
Dynamic Sensor Network for Air Quality Monitoring
Using Sequential Decision-Making Under Uncertainty

João Dias
Instituto Superior Técnico, University of Lisbon

Lisbon, Portugal

Abstract
Air pollution is undoubtedly one of the most concerning
problems faced by humanity. Several studies prove that the ef-
fects of pollution are causing different pathologies and other
problems. Part of the approaches to mitigate such problems
consists of monitoring the regions that need more attention.

Pioneer work on sensor placement for pollution monitor-
ing used static sensor placement. This thesis goes beyond
that to provide a solution based on dynamic sensor place-
ment, using a network of mobile sensors.

The thesis proposes to find a solution for the deployment
of sensors in a certain region to obtain reliable data about the
respective air quality with reduced uncertainty. To quantify
the quality of these measurements, we have built on past
work on Bayesian Neural Networks that provides forecasts
of pollution levels and their uncertainty, learned from real
sampled data. Our work has the multi-objective of maximiz-
ing the pollution coverage and minimizing the uncertainty
of these measurements in a certain region. The city traffic
SUMO simulator is used to extract data about pollution and
traffic.
We describe a greedy algorithm for static sensor place-

ment, used as a baseline, and other two algorithms based
on mobile sensors: a reactive algorithm and a Reinforce-
ment Learning (RL) algorithm with Proximal Policy Opti-
mization (PPO) architecture. Besides proving the advantages
of mobile sensors, we found that using RL we achieve better
performance than a reactive algorithm with 1 and 2 sensors.

Keywords: Dynamic sensor deployment, Reinforcement Learn-
ing, Pollution monitoring, Decision-making under uncer-
tainty

1 Introduction
The concern about pollution is increasing year after year, and
scientists all over the world work to keep our planet a good
place for every species to live. It is known the effects that
pollution can have in people for instance in the respiratory
system [3] or circulatory system [4], [15]. To achieve the
ideal goal of reducing pollution, it is crucial to monitor it at
fine granularity and with the most detail possible.
Since it is impossible to cover every piece of land, we

approximate the measurements by forecasting pollution in
areas without sensors. Also, solutions with mobile sensors

bring new advantages, such as better coverage and deci-
sion based on real-time. The problem of sensor placement,
whether to measure pollution or other interesting city infor-
mation has had numerous contributions that tried to solve it,
but there is still a lot of work to do in this field. As explained
before, it is crucial to ensure that these forecasts are reliable,
i.e. to have a way of reducing the uncertainty. [28] tries to
quantify the uncertainty in each time step for the pollution
values forecasts of 24 hours, based on the last 24 hours data,
such as traffic, pollution measurements, meteorology, and
data from the municipality. Data such as pollution and traffic
will come from Simulation of Urban MObility (SUMO) [22]
using tools from [25].
This thesis seems to be the first to consider this pipeline,

using [28] model of uncertainty, and interacting with SUMO
simulator. The sensors’ deployment is multi-objective in the
sense that we try to maximize the pollution coverage and
minimize the uncertainty of the measures. Therefore, we
present a sequential order placement greedy algorithm that
uses static sensors. To deal with mobile sensors we used a
Reactive algorithm and one inspired on PPO architecture
with RL, where the sensors can move and are supposed to
givemore coverage. These sensors are placed in a vehicle that
circulates across the city in order to minimize the uncertainty
of pollution values.

2 Background
2.1 Markov Decision Processes
In [40] a Markov Decision Process (MDP) is represented
by the tuple (𝑆 , 𝐴, 𝑃 , 𝑅), where 𝑆 is the set of states of the
system, 𝐴 the set of actions that can be taken in each state,
𝑃 the transition probabilities matrix and 𝑅 the set of rewards
when a certain action is taken in a state. This model benefits
from the fact that we can choose what action to take only
with the current state, ignoring all the past information as
represented in (1).

𝑃 (𝑠𝑡+1 |𝑠0:𝑡 , 𝑎0:𝑡) = 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) (1)

where 𝑠𝑡 and 𝑎𝑡 are the state and action respectively at time
step 𝑡 . The policy maps each state to the possible actions,
being the optimal policy the one with the maximum accu-
mulated discounted expected reward.

2.2 Reinforcement Learning
In this section, RL will be addressed based on [35]. In an en-
vironment described by an MDP one or more agents interact
with the environment and take actions at each time step that
may modify it. RL solves an MDP without information about
the transition probabilities and the reward known a priori to
maximize the accumulated discounted expected reward. For
high-dimensional state spaces, Deep Reinforcement Learn-
ing (DRL) [27] can be used since it uses deep neural networks
to deal with the complexity of the environment.

2.3 Temporal-Difference Learning
There are methods that use Temporal-Difference (TD) to
achieve the desired interaction with the environment and
learn an optimal action-value function. TD learning uses the
estimates of every time step individually to update the value
function as following

𝑉 (𝑠𝑡) ← 𝑉 (𝑠𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡)] (2)
where 𝑉 (𝑠𝑡) is the estimate from state 𝑠𝑡 at time step 𝑡 , 𝑅𝑡+1
the reward, 𝛼 the learning rate and 𝛾 a discount factor. This
gives TD learningmethods the advantage of being online and
incremental, not needing to wait for the end of the episode.
On-policy TD learning learns the action-value function

𝑄 directly from the current policy, being State Action Re-
ward State Action (SARSA) the most well-known on-policy
method. Instead of using the policy directly, in off-policy
approaches such as Q-learning [40], the updates are indepen-
dent of the policy and come from the action-value function
𝑄 . A greedy policy is used to get the reward estimation of
choosing an action in a certain state. The algorithms also
use techniques of exploitation to choose actions based on
the current policy, and exploration to explore the unknown
seeking different paths prioritizing future rewards.

2.4 Policy gradient methods
Policy gradient methods [35] learn the policy without need-
ing the update the value function. They are known to be
effective for high dimensionalities, such as continuous ac-
tion spaces, and have more convergence guarantees than
TD-learning. One of the most known policy gradient meth-
ods is REINFORCE that also tries to approximate the gradient,
and it uses the following update

\𝑡+1 ← \𝑡 + 𝛼𝛾𝑡𝑅∇ ln𝜋 (𝑎𝑡 |𝑠𝑡 , \𝑡) (3)
where 𝑠𝑡 and 𝑎𝑡 are the state and action taken at time step t,
and 𝑅 the total discounted reward.

2.5 Actor-Critic Models
To use both the advantages of action-value methods such as
TD-learning and policy-based ones, we can use actor-critic
methods [35], where the actor is responsible for learning
the policy and the critic responsible for learning the value

function. Therefore, we can use the state-value function as a
baseline and apply the update in (4).

\𝑡+1 ← \𝑡 + 𝛼𝐴(𝑠𝑡 , 𝑎𝑡)∇ ln𝜋 (𝑎𝑡 |𝑠𝑡 , \𝑡) (4)

𝐴(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡+1 + 𝛾𝑣 (𝑠𝑡+1) − 𝑣 (𝑠𝑡)
= 𝑄 (𝑠𝑡 , 𝑎𝑡) − 𝑣 (𝑠𝑡)

(5)

where𝐴(𝑠𝑡 , 𝑎𝑡) is the advantage function and represents how
valuable it is to choose an action 𝑎𝑡 in state 𝑠𝑡 . The expression
can be simplified to the state-action value 𝑄 (𝑠𝑡 , 𝑎𝑡).
Other algorithms such as Trust Region Policy Optimiza-

tion (TRPO) [31] limit the range of the policy updates, since
some are so big that can lead to unexpected results in the per-
formance. PPO [32] is an on-policy algorithm that uses the
same principle as TRPO, however with a simpler algorithm
that empirically achieves the same results. It uses clipped
surrogate objective (6), being 𝑟𝑡 (\) = 𝜋\ (𝑎𝑡 |𝑠𝑡)

𝜋\𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡)
the proba-

bility ratio of an action according to the current policy, 𝐴𝑡

the advantage function and 𝜖 a hyperparameter, used to clip
the probability ratio between 1 + 𝜖 and 1 − 𝜖 .

𝐿𝐶𝐿𝐼𝑃 (\) = Ê𝑡 [𝑚𝑖𝑛(𝑟𝑡 (\)𝐴𝑡 , 𝑐𝑙𝑖𝑝 (𝑟𝑡 (\), 1 − 𝜖, 1 + 𝜖)𝐴𝑡)]
(6)

𝐿𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆 (\) = Ê𝑡 [𝐿𝐶𝐿𝐼𝑃 (\) − 𝑐1𝐿𝑉𝐹 (\) + 𝑐2𝑆 [𝜋\] | (𝑠𝑡)]
(7)

The loss function (7) can also take into account the shared
parameters between the policy and the value function with
𝐿𝑉𝐹 (\) being the squared-error loss, an entropy bonus 𝑆 [𝜋\] | (𝑠𝑡)
to provide enough exploration and 𝑐1 and 𝑐2 coefficients.
PPO can also take advantage of parallel actors to collect data
used afterwards to create the surrogate loss.

3 Related Work
3.1 Static sensors
Sensor placement for monitoring issues has been studied for
a long time, whether related to water pollution (e.g. [29]),
structural health issues [2], or air pollution (e.g. [33]), with
cases studies done in multiple cities [33], [34], [29], and
China [17].

In [33] they presented a greedy algorithm that chooses sen-
sor by sensor the one that provides the highest reward, with
the second one considering also a general cost constraint.
In [34], it was also proposed two greedy algorithms (one of
them also considered the cost of maintenance, construction,
and operations) for the fixed-location sensors that would
choose the location sensor by sensor according to the re-
ward, but using weights. Other greedy solutions considered
a division into batches placed sequentially [11]. [14] pro-
posed a hierarchical algorithm for leak detection. Another

2

recent paper [42] approaches indoor crowdsensing with se-
quential sensor placement using signal strength Gaussian
distributions.
The study done by [16] models the data with Gaussian

Processes and explores how to place sensors in order to
maximize mutual information, which is proved to have ad-
vantages when compared to other design criteria. Submod-
ularity allows them to use a greedy algorithm to achieve
a near-optimal solution with an approximation guarantee
from the optimal solution, and also to bound the difference
between their results and the optimal solution as well as
search for tighter bounds.

Some studies also used Genetic Algorithm (GA) to detect
a sudden release of a chemical in a ventilation system [10]
and for structural health monitoring [12]. A recent study [2]
studied how to achieve faster convergence in fewer gener-
ations using neural networks that would update the set of
variables used in GA.

[29] also had into consideration the uncertainty and noise
that can come from the measurements, trying to minimize
errors in water distributed networks. It used Non-dominated
Sorting Genetic Algorithm II (NSGA-II) which finds the op-
timal solution in multi-objective domains. [1] also adopted
NSGA-II for vibration detection to minimize the number of
sensors placed and maximize the amount of information
collected.

3.2 Mobile sensors
In the literature, mobile sensors appear as a possible so-
lution to have better spatial-temporal coverage of some
region. When all the agents are homogeneous it is easier
to scale the system with a multi-agent architecture [30].
With Multi-agent Reinforcement Learning (MARL), we can
achieve speedup improvements, deal with the curse of di-
mensionality, and if one agent fails, the others can substitute
their work [5]. [21] used Weighted Relative Frequency Of
Obtaining The Maximal Reward (MRFMR) to balance explo-
ration and exploitation in MARL to faster convergence. This
algorithm outperformed other independent learning algo-
rithms, which also happened in [41] that used a learning
automata-based MARL.

Used for crowdsensing with sensors in vehicles, [39] used
a Deep Q-network (DQN) to achieve the maximum coverage
in space and time in the regions of interest. The agent was
responsible for all the vehicles and selected the ones that
would provide the best coverage. [37] used a Double Deep Q-
network (DDQN) solution, where the mobile sensors would
be allocated to tasks with a time limit. The agent would be
assigned a reward for each assignment. and each assignment
would be an action. Some explored the monitoring problem
having into account that vehicles have limited energy capac-
ities. [19] used Deep Deterministic Policy Gradient (DDPG),
which they refer to overcome DQN that is limited to small
action spaces.

Asynchronous solutions such as IMPALA-based [20] can
use multiple actors each with its Central Processing Unit
(CPU) and one learner Graphics Processing Unit (GPU), achiev-
ing better speed than the normal CPU implementation.

Other frameworks [26] considered restrictive communica-
tion between the mobile sensors using a Multi-agent Deep
Deterministic Policy Gradient (MADDPG) to enable each
agent to achieve dynamic coverage without losing network
connectivity. [13] used Compound Advantage Actor-Critic
(CA2C) for sensing tasks with the objective of minimizing
the age of information, by learning the optimal trajectories of
unmanned aerial vehicles, which was proved to outperform
DDPG.
[7] used Graph Convolutional Cooperative Multi-agent

Reinforcement Learning (GCC-MARL) to change the route
of taxis or other for-hire vehicles without having a nega-
tive impact on the orders of the clients. They considered
segments of the roads in a graph instead of cells in a grid.
The environment was partially observable and the algorithm
works with actor-critic, with centralized training and de-
centralized execution. Their algorithm shows to surpass In-
dependent Actor-Critic (IAC) [36] with decentralized critic,
Central-V that does not consider the influence of every agent
in the global reward [9], and Learning Individual Intrinsic
Reward (LIIR) that considers that every agent has an intrinsic
reward [8]. [24] found that decentralized critics can have bet-
ter performance in some domains since it would create more
policy robustness due to less variance in its updates. On the
other hand, decentralized critics would create a higher bias
and instability in the Q-values updates during the training.

Other modern studies in the literature used PPO or varia-
tions of it to learn policies for monitoring tasks and routing
vehicles. [6] used PPO to move robots in order to monitor
changes in the environment. The communication was done
by sharing parameters between agents through the use of
Graph Attention methods. As they were interested in a per-
sistent coverage setup, a discount was applied for each area
without a sensor at a specific time step. In the context of the
aforementioned water monitoring, [23] made use of PPO to
cover information in water reservoirs while minimizing the
uncertainty of measurements and avoiding obstacles.

4 Methodologies
The algorithms presented in this section enable us to address
the differences in performance between static and mobile
sensors and the differences between an algorithm with a
reactive behavior based only on the last state with an algo-
rithm with RL that takes into consideration the history of
observations and makes sequential decisions to maximize
the cumulative reward of these decisions. Mobile sensors
are expected to outperform by a great margin static sensors
in the task of covering the areas that we give the most rele-
vance. Then, we discuss the situations in which we should

3

use a reactive agent or RL, giving different importance to
the pollution measurements and the uncertainty of these
measurements.

4.1 Environment Design & Interaction
We used Python [38] to implement all the algorithms since
it has all the tools and frameworks needed, and the RLlib
[18] library for the Reinforcement Learning algorithm. The
majority of the studies about sensor placement resort to
simplifications of the environment to reduce computational
complexity. We also made use of a grid shown in Figure 1 to
represent the map of the region we want to study and where
we perform the sensor deployment. It is composed of 20 cells
in regions of interest, each one with a value corresponding
to the amount of the total emissions of every vehicle in
that region, the number of vehicles moving, the forecast of
the pollution and the uncertainty about the forecast of the
pollution or an uncertainty associated to the last pollution
measurement, and a sensor if it is the case. Despite the fact
that we can lose information with this discretization, we
reduce the complexity of the computations.

Figure 1. Simplification of the map using a grid.

The simulator enabled us to measure the pollution and the
number of vehicles that were moving and contributing to the
pollution of the entire cell each second. Since we considered
a time step length of 10 minutes, the values that we use for
each time step are the averages of the pollution and the traffic
measurements of every second during the 10 minutes. We
also used an average for the number of vehicles, because if,
for instance, a car is moving in the current second it would
still be in movement in the next second, so the sum would
not be appropriate. The values were also normalized with
the formula in (8), because of their different magnitudes.

𝑥 ′ =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥 (𝑥) −𝑚𝑖𝑛(𝑥) (8)

where 𝑥 ′ is the new value after normalization of 𝑥 and the
𝑚𝑖𝑛(𝑥) and𝑚𝑎𝑥 (𝑥) represent the minimum and maximum
value that each variable can have, and these bounds are fixed.

Our pipeline is represented in Figure 2, with every compo-
nent of the thesis pipeline and the flows between them. The
components are represented as black boxes and although
they work as a whole, each one of these elements, such as
the simulator, the uncertainty model, and the algorithm can
be substituted for different options if required, since they are
independent of each other.

Figure 2. Environment scheme .

The pipeline uses the SUMO simulator with the discretiza-
tion of data models from [25] to extract the data. We do this
only once to speed up the process of training and testing
since interaction with the SUMO simulator can take a long
period of time. This data is used to train the Bayesian Neural
Network (BNN) model [28], being the traffic the input and
pollution the target. The model will then evaluate different
traffic data to forecast the value of pollution. As the output
comes as a Gaussian, the forecast is the mean and the un-
certainty is the standard deviation multiplied by a z-score
for 95%. As a disclaimer for this rule, as the model was al-
ready providing an upper bound and lower bound associated
with this standard deviation, the real uncertainty used in
the experiments is the difference between these two bounds,
which is just twice the value mentioned. The algorithms can
use the provided values to make their decision of placement
and movement.
To simulate a reduction in the uncertainty according to

the presence of a sensor in a certain cell, we considered that
when a sensor is in some cell, the pollution value used is

4

the real pollution of the cell since the sensor can measure
the pollution directly and we consider that the uncertainty
regarding this value is zero. When the sensor leaves the cell,
the uncertainty regarding the last measurement of pollution
follows the formula (9), chosen only based on practical trials
and suitable for this specific case.

𝑢𝑡+1 = 𝑢𝑡 ∗ 3 + 0.02 (9)
where 𝑢𝑡 is the uncertainty at time step 𝑡 . The uncertainty
increases according to (9) until reaching the uncertainty as-
sociated with the forecast, the time when we start to consider
the forecast uncertainty, as well as the forecast. Therefore,
the pollution value that we use is based on the current un-
certainty. We use the last pollution measurement of a sensor
in that cell if the uncertainty is lesser than the uncertainty
of the forecast, and we use the forecast of pollution if the
uncertainty associated with the last measurement becomes
greater than the uncertainty associated with the forecast.
The state of each time step includes the previously men-

tioned variables for every cell, such as the real pollution,
the forecast of the pollution (needed for the cells where the
sensor is not present), the uncertainty associated with the
pollution (forecast or last measurement), and the traffic. The
sensors can observe the variables described in every cell,
but not the pollution real-time value in the cells where they
are not present. The actions are only needed for the mobile
sensors and contain the movements to every cell including
staying in the same cell. We assumed that one time step (10
minutes) was enough for a sensor to move to a cell and take
the real pollution measurement.
The reward for each time step is similar for every algo-

rithm and it is described by the formula in (10).

𝑅(𝑠𝑡 , 𝑎𝑡) = 𝛿1 · 𝑝𝑡 + 𝛿2 · 𝑢𝑡 − 𝑐 · 𝑑 (𝑠𝑡−1, 𝑠𝑡) (10)
where 𝛿𝑖 is the relevance given to each of the variables, 𝑝𝑡
the value of the average real pollution over 10 minutes (600
time steps of the simulator) that will be covered by every
sensor in its cell at each time step 𝑡 . The average uncertainty
𝑢𝑡 , as explained before is associated with the measured value
or the forecast and is considered to be the uncertainty that
we would have in that cell if the sensor was not present, i.e.
the reduction of uncertainty that we are getting for being
in that cell. The last variable 𝑐 is only applicable to mobile
sensors and corresponds to the cost of moving the vehicle of
the sensor multiplied by the Manhattan distance 𝑑 (𝑠𝑡−1, 𝑠𝑡)
between the last cell 𝑠𝑡−1 and the current cell 𝑠𝑡 , given by the
formula |𝑥1 − 𝑥2 | + |𝑦1 − 𝑦2 |.

4.2 Static Sensors
We started with a simple greedy algorithm for static sensor
placement to have a good benchmark for comparison with
the mobile sensors algorithms. The idea is that each sensor is
placed sequentially and only depends on the sensors placed

so far. This first approach chooses the best location for the
sensors according to the gain of the cell during a certain
interval. The gain is represented in (11).

𝐺𝑎𝑖𝑛 = 𝛿1 · 𝑝 + 𝛿2 · 𝑢 (11)

where 𝛿𝑖 is the importance given to each factor and will be
decided empirically. As we want to give more importance to
the cells with the most pollution and the most uncertainty,
the sensors should be placed there. So we try to maximize the
average measured pollution 𝑝 , and the average uncertainty𝑢.
Then the algorithm runs through all the sensors and places
each of them one by one as described in Algorithm .1.
Algorithm .1: Greedy Algorithm for static sensors
begin

Initialize 𝑆 as the set of sensors;
Monitor the values of the grid 𝐺 without sensors;
foreach 𝑠 ∈ 𝑆 do

Get the cell with the most Gain not yet
selected;

𝐺 (𝑏𝑒𝑠𝑡) ← 𝑠;

4.3 Reactive algorithm with mobile sensors
Since the approach with static sensors have certain limita-
tions, mainly related to the area that they could cover, mobile
sensors could be used to cover a bigger area. The first al-
gorithm to deal with mobile sensors is simple and makes
its decisions on every time step based only on information
from the last experience, having also into account the costs
of moving between cells. As shown in Algorithm .2, the al-
gorithm will get a gain associated with the cells that are
currently being covered by sensors at each time step, which
is used to compare results with the other algorithms.
The next cell to move to is decided by analyzing the cur-

rent state. As we have information about the pollution on
the cells covered by sensors, the forecast on the other cells,
the uncertainty of every cell, and the cost of moving between
cells is known a priori by each sensor, we created a simple
metric, named potential gain, to evaluate the gain that we
would get if we moved to other cells, using the cost of mov-
ing to that cell in the next time step. It calculates a potential
gain so that the sensors can move to new cells and get a
better gain in the next time step.

5

Algorithm .2: Reactive Algorithm
begin

Initialize𝑀 as the set of mobile sensors;
foreach 𝑡 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 do

foreach𝑚 ∈ 𝑀 do
Calculate the potential gain for all the
cells;
Get a gain for the current cell with the
sensor;
Move the sensor to the cell with the best
potential gain not yet selected;

The gain is presented in (12), where 𝑝 is the average real
pollution over 10 minutes, 𝑢 the uncertainty of the value
of pollution being considered if the sensor was not in that
cell, and 𝑐 is the cost at a certain time step multiplied by the
Manhattan distance 𝑑 (𝑠𝑡−1, 𝑠𝑡) between the last cell and the
current cell. The potential gain (13) is similar, with a change
in the pollution parameter, since we cannot have the real
value, due to the lacking of sensors in that region. Therefore,
we use the forecast 𝑓 . This is possible since the only variable
needed to calculate the forecast is the traffic and at the end
of the time step, we already have access to that information.
Also, the distance is between the current cell and cells it can
move to in the future.

𝐺𝑎𝑖𝑛(𝑠𝑡 , 𝑎𝑡) = 𝛿1 · 𝑝𝑡 + 𝛿2 · 𝑢𝑡 − 𝑐 · 𝑑 (𝑠𝑡−1, 𝑠𝑡) (12)

𝐺𝑎𝑖𝑛𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝑠𝑡 , 𝑎𝑡) = 𝛿1 · 𝑓 𝑡 + 𝛿2 · 𝑢𝑡 − 𝑐 · 𝑑 (𝑠𝑡 , 𝑠𝑡+1) (13)

4.4 Reinforcement Learning algorithm with mobile
sensors

Reinforcement learning is one of the main fields that aim
for long-term results and where an agent learns how to act
by exploring the environment and developing its model. It
was chosen for this problem due to its properties of online
interaction with the environment, its simplicity, and its popu-
larity, which is very useful since there is a lot of information
about its algorithms and variation.
The environment can be described as an MDP where we

can define the tuple (𝑆,𝐴, 𝑃, 𝑅), where 𝑆 is the set of states,
𝐴 the set of actions, 𝑃 the transition probabilities, and 𝑅 the
reward function that maps the state-action value to a real
number. It is described as:
• States: each state 𝑠𝑡 represents a set of cells each with
the real pollution value from the simulator in the cells
with sensors, the forecast of the pollution in the re-
maining cells, the number of vehicles, the uncertainty
from the BNN model and from past visited cells, as
explained before, and the position of the vehicles at a
certain time step 𝑡 .

• Actions: the agent can choose an action 𝑎𝑡 to move
to each cell of the grid or stay according to the policy.
• Reward: the reward function of each agent that maps
state and the actions 𝑎𝑡 of every sensor values to a
real number, is given by the expression 𝑅(𝑠𝑡 , 𝑎𝑡) =

𝛿1 · 𝑝𝑡 + 𝛿2 ·𝑢𝑡 − 𝑐 ·𝑑 (𝑠𝑡−1, 𝑠𝑡), where 𝛿𝑖 are parameters
determined empirically, 𝑝𝑡 the average real pollution
over 10 minutes (600 time steps of the simulator) that
will be covered by every sensor in its cell, 𝑢𝑡 the av-
erage uncertainty for the cell if the sensor was not
present. As explained before, when a sensor moves to
a cell its uncertainty decreases to zero and increases
following the equation (9) until reaching the forecast
uncertainty (being equal to the forecast uncertainty
until a sensor passes the cell again), and 𝑐 the cost of
moving the vehicle of the sensor and 𝑑 (𝑠𝑡−1, 𝑠𝑡) the
Manhattan distance between the last cell and the cur-
rent cell.

Our reward function will contain information about pol-
lution and uncertainty since the environment is very infor-
mative and these are the main measurements of our sensors.
These measurements are normalized between 0 and 1 so we
can easily vary the relevance of these parameters since they
have the same scale. Also, we added a cost to once more test
if RL can make decisions that avoid high-cost movements of
the sensors.
We used an actor-critic-based structure with PPO due to

its simplicity, and its updates control mechanism. By look-
ing at the pseudocode in .3 we can see that each sensor (we
will refer to a sensor as a vehicle carrying the sensor for
simplicity) will have its own actor and critic. It will be a
neural network model that receives as input the informa-
tion described in the environment description normalized
with 𝑥𝑖−𝑚𝑖𝑛 (𝑥)

𝑚𝑎𝑥 (𝑥)−𝑚𝑖𝑛 (𝑥) . The model will output the best action
according to the policy.
Algorithm .3: Independent Learning PPO algorithm
begin

Initialize𝑀 as the set of mobile sensors;
foreach 𝑖 ∈ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

foreach 𝑡 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 do
foreach𝑚 ∈ 𝑀 do

Pass state 𝑠𝑡 of𝑚 as input to its 𝑎𝑐𝑡𝑜𝑟
and 𝑐𝑟𝑖𝑡𝑖𝑐;

Use an action mask to avoid collisions;
𝑎𝑡 (𝑠𝑡) ← action output from the actor
model;

𝑣 (𝑠𝑡) ← value output from the 𝑐𝑟𝑖𝑡𝑖𝑐
model;

Calculate the advantage estimates;
Update all of the actors;
Update all of the critics;

6

Each agent will have its own actor-critic structure and
learn independently from the other agents. However, the
choice of the actions will be made sequentially. Therefore,
when choosing an action, each agent will have an additional
information external to the policy about the decisions of the
agents that precede it on the priority list to avoid collisions
between agents.

Both the actor and the critic have the same neural network
structure, to reduce the running time of our training. It was
composed by 2 hidden layers of 256 neurons using a hyper-
bolic tangent as their activation function. Then we choose
the greatest value from an output vector of 20 neurons to
get the action and the second output to obtain the value of
the actor and critic respectively.

5 Experiments & Evaluation
In this section, we will cover the experiments performed in
the city of Trondheim, Norway, where we have monitored
the performance of each algorithm over 28 days divided into
timesteps of 10 minutes. We used Python and Matplotlib to
simplify the visualization of information.

We provided 61 days of data to train the BNN and 56 days
to test. The test sample was then used to train the algorithms
of the sensors with 28 days and 28 days to test.

5.1 Data Analysis
We considered the pollution and the traffic to be realistic
enough for our experiments, which can be verified in Figures
3 and 4 where it is represented a single day mean values
of data collected over 61 days, where we can observe an
increase in the pollution and traffic during the middle of
the day, correspondent to the period of time when people
are working and being active. The lowest values are in the
morning and at night.
Recall that the measurements of traffic refer to the aver-

age number of vehicles during the length of a time step (10
minutes) that were moving and contributing to the pollution
every second as explained in section 4.1. Therefore, these
values should not be confused with the total number of vehi-
cles in that cell during the 10 minutes, which would be much
higher than the presented ones.

Figure 3. Mean values of 𝑁𝑂𝑥 emissions of a single day
from data collected over 61 days for one cell.

Figure 4. Mean values of traffic of a single day from data
collected over 61 days for one cell.

To understand if the values are not the same every day,
we plotted the standard deviations for each hour of the day
corresponding to the same 61 days. The Figures 5 and 6
provide us good insights that the data is not constant and
have temporal variation.

Figure 5. Standard deviation values of 𝑁𝑂𝑥 emissions of a
single day from data collected over 61 days for one cell.

Figure 6. Standard deviation values of traffic of a single day
from data collected over 61 days for one cell.

6 Uncertainty
Since the main goal of the project was not to have the best
model to measure uncertainty, we used the values provided
by the BNN model since they were acceptable as shown in
Figure 7.

Figure 7. BNN output (real value, forecast, upper and lower
bound) during 56 days for one cell.

Each point of Figure 7 shows us the mean value of the
Gaussian output by the BNN model that is considered the
forecast. It also has the real value measured and a lower and
upper bound, already explained in section 4.1.
We proved the need for using sensors to cover regions

with unreliable forecasts since our data got a maximum value
of uncertainty of 62.07 `𝑔/𝑚3, which is more than half of
the maximum forecast value of 110.83 `𝑔/𝑚3.

7

6.1 Architecture of the Reinforcement Learning
algorithm

To choose the best parameters in the architecture of the
Reinforcement Learning algorithm, we tried different com-
binations of them. We refer mainly to the number of layers
and neurons, but other hyperparameters of the algorithm
were also combined and tested to stick with the ones which
provided better performance.

We understood that the algorithm converges much faster
with fewer neurons and fewer layers. However, with more
training, the other alternatives start to converge to the same
value. Then we chose 256 neurons and 2 layers for our ex-
periments since the problem is not complex enough to use
more parameters, but at the same time, it is important to
ensure that we still get the most out of the information that
comes as input. According to that, the algorithm can also
learn faster, which helped us in the other experiments and
can useful in future applications. Other hyperparameters of
the algorithm were also combined and tested to stick with
the ones which provided better performance.

6.2 Pollution coverage and uncertainty reduction
It is important to understand how the algorithms perform
to cover pollution and reduce uncertainty with different
relevance given to pollution and uncertainty. This can be
done by changing the parameters 𝛿1 and 𝛿2 in the reward
𝑅(𝑠𝑡 , 𝑎𝑡) = 𝛿1 · 𝑝𝑡 + 𝛿2 · 𝑢𝑡 − 𝑐 · 𝑑 (𝑠𝑡−1, 𝑠𝑡), explained before,
being these parameters the relevance given to the covered
pollution 𝑝𝑡 and the reduction of uncertainty 𝑢𝑡 .
Each point of the graphs represents the result of cumu-

lative reward during 4029 time steps, each time step corre-
sponding to 10 minutes in real life. Each point represents
the result of the algorithm in a testing environment, using a
trained model after 𝑥 iterations of training. The Figures in
8, show us that the RL algorithm outperforms all the other
baselines for every combination, which presents good versa-
tility for different combinations of parameters. We could also
observe that the difference between the RL algorithm and
the Reactive is not huge. This is a result of a high correla-
tion between the values of emissions and uncertainty of two
consecutive time steps. Also the difference to the algorithm
of static sensors decreases with more importance given to
the pollution.

Figure 8. Comparison of the reward of the algorithms for 1
sensor.

The behavior of our algorithms related to the concrete
values, i.e. the emissions and uncertainty, also followed our
expectations and although all the algorithms increase the
coverage of pollution with the increase of importance of this
parameter, the difference between RL and Reactive decreases
due to the correlation in the pollution measurements in two
consecutive time steps. The reduction of uncertainty is more
related to the reward, since it has the main importance in it,
and so, the Reinforcement Learning algorithm outperforms
the reduction of uncertainty of the other algorithms.

Figure 9 shows us the reward gathered on each time step
of a complete episode by applying the RL algorithm for the
case of the relevance of 0.1 in emissions and 0.9 in uncer-
tainty. The episode corresponds to the one that gave us the
best results. We figured out that the difference between RL
and reactive is small, being the reward peaks are located in
the middle of each day when pollution and uncertainty are
bigger.

Figure 9. Step reward in a full episode of RL.

We verified that the reduction of uncertainty was signif-
icant for certain cells, such as cell 12, since these were the
cells with the most uncertainty, and therefore a priority for

8

the sensors to move to. This reduction is showed by compar-
ing Figure 11 with 10. On the other hand, we do not see any
reduction in some cells since it some of them have much less
uncertainty and not a priority for the sensors.

Figure 10. Normalized uncertainty in the test environment
for 4029 steps without sensors for cell 12.

Figure 11. Normalized uncertainty in the test environment
for 4029 steps with sensors for cell 12.

Figures 12 and 13 represent the movement of a single sen-
sor and each point represents the cell where the sensor is
present at a certain time step. They show us that the sensors
are the majority of the time in certain cells, which was ex-
pected since these cells are the ones with the biggest values
of pollution and uncertainty. We can also notice that the RL
algorithm still moves fewer times than the reactive one.

Figure 12. Sensor movement of the reactive algorithm.

Figure 13. Sensor movement of the RL algorithm.

6.3 Variation in the number of sensors
Wefixed the importance of pollution at 0.1 and uncertainty at
0.9 to compare the performances when using more sensors in
the environment. The RL algorithm outperformed the other
algorithms with 1 and 2 sensors as shown in Figures 8 and
14. However, if we increased the number of sensors, we did
not achieve better performance as shown in Figure 15. As
our reactive algorithm makes a decision mainly based on
the last state of the environment, we can conclude for these
small differences in return between reactive and RL that
the current state information is highly correlated with the
previous state and with more sensors the advantages of our
RL algorithm cease to be noticed so much, since with more
sensors it is not necessary to account for these variations,
as the reactive algorithm already has enough resources to
deal with the problem. Also, the RL algorithm only gets a
reward used for learning according to the cells where it is,
contrasting with the reactive agent that creates a potential
gain for every cell even if the sensor is not there because of
other sensors.

Also, although we get better performance by adding more
sensors, the increase in performance does not follow.

Figure 14. Comparison of the algorithms with 2 sensors.

Figure 15. Comparison of the algorithms with 3 sensors.
9

6.4 Running Time
We understood that the RL algorithm needs much more time
than the other algorithms to learn the policy. While the
others need a few seconds, RL needs hours to train.

Also, the number of sensors will have a greater impact on
the RL algorithm when compared to the other algorithms
since we would have to learn a policy for each new sensor.
We needed 4 h 33 m 54 s for 1 sensor, 7 h 41 m 32 s for 2
sensors, and 12 h 21 m 42 s for 3 sensors.

7 Conclusion
In this project, optimal deployment of sensors was studied
for an environment where we want to cover the regions
more prone to high pollution levels at the same time as
we reduce the uncertainty about the measurements in that
regions.We presented a greedy algorithmwith the sequential
placement of the sensors for static sensors. To deal with
mobile sensors, which are considered by the literature the
ones that usually provide the best coverage solutions, we
used a reactive algorithm and a PPO reinforcement learning
algorithm.
We could easily understand that, as expected, the use of

mobile sensors was a great advantage and led to substantially
better performance, when compared to static sensors. The
same was not so evident between the Reactive algorithm
and the RL algorithm. Although the RL algorithm had better
performance with 1 sensor and 2 sensors, the difference was
not so significant, and one could justify that for some spe-
cific cases the Reactive algorithm is preferred for being less
complex and easier to implement. Also, when we increased
the number of sensors, this advantage started to vanish and
the Reactive algorithm surpassed the RL algorithm, since a
time step was strongly related to the following one. Reactive
also takes advantage of its potential gain, which can be done
for every cell even if the sensor is not there because of other
sensors, alike the RL algorithm that learns with the rewards
of the cells where the sensor is. With a different data set,
the results could be different. The movement of the sensors
was also similar between these two algorithms, and they
focused their effort on a reduced number of cells, but the RL
algorithm showed to move less than the Reactive algorithm
to cells different from these ones.
For future work, we could test the algorithm with other

baselines besides the ones mentioned before. Also, as in this
case, the pollution measurement was Nitrogen Oxides (NOx),
it would be interesting to find out if the algorithm gets simi-
lar results with different compounds. We could also try the
algorithm in scenarios with reduced or no communication
and adjust the simulator to include more variables, such as
the wind or the rain to make the propagation of the pollution
more realistic.

Acknowledgments
The student supervision was under the responsibility of pro-
fessor Tiago Veiga on the Norwegian University of Science
and Technology (NTNU), aided by professor Pedro Lima
from Instituto Superior Tècnico, University of Lisbon. Part
of the project uses data and software from the Ph.D. stu-
dent Abdulmajid Murad and from Mykhaylo Marfeychuk’s
Master Thesis.

A special thanks to these two professors, who were avail-
able to support me with the project during my exchange
program, and to Abdulmajid Murad as well as Mykhaylo
Marfeychuk that provided the needed tools to implement
the pipeline of the project.
Lastly, I would like to thank my parents, girlfriend, and

friends, that always supported me and never let me give up.

References
[1] Haichao An, Byeng D. Youn, and Heung Soo Kim. 2021. Amethodology

for sensor number and placement optimization for vibration-based
damage detection of composite structures under model uncertainty.
Composite Structures 279 (2021), 114863. https://doi.org/10.1016/j.
compstruct.2021.114863

[2] Munni Rani Banik and Tonmoy Das. 2020. Application of Neuro-
GA Hybrids in Sensor Optimization for Structural Health Monitor-
ing. In Proceedings of the International Conference on Computing Ad-
vancements (Dhaka, Bangladesh) (ICCA 2020). Association for Com-
puting Machinery, New York, NY, USA, Article 34, 7 pages. https:
//doi.org/10.1145/3377049.3377131

[3] Jonathan A Bernstein, Neil Alexis, Charles Barnes, I Leonard Bernstein,
Andre Nel, David Peden, David Diaz-Sanchez, Susan M Tarlo, and
P Brock Williams. 2004. Health effects of air pollution. Journal of
allergy and clinical immunology 114, 5 (2004), 1116–1123.

[4] Robert D Brook. 2008. Cardiovascular effects of air pollution. Clinical
science 115, 6 (2008), 175–187.

[5] Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2008. A com-
prehensive survey of multiagent reinforcement learning. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews) 38, 2 (2008), 156–172.

[6] Jingxi Chen, Amrish Baskaran, Zhongshun Zhang, and Pratap Tokekar.
2021. Multi-Agent Reinforcement Learning for Visibility-based Persis-
tent Monitoring. In 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). 2563–2570. https://doi.org/10.1109/
IROS51168.2021.9635898

[7] Rong Ding, Zhaoxing Yang, Yifei Wei, Haiming Jin, and Xinbing Wang.
2021. Multi-Agent Reinforcement Learning for Urban Crowd Sens-
ing with For-Hire Vehicles. In IEEE INFOCOM 2021 - IEEE Confer-
ence on Computer Communications. 1–10. https://doi.org/10.1109/
INFOCOM42981.2021.9488713

[8] Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, and Dacheng
Tao. 2019. Liir: Learning individual intrinsic reward in multi-agent
reinforcement learning. (2019).

[9] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas
Nardelli, and Shimon Whiteson. 2018. Counterfactual multi-agent
policy gradients. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32.

[10] Jun Gao, Lingjie Zeng, Changsheng Cao, Wei Ye, and Xu Zhang. 2018.
Multi-objective optimization for sensor placement against suddenly
released contaminant in air duct system. Build. Simul. 11, 1 (Feb 2018),
139–153. https://doi.org/10.1007/s12273-017-0374-z

10

https://doi.org/10.1016/j.compstruct.2021.114863
https://doi.org/10.1016/j.compstruct.2021.114863
https://doi.org/10.1145/3377049.3377131
https://doi.org/10.1145/3377049.3377131
https://doi.org/10.1109/IROS51168.2021.9635898
https://doi.org/10.1109/IROS51168.2021.9635898
https://doi.org/10.1109/INFOCOM42981.2021.9488713
https://doi.org/10.1109/INFOCOM42981.2021.9488713
https://doi.org/10.1007/s12273-017-0374-z

[11] Fateme Ghayem, Bertrand Rivet, Rodrigo Cabral Farias, and Christian
Jutten. 2021. Robust Sensor Placement for Signal Extraction. IEEE
Transactions on Signal Processing 69 (2021), 4513–4528. https://doi.
org/10.1109/TSP.2021.3099954

[12] Guilherme Ferreira Gomes, Sebastiao Simões da Cunha, Patricia da
Silva Lopes Alexandrino, Bruno Silva de Sousa, and Antonio Carlos
Ancelotti. 2018. Sensor placement optimization applied to laminated
composite plates under vibration. Struct. Multidiscip. Optim. 58, 5 (Nov
2018), 2099–2118. https://doi.org/10.1007/s00158-018-2024-1

[13] Jingzhi Hu, Hongliang Zhang, Lingyang Song, Robert Schober, and
H. Vincent Poor. 2020. Cooperative Internet of UAVs: Distributed
Trajectory Design by Multi-Agent Deep Reinforcement Learning. IEEE
Transactions on Communications 68, 11 (2020), 6807–6821. https:
//doi.org/10.1109/TCOMM.2020.3013599

[14] Zukang Hu, Wenlong Chen, Beqing Chen, Debao Tan, Yu Zhang,
and Dingtao Shen. 2021. Robust Hierarchical Sensor Optimization
Placement Method for Leak Detection in Water Distribution System.
Water Resour. Manage. 35, 12 (Sep 2021), 3995–4008. https://doi.org/
10.1007/s11269-021-02922-3

[15] Marilena Kampa and Elias Castanas. 2008. Human health effects of air
pollution. Environmental pollution 151, 2 (2008), 362–367.

[16] Andreas Krause, Ajit Singh, and Carlos Guestrin. 2008. Near-optimal
sensor placements in Gaussian processes: Theory, efficient algorithms
and empirical studies. Journal of Machine Learning Research 9, 2 (2008).

[17] Xiuhong Li, Meiying Sun, Yushuang Ma, Le Zhang, Yi Zhang, Rongjin
Yang, and Qiang Liu. 2021. Using Sensor Network for Tracing and
Locating Air Pollution Sources. IEEE Sensors Journal 21, 10 (2021),
12162–12170. https://doi.org/10.1109/JSEN.2021.3063815

[18] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Ken Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. 2018.
RLlib: Abstractions for distributed reinforcement learning. In Interna-
tional Conference on Machine Learning. PMLR, 3053–3062.

[19] Chi Harold Liu, Zheyu Chen, and Yufeng Zhan. 2019. Energy-Efficient
Distributed Mobile Crowd Sensing: A Deep Learning Approach. IEEE
Journal on Selected Areas in Communications 37, 6 (2019), 1262–1276.
https://doi.org/10.1109/JSAC.2019.2904353

[20] Chi Harold Liu, Zipeng Dai, Haoming Yang, and Jian Tang. 2020. Multi-
Task-Oriented Vehicular Crowdsensing: A Deep Learning Approach.
In IEEE INFOCOM 2020 - IEEE Conference on Computer Communications.
1123–1132. https://doi.org/10.1109/INFOCOM41043.2020.9155393

[21] Hui Liu, Zhen Zhang, and Dongqing Wang. 2020. WRFMR: A Multi-
Agent Reinforcement Learning Method for Cooperative Tasks. IEEE
Access 8 (2020), 216320–216331. https://doi.org/10.1109/ACCESS.2020.
3040985

[22] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob
Erdmann, Yun-Pang Flötteröd, Robert Hilbrich, Leonhard Lücken,
Johannes Rummel, Peter Wagner, and Evamarie Wießner. 2018. Micro-
scopic Traffic Simulation using SUMO, In The 21st IEEE International
Conference on Intelligent Transportation Systems. IEEE Intelligent
Transportation Systems Conference (ITSC). https://elib.dlr.de/124092/

[23] Samuel Yanes Luis, Daniel Gutiérrez Reina, and Sergio Toral. 2022. Max-
imum Information Coverage and Monitoring Path Planning With Un-
manned Surface Vehicles Using Deep Reinforcement Learning. (2022).

[24] Xueguang Lyu, Yuchen Xiao, Brett Daley, and Christopher Amato.
2021. Contrasting centralized and decentralized critics in multi-agent
reinforcement learning. arXiv preprint arXiv:2102.04402 (2021).

[25] Mykhaylo Marfeychuk. 2020. Learning Control Policies in Smart Cities
from Physical Data. (2020).

[26] Shaofeng Meng and Zhen Kan. 2021. Deep Reinforcement Learning-
Based Effective Coverage ControlWith Connectivity Constraints. IEEE
Control Systems Letters 6 (2021), 283–288. https://doi.org/10.1109/
LCSYS.2021.3070850

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. 2015. Human-level
control through deep reinforcement learning - Nature. Nature 518
(Feb 2015), 529–533. https://doi.org/10.1038/nature14236

[28] AbdulmajidMurad, FrankAlexander Kraemer, Kerstin Bach, and Gavin
Taylor. 2021. Probabilistic Deep Learning to Quantify Uncertainty in
Air Quality Forecasting. Sensors 21, 23 (2021). https://doi.org/10.3390/
s21238009

[29] Marcos Quiñones Grueiro, Cristina Verde, and Orestes Llanes-Santiago.
2019. Multi-objective sensor placement for leakage detection and
localization in water distribution networks. In 2019 4th Conference on
Control and Fault Tolerant Systems (SysTol). 129–134. https://doi.org/
10.1109/SYSTOL.2019.8864746

[30] Yara Rizk, Mariette Awad, and Edward W. Tunstel. 2018. Decision
Making in Multiagent Systems: A Survey. IEEE Transactions on
Cognitive and Developmental Systems 10, 3 (2018), 514–529. https:
//doi.org/10.1109/TCDS.2018.2840971

[31] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan,
and Pieter Abbeel. 2015. Trust Region Policy Optimization. CoRR
abs/1502.05477 (2015). arXiv:1502.05477 http://arxiv.org/abs/1502.
05477

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. 2017. Proximal Policy Optimization Algorithms. CoRR
abs/1707.06347 (2017). arXiv:1707.06347 http://arxiv.org/abs/1707.
06347

[33] Chenxi Sun, Victor O. K. Li, Jacqueline C. K. Lam, and Ian Leslie. 2019.
Optimal Citizen-Centric Sensor Placement for Air Quality Monitoring:
A Case Study of City of Cambridge, the United Kingdom. IEEE Access
7 (2019), 47390–47400. https://doi.org/10.1109/ACCESS.2019.2909111

[34] Chenxi Sun, Yangwen Yu, Victor O.K. Li, and Jacqueline C.K. Lam. 2018.
Optimal Multi-type Sensor Placements in Gaussian Spatial Fields for
Environmental Monitoring. In 2018 IEEE International Smart Cities
Conference (ISC2). 1–8. https://doi.org/10.1109/ISC2.2018.8656676

[35] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning
An Introduction (2 ed.). The MIT Press.

[36] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs.
cooperative agents. In Proceedings of the tenth international conference
on machine learning. 330–337.

[37] Xi Tao and Wei Song. 2020. Task Allocation for Mobile Crowd-
sensing with Deep Reinforcement Learning. In 2020 IEEE Wireless
Communications and Networking Conference (WCNC). 1–7. https:
//doi.org/10.1109/WCNC45663.2020.9120489

[38] Guido Van Rossum and Fred L Drake. 2009. Python 3 reference manual.
CreateSpace.

[39] Chaowei Wang, Xiga Gaimu, Chensheng Li, He Zou, and Weidong
Wang. 2019. Smart mobile crowdsensing with urban vehicles: A deep
reinforcement learning perspective. IEEE Access 7 (2019), 37334–37341.

[40] Christopher John Cornish Hellaby Watkins. 1989. Learning from
delayed rewards. (1989).

[41] Zhen Zhang, Dongqing Wang, and Junwei Gao. 2021. Learning
Automata-Based Multiagent Reinforcement Learning for Optimiza-
tion of Cooperative Tasks. IEEE Transactions on Neural Networks and
Learning Systems 32, 10 (2021), 4639–4652. https://doi.org/10.1109/
TNNLS.2020.3025711

[42] Yang Zhen, Masato Sugasaki, Yoshihiro Kawahara, Kota Tsubouchi,
Matthew Ishige, and Masamichi Shimosaka. 2021. AI-BPO: Adaptive
Incremental BLE Beacon Placement Optimization for Crowd Density
Monitoring Applications. In Proceedings of the 29th International Con-
ference on Advances in Geographic Information Systems (Beijing, China)
(SIGSPATIAL ’21). Association for Computing Machinery, New York,
NY, USA, 301–304. https://doi.org/10.1145/3474717.3483964

11

https://doi.org/10.1109/TSP.2021.3099954
https://doi.org/10.1109/TSP.2021.3099954
https://doi.org/10.1007/s00158-018-2024-1
https://doi.org/10.1109/TCOMM.2020.3013599
https://doi.org/10.1109/TCOMM.2020.3013599
https://doi.org/10.1007/s11269-021-02922-3
https://doi.org/10.1007/s11269-021-02922-3
https://doi.org/10.1109/JSEN.2021.3063815
https://doi.org/10.1109/JSAC.2019.2904353
https://doi.org/10.1109/INFOCOM41043.2020.9155393
https://doi.org/10.1109/ACCESS.2020.3040985
https://doi.org/10.1109/ACCESS.2020.3040985
https://elib.dlr.de/124092/
https://doi.org/10.1109/LCSYS.2021.3070850
https://doi.org/10.1109/LCSYS.2021.3070850
https://doi.org/10.1038/nature14236
https://doi.org/10.3390/s21238009
https://doi.org/10.3390/s21238009
https://doi.org/10.1109/SYSTOL.2019.8864746
https://doi.org/10.1109/SYSTOL.2019.8864746
https://doi.org/10.1109/TCDS.2018.2840971
https://doi.org/10.1109/TCDS.2018.2840971
https://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1109/ACCESS.2019.2909111
https://doi.org/10.1109/ISC2.2018.8656676
https://doi.org/10.1109/WCNC45663.2020.9120489
https://doi.org/10.1109/WCNC45663.2020.9120489
https://doi.org/10.1109/TNNLS.2020.3025711
https://doi.org/10.1109/TNNLS.2020.3025711
https://doi.org/10.1145/3474717.3483964

	Abstract
	1 Introduction
	2 Background
	2.1 Markov Decision Processes
	2.2 Reinforcement Learning
	2.3 Temporal-Difference Learning
	2.4 Policy gradient methods
	2.5 Actor-Critic Models

	3 Related Work
	3.1 Static sensors
	3.2 Mobile sensors

	4 Methodologies
	4.1 Environment Design & Interaction
	4.2 Static Sensors
	4.3 Reactive algorithm with mobile sensors
	4.4 Reinforcement Learning algorithm with mobile sensors

	5 Experiments & Evaluation
	5.1 Data Analysis

	6 Uncertainty
	6.1 Architecture of the Reinforcement Learning algorithm
	6.2 Pollution coverage and uncertainty reduction
	6.3 Variation in the number of sensors
	6.4 Running Time

	7 Conclusion
	Acknowledgments
	References

