Program Design and Analysis

José Costa
Software for Embedded Systems

Departamento de Engenharia Informatica (DEI)
Instituto Superior Técnico

2015-10-20

José Costa (DEI/IST) Program Design and Analysis 1

: TECNICO
Outline W LISBOA

Program Design and Analysis

©

Optimizing for Execution Time

Optimizing for Energy/Power

©

Optimizing for Program Size

José Costa (DEI/IST) Program Design and Analysis 2

: . TECNICO
Motivation W LISBOA

@ Embedded systems must often meet deadlines
o faster may not be fast enough

@ Need to be able to analyze execution time
o worst-case, not typical

@ Need techniques for reliably improving execution time

José Costa (DEI/IST) Program Design and Analysis 3

. TECNICO
Program-Level Performance Analysis i M

@ Need to understand performance in detail

o real-time behavior, not just typical
@ on complex platforms

@ Program performance # CPU performance

o the way we use pipeline or cache
@ we must analyze the entire program

José Costa (DEI/IST) Program Design and Analysis 4

. o TECNICO
Program Design and Analysis Q) s

@ Optimizing for Execution Time

@ Optimizing for Energy/Power

@ Optimizing for Program Size

José Costa (DEI/IST) Program Design and Analysis 5

. o TECNICO
Program Design and Analysis Q) s

@ Optimizing for Execution Time

José Costa (DEI/IST) Program Design and Analysis 6

c c TECNICO
Run Times Will Vary Q) s

Program execution times depend on several factors

@ Input data values
o different values, different execution paths

@ Cache behavior
o also dependent on input values

@ Instruction level

o floating-point operations
@ pipelining effects

José Costa (DEI/IST) Program Design and Analysis 7

5 TECNICO
Measuring Program Speed i HE

o CPU simulator
o clearly slower than executing

¢ 1/O may be hard
o may not be totally accurate

@ Hardware profiler/timer

o requires board with timer connected to bus
o instrumented program to start/stop timer

o Logic analyzer

@ connected to cpu bus
o relies on indentifiable event on bus
o limited logic analyzer memory depth

José Costa (DEI/IST) Program Design and Analysis 8

. TECNICO
Program Performance Metrics Q) s

@ Average-case execution time
@ for typical input data values, whatever they are

@ Worst-case execution time

o longest execution time for any possible input sequence
@ important to assert deadlines

@ Best-case execution time

@ for any possible input sequence
o relevant to better timing of the tasks

José Costa (DEI/IST) Program Design and Analysis 9

- TECNICO
Performance Analysis Q) s

@ Elements of program performance:
o execution time = program path + instruction timing

@ Path depends on data values
o choose which case you are interested in

@ Instruction timing depends on pipelining and cache behavior

José Costa (DEI/IST) Program Design and Analysis 10

. TECNICO
Programs and Performance Analysis W LISBOA

@ It is hard to get accurate estimates of total execution time from
a high-level language

@ Best results come from analyzing optimized instructions, not
high-level language code
o non-obvious translations of HLL statements into instructions
o code may move
o cache effects are hard to predict

@ However, some aspects of program performance can be
estimated by looking at the HLL program

José Costa (DEI/IST) Program Design and Analysis 11

TECNICO
LISBOA

Program Paths

@ Consider for loop

for (i=0, f=0; i<N;
f =f + clil*x[1i];

@ Loop initiation block
executed once

@ Loop test executed N+1

times

@ Loop body and variable
update executed N times

José Costa (DEI/IST)

Control Data FlowGraph (CDFG)

i++)

Program Design and Analysis

Measuring the Longest Path Length i sy

@ Must work on the optimized CDFG
@ compiler can change the original CDFG

@ Choosing the longest path may not correspond to the longest
execution time
@ the time also depends on the timing of the instructions
o the simplest estimate is to assume that every instruction takes
the same amount of time

José Costa (DEI/IST) Program Design and Analysis 13

5 2o TECNICO
Instruction Timing Q) s

@ Not all instructions take the same amount of time
o but we can look them up

@ Instruction execution times are not independent
o but we can consider their effects

@ Execution time may depend on operand values
o this is more tricky but usually the variances are not that large

José Costa (DEI/IST) Program Design and Analysis 14

. : TECNICO
Trace-Driven Performance Analysis i M

@ Trace: a record of the execution path of a program

@ Trace gives execution path for performance analysis

@ A useful trace:

o requires proper input values
o is large (gigabytes)

José Costa (DEI/IST) Program Design and Analysis 15

. TECNICO
Trace Generation W LISBOA

@ Hardware capture

o logic analyzer
o hardware assist in CPU

o Software

o PC sampling
@ instrumentation instructions
o simulation

José Costa (DEI/IST) Program Design and Analysis 16

. . TECNICO
CPU Simulation WLISBOA

@ Some simulators are less accurate

@ Cycle-accurate simulator provides accurate clock-cycle timing

o simulator models CPU internals
o simulator writer must know how CPU works

José Costa (DEI/IST) Program Design and Analysis 17

. . . TECNICO
Software Performance Optimization W LISBOA

How to optimize software performance
@ Loop optimizations
@ Cache optimizations

@ Other performance optimizations strategies

José Costa (DEI/IST) Program Design and Analysis 18

2o 5 TECNICO
Loop Optimizations Q) s

@ Loops are good targets for optimization

Basic loop optimizations:
@ code motion
@ induction-variable elimination
@ strength reduction (x*2 — x<<1)

José Costa (DEI/IST) Program Design and Analysis 19

. TECNICO
Code Motion W LISBOA

@ Move unnecessary code out
of a loop

o Consider loop:

for (i=0; i<N*M; i++)
z[i] = ali]l + bl[il;

@ Don't recompute N*M in
each iteration

José Costa (DEI/IST) Program Design and Analysis 20

5 5 . . o TECNICO
Induction Variable Elimination i Mg

@ Induction variable: variable that depends on loop index

@ Consider loop:

for (i=0; i<N; i++)
for (j=0; j<M; j++)
z[i1[j] = vl[il[j1;

@ Don't recompute i*M+j for each array in each iteration
@ Share induction variable between arrays, or

@ Increment at end of loop body

José Costa (DEI/IST) Program Design and Analysis 21

. TECNICO
Cache Ana|y5|s W LISBOA

@ Loop nest: set of loops, one inside other

@ Perfect loop nest: no conditionals in nest

@ Because loops use large quantities of data, cache conflicts are
common

@ Changing the order of the loops can sometimes optimize cache
performance

José Costa (DEI/IST) Program Design and Analysis 22

Array Conflicts in Cache (1/3) i Moy

for (j=0; j<M; j++)
for (i=0; i<N; i++)
alil[j] = bl[i1[j] * c;

Can be changed to:

for (i=0; i<N; i++)
for (j=0; j<M; j++)
alil [3j] = b[i][j] * c;

José Costa (DEI/IST) Program Design and Analysis 23

Array Conflicts in Cache (2/3) i Moy

for (i=0; i<N; i++)
for (j=0; j<M; j++)
alil[j] = v[i]1[j] * c;

al001 T 1024

bl0.01 4099 +—

main memory cache

José Costa (DEI/IST) Program Design and Analysis 24

Array Conflicts in Cache (3/3) i sy

@ Array elements conflict because they are in the same line, even if
not mapped to same location

@ Solutions:

@ move one array
o pad array

José Costa (DEI/IST) Program Design and Analysis 25

Performance Optimization Strategies i M

@ Does the code really need to be accelerated?

@ maybe that is not the code where your program spends the most
time

@ Profilling may help you determine which part of your code needs
to be optimized

@ You may be able to optimize the algorithm

o fewer instructions
@ use of static memory instead of allocated

@ Look at the implementation of the program

José Costa (DEI/IST) Program Design and Analysis 26

. 5 . . TECNICO
Performance Optimization Hints i HE

o Use registers efficiently

@ Use page mode memory accesses
o rearrange the variables so that more can be referenced
contiguously

@ Analyze cache behavior
@ instruction conflicts can be handled by rewriting code,
rescheduling
@ conflicting scalar data can easily be moved
o conflicting array data can be moved, padded

José Costa (DEI/IST) Program Design and Analysis 27

. o TECNICO
Program Design and Analysis Q) s

@ Optimizing for Energy/Power

José Costa (DEI/IST) Program Design and Analysis 28

Energy/Power Optimization W{Fggggo

@ Energy: ability to do work
@ most important in battery-powered systems

@ Power: energy per unit time
o important even in wall-plug systems—power becomes heat

José Costa (DEI/IST) Program Design and Analysis 29

. 5 TECNICO
Measuring Energy Consumption i M

@ Execute a small loop, measure current

— 1

José Costa (DEI/IST) Program Design and Analysis 30

. TECNICO
Sources of Energy Consumption i M

@ Relative energy per operation (Catthoor et al'98):

e memory transfer: 33
o external I/0O: 10
SRAM write: 9
SRAM read: 4.4
multiply: 3.6

add: 1

¢ ¢ ¢ ¢

José Costa (DEI/IST) Program Design and Analysis 31

. . TECNICO
Cache Behavior is Important i Mg

Energy consumption has a sweet spot as cache size changes

@ cache too small: program thrashes, burning energy on external
memory accesses

@ cache too large: cache itself burns too much power

José Costa (DEI/IST) Program Design and Analysis 32

Optimizing for Energy (1/2) Q) i

@ When there is not an energy profile of the hardware:
o first-order optimization: high performance = low energy

@ When there is an energy profile of the hardware:

@ consider the simplification of tasks in higher consumption
modules, and
@ increase processing time in lower consumption modules

José Costa (DEI/IST) Program Design and Analysis 33

Optimizing for Energy (2/2) Q) i

o Use registers efficiently
@ Identify and eliminate cache conflicts

@ Moderate loop unrolling eliminates some loop overhead
instructions

o too much loop unrolling may reduce cache performance
@ Eliminate pipeline stalls

@ Inlining procedures may help
o reduces linkage, but may increase cache thrashing

José Costa (DEI/IST) Program Design and Analysis 34

. o TECNICO
Program Design and Analysis Q) s

@ Optimizing for Program Size

José Costa (DEI/IST) Program Design and Analysis 35

Optimizing for Program Size i sy

o Goal:

@ reduce hardware cost of memory
o reduce power consumption of memory units

@ Two opportunities:

o data
@ instructions

José Costa (DEI/IST) Program Design and Analysis 36

c s oo . TECNICO
Data Size Minimization Q) s

@ Reuse constants, variables, data buffers in different parts of code
@ requires careful verification of correctness

@ Generate data using instructions

@ Both techniques must be used very carefully because they tend
to obscure program logic

José Costa (DEI/IST) Program Design and Analysis 37

c . TECNICO
Reducing Code Size Q) s

@ Avoid function inlining

@ Choose CPU with compact instructions
o may conflict with execution performance

@ Use specialized instructions where possible
@ against RISC “philosophy”

José Costa (DEI/IST) Program Design and Analysis 38

c TECNICO
Code Compression Q) s

@ Use statistical compression to reduce code size, decompress
on-the-fly

José Costa (DEI/IST) Program Design and Analysis 39

TECNICO
References W LISBOA

Computers as Components: Principles of Embedded Computing

System Design , Marylin Wolf. Morgan Kaufmam. Ch. 5.6, 5.7 and
5.8

José Costa (DEI/IST) Program Design and Analysis 40

TECNICO
Next Class W LISBOA

@ Program Design and Analysis - Validation and Testing

José Costa (DEI/IST) Program Design and Analysis 41

	Program Design and Analysis
	Optimizing for Execution Time
	Optimizing for Energy/Power
	Optimizing for Program Size

