
Program Design and Analysis

José Costa

Software for Embedded Systems

Departamento de Engenharia Informática (DEI)
Instituto Superior Técnico

2015-10-20

José Costa (DEI/IST) Program Design and Analysis 1



Outline

Program Design and Analysis

Optimizing for Execution Time

Optimizing for Energy/Power

Optimizing for Program Size

José Costa (DEI/IST) Program Design and Analysis 2



Motivation

Embedded systems must often meet deadlines

faster may not be fast enough

Need to be able to analyze execution time

worst-case, not typical

Need techniques for reliably improving execution time

José Costa (DEI/IST) Program Design and Analysis 3



Program-Level Performance Analysis

Need to understand performance in detail

real-time behavior, not just typical
on complex platforms

Program performance 6= CPU performance

the way we use pipeline or cache
we must analyze the entire program

José Costa (DEI/IST) Program Design and Analysis 4



Program Design and Analysis

Optimizing for Execution Time

Optimizing for Energy/Power

Optimizing for Program Size

José Costa (DEI/IST) Program Design and Analysis 5



Program Design and Analysis

Optimizing for Execution Time

Optimizing for Energy/Power

Optimizing for Program Size

José Costa (DEI/IST) Program Design and Analysis 6



Run Times Will Vary

Program execution times depend on several factors

Input data values

different values, different execution paths

Cache behavior

also dependent on input values

Instruction level

floating-point operations
pipelining effects

José Costa (DEI/IST) Program Design and Analysis 7



Measuring Program Speed

CPU simulator

clearly slower than executing
I/O may be hard
may not be totally accurate

Hardware profiler/timer

requires board with timer connected to bus
instrumented program to start/stop timer

Logic analyzer

connected to cpu bus
relies on indentifiable event on bus
limited logic analyzer memory depth

José Costa (DEI/IST) Program Design and Analysis 8



Program Performance Metrics

Average-case execution time

for typical input data values, whatever they are

Worst-case execution time

longest execution time for any possible input sequence
important to assert deadlines

Best-case execution time

for any possible input sequence
relevant to better timing of the tasks

José Costa (DEI/IST) Program Design and Analysis 9



Performance Analysis

Elements of program performance:

execution time = program path + instruction timing

Path depends on data values

choose which case you are interested in

Instruction timing depends on pipelining and cache behavior

José Costa (DEI/IST) Program Design and Analysis 10



Programs and Performance Analysis

It is hard to get accurate estimates of total execution time from
a high-level language

Best results come from analyzing optimized instructions, not
high-level language code

non-obvious translations of HLL statements into instructions
code may move
cache effects are hard to predict

However, some aspects of program performance can be
estimated by looking at the HLL program

José Costa (DEI/IST) Program Design and Analysis 11



Program Paths

Consider for loop

for (i=0, f=0; i<N; i++)

f = f + c[i]*x[i];

Loop initiation block
executed once

Loop test executed N+1
times

Loop body and variable
update executed N times

Control Data FlowGraph (CDFG)

José Costa (DEI/IST) Program Design and Analysis 12



Measuring the Longest Path Length

Must work on the optimized CDFG

compiler can change the original CDFG

Choosing the longest path may not correspond to the longest
execution time

the time also depends on the timing of the instructions
the simplest estimate is to assume that every instruction takes
the same amount of time

José Costa (DEI/IST) Program Design and Analysis 13



Instruction Timing

Not all instructions take the same amount of time

but we can look them up

Instruction execution times are not independent

but we can consider their effects

Execution time may depend on operand values

this is more tricky but usually the variances are not that large

José Costa (DEI/IST) Program Design and Analysis 14



Trace-Driven Performance Analysis

Trace: a record of the execution path of a program

Trace gives execution path for performance analysis

A useful trace:

requires proper input values
is large (gigabytes)

José Costa (DEI/IST) Program Design and Analysis 15



Trace Generation

Hardware capture

logic analyzer
hardware assist in CPU

Software

PC sampling
instrumentation instructions
simulation

José Costa (DEI/IST) Program Design and Analysis 16



CPU Simulation

Some simulators are less accurate

Cycle-accurate simulator provides accurate clock-cycle timing

simulator models CPU internals
simulator writer must know how CPU works

José Costa (DEI/IST) Program Design and Analysis 17



Software Performance Optimization

How to optimize software performance

Loop optimizations

Cache optimizations

Other performance optimizations strategies

José Costa (DEI/IST) Program Design and Analysis 18



Loop Optimizations

Loops are good targets for optimization

Basic loop optimizations:

code motion

induction-variable elimination

strength reduction (x*2 → x<<1)

José Costa (DEI/IST) Program Design and Analysis 19



Code Motion

Move unnecessary code out
of a loop

Consider loop:

for (i=0; i<N*M; i++)

z[i] = a[i] + b[i];

Don’t recompute N*M in
each iteration

José Costa (DEI/IST) Program Design and Analysis 20



Induction Variable Elimination

Induction variable: variable that depends on loop index

Consider loop:

for (i=0; i<N; i++)

for (j=0; j<M; j++)

z[i][j] = b[i][j];

Don’t recompute i*M+j for each array in each iteration

Share induction variable between arrays, or

Increment at end of loop body

José Costa (DEI/IST) Program Design and Analysis 21



Cache Analysis

Loop nest: set of loops, one inside other

Perfect loop nest: no conditionals in nest

Because loops use large quantities of data, cache conflicts are
common

Changing the order of the loops can sometimes optimize cache
performance

José Costa (DEI/IST) Program Design and Analysis 22



Array Conflicts in Cache (1/3)

for (j=0; j<M; j++)

for (i=0; i<N; i++)

a[i][j] = b[i][j] * c;

Can be changed to:

for (i=0; i<N; i++)

for (j=0; j<M; j++)

a[i][j] = b[i][j] * c;

José Costa (DEI/IST) Program Design and Analysis 23



Array Conflicts in Cache (2/3)

for (i=0; i<N; i++)

for (j=0; j<M; j++)

a[i][j] = b[i][j] * c;

José Costa (DEI/IST) Program Design and Analysis 24



Array Conflicts in Cache (3/3)

Array elements conflict because they are in the same line, even if
not mapped to same location

Solutions:

move one array
pad array

José Costa (DEI/IST) Program Design and Analysis 25



Performance Optimization Strategies

Does the code really need to be accelerated?

maybe that is not the code where your program spends the most
time

Profilling may help you determine which part of your code needs
to be optimized

You may be able to optimize the algorithm

fewer instructions
use of static memory instead of allocated

Look at the implementation of the program

José Costa (DEI/IST) Program Design and Analysis 26



Performance Optimization Hints

Use registers efficiently

Use page mode memory accesses

rearrange the variables so that more can be referenced
contiguously

Analyze cache behavior

instruction conflicts can be handled by rewriting code,
rescheduling
conflicting scalar data can easily be moved
conflicting array data can be moved, padded

José Costa (DEI/IST) Program Design and Analysis 27



Program Design and Analysis

Optimizing for Execution Time

Optimizing for Energy/Power

Optimizing for Program Size

José Costa (DEI/IST) Program Design and Analysis 28



Energy/Power Optimization

Energy: ability to do work

most important in battery-powered systems

Power: energy per unit time

important even in wall-plug systems—power becomes heat

José Costa (DEI/IST) Program Design and Analysis 29



Measuring Energy Consumption

Execute a small loop, measure current

José Costa (DEI/IST) Program Design and Analysis 30



Sources of Energy Consumption

Relative energy per operation (Catthoor et al’98):

memory transfer: 33
external I/O: 10
SRAM write: 9
SRAM read: 4.4
multiply: 3.6
add: 1

José Costa (DEI/IST) Program Design and Analysis 31



Cache Behavior is Important

Energy consumption has a sweet spot as cache size changes

cache too small: program thrashes, burning energy on external
memory accesses

cache too large: cache itself burns too much power

José Costa (DEI/IST) Program Design and Analysis 32



Optimizing for Energy (1/2)

When there is not an energy profile of the hardware:

first-order optimization: high performance = low energy

When there is an energy profile of the hardware:

consider the simplification of tasks in higher consumption
modules, and
increase processing time in lower consumption modules

José Costa (DEI/IST) Program Design and Analysis 33



Optimizing for Energy (2/2)

Use registers efficiently

Identify and eliminate cache conflicts

Moderate loop unrolling eliminates some loop overhead
instructions

too much loop unrolling may reduce cache performance

Eliminate pipeline stalls

Inlining procedures may help

reduces linkage, but may increase cache thrashing

José Costa (DEI/IST) Program Design and Analysis 34



Program Design and Analysis

Optimizing for Execution Time

Optimizing for Energy/Power

Optimizing for Program Size

José Costa (DEI/IST) Program Design and Analysis 35



Optimizing for Program Size

Goal:

reduce hardware cost of memory
reduce power consumption of memory units

Two opportunities:

data
instructions

José Costa (DEI/IST) Program Design and Analysis 36



Data Size Minimization

Reuse constants, variables, data buffers in different parts of code

requires careful verification of correctness

Generate data using instructions

Both techniques must be used very carefully because they tend
to obscure program logic

José Costa (DEI/IST) Program Design and Analysis 37



Reducing Code Size

Avoid function inlining

Choose CPU with compact instructions

may conflict with execution performance

Use specialized instructions where possible

against RISC “philosophy”

José Costa (DEI/IST) Program Design and Analysis 38



Code Compression

Use statistical compression to reduce code size, decompress
on-the-fly

José Costa (DEI/IST) Program Design and Analysis 39



References

Computers as Components: Principles of Embedded Computing
System Design , Marylin Wolf. Morgan Kaufmam. Ch. 5.6, 5.7 and
5.8

José Costa (DEI/IST) Program Design and Analysis 40



Next Class

Program Design and Analysis - Validation and Testing

José Costa (DEI/IST) Program Design and Analysis 41


	Program Design and Analysis
	Optimizing for Execution Time
	Optimizing for Energy/Power
	Optimizing for Program Size

