

When there is not an energy profile of the hardware:

first-order optimization: high performance = low energy

When there is an energy profile of the hardware:

consider the simplification of tasks in higher consumption
modules, and
increase processing time in lower consumption modules
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Optimizing for Energy (2/2)

Use registers efficiently

Identify and eliminate cache conflicts

Moderate loop unrolling eliminates some loop overhead
instructions

too much loop unrolling may reduce cache performance

Eliminate pipeline stalls

Inlining procedures may help

reduces linkage, but may increase cache thrashing
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Optimizing for Program Size

Goal:

reduce hardware cost of memory
reduce power consumption of memory units

Two opportunities:

data
instructions
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Data Size Minimization

Reuse constants, variables, data buffers in different parts of code

requires careful verification of correctness

Generate data using instructions

Both techniques must be used very carefully because they tend
to obscure program logic
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Reducing Code Size

Avoid function inlining

Choose CPU with compact instructions

may conflict with execution performance

Use specialized instructions where possible

against RISC “philosophy”
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Code Compression

Use statistical compression to reduce code size, decompress
on-the-fly

José Costa (DEI/IST) Program Design and Analysis 39



References

Computers as Components: Principles of Embedded Computing
System Design , Marylin Wolf. Morgan Kaufmam. Ch. 5.6, 5.7 and
5.8

José Costa (DEI/IST) Program Design and Analysis 40



Next Class

Program Design and Analysis - Validation and Testing
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