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Abstract

Formation Control problems have been widely studied in the industry. Model Predictive Control, which

is an optimization looking forward at horizon h, and other methods have seen use in industrial and other

settings for decades. More recently, Control Lyapunov Functions have seen an increase in interest.

These functions follow a greedy approach to optimization of a system. This thesis will serve as a

comparative work between the different methods used for formation control, namely on their measured

output, computation time and simulation accuracy. It will be focused on Lyapunov Functions, MPC

with horizon = 1 and MPC with a large horizon. MPC with a horizon = 1 has been chosen to properly

compare with the Lyapunov method, Lyapunov Functions do not optimise over a horizon, they look at a

single step.
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Resumo

Problemas de Controlo de Formações (Formation Control) têm vindo a ser estudados recentemente

na indústria. Model Predictive Control que é uma optimização a olhar para um horizonte h, e out-

ros métodos têm uso comum em situações industriais e outras situações durante algumas décadas.

Mais recentemente, Funções de Controlo de Lyapunov (Control Lyapunov Functions) tem vindo a gerar

interesse como método. Estas funções seguem uma aproximação oportunística para a optimização

do sistema. Esta dissertação tem como objectivo comparar os diferentes métodos de Controlo de For-

mações, nomeadamente, o output gerado, tempo de computação e erro da simulação. Iremos focar-nos

nas Funções de Lyapunov, MPC com horizonte = 1 e MPC com horizonte grande. MPC com horizonte

= 1 foi escolhido para ter uma comparação apta com as Funções de Lyapunov, visto que estas não

optimizam o sistema num horizonte, mas apenas num passo da iteração.

Palavras Chave

Funções de Controlo de Lyapunov; Funções de Controlo de Barreira; Model Predictive Control; Re-

strições Lineares; Controlo de Formações.
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1.1 Motivation of the Dissertation

A formation control problem is defined by a multi-agent system which must fulfill some objective, while

acting cooperatively and avoiding undesired effects such as collisions between agents. In the literature,

a variety of approaches are taken depending on the individual agents specific sensing capability and

level of communication between agents. In this document, multiple types of formation control will be

studied, as well as the solutions to formation control, namely, the use of Control Lyapunov Functions

and Control Barriers Functions, and MPC. Notably, the use of MPC is well studied, due to its wide

adoption in industrial settings, where it provides stability through the optimisation. While MPC has

many attractive qualities in many different areas of study, it also has its drawbacks. MPC optimisations

are computationally-heavy for certain nonlinear systems. MPC can, however, also be naturally applied

in formation control systems, where it has had a recent surge in interest for flight formations [1–3],

where the optimisation can be used to minimise the error in formations and thus achieve a desired

objective. However, these systems require strict, time-sensitive computation of trajectory in order to

maintain system safety. This rise in usage can be explained due to the surge in high performance

computation CPU boards, allowing the computationally-heavy MPC optimisation to achieve enough time

efficiency to outweigh this disadvantage.

Recently, there has been a growing interest [4–6] in the use of Control Barrier Functions in combi-

nation with MPC in order to achieve a system that both guarantees the safety by using the Lyapunov

Function’s stability and benefits from MPC’s favourable optimization qualities.

To this end, in this dissertation we aim to do a comparative work between the different methods in

order to ascertain their unique advantages and disadvantages. Notably, we wish to focus on the Control

Lyapunov Function method as compared to a MPC with a horizon = 1, in order to draw parallels between

these options, and come to conclusions about their functionality, as well as whether or not the results

achieved with both methods are meaningfully different. The different methods will be simulated and then

their outputs will be measured, namely, the simulation time, error of the formation, distance travelled,

and actuation of the system.

We will then draw conclusions based on the output we receive from our measurements.

An implementation of the formation control, as well as the videos of the simulations, are also provided

for future study in our GitHub Repository.

1.2 Organization of the Document

This thesis is is organized as follows: In chapter 2, we will go over the methodology used for formation

control. We will discuss the MPC and Lyapunov Functions method of formation control, which leads

into chapter 3, where we will discuss what is going to be measured in the comparisons, and what the

4
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formations are. Chapter 4 will show the results of the different formations. It will also note findings

that will be relevant to the comparisons, Chapter 5 will draw conclusions on the different methods, their

differences and similarities.
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2.1 Formation Control Background

We begin by categorising formation control into different types based on the type of sensed and con-

trolled variables, in a similar fashion to what is presented in [7]. Consider the following N -agents as the

formation in a continuous time system:


ẋi = fi(xi, ui),

yi = gi(x1, ..., xN ), i = 1, ..., N

zi = hi(xi),

(2.1)

where the position of agent i is denoted as xi ∈ Rni , ui ∈ Rpi denotes the actuation, yi ∈ Rqi denotes

the measurement, and output is denoted by zi ∈ Rr. Further, fi : Rni ×Rpi → Rni , gi : Rn1 × ...×RnN →

Rqi , and hi : Rni → Rr. Let z∗ ∈ RrN → RM be given, which can be a function of time, for dynamic

formations. The desired formation for the agents is specified by the following constraint:

F (z) = F (z∗). (2.2)

Equation (2.1) describes a continuous time system. The equation can be translated to a discrete

time system: 
x
(k+1)
i = fi(x

(k)
i , u

(k)
i ),

y
(k)
i = gi(x

(k)
1 , ..., x

(k)
N ), i = 1, ..., N

z
(k)
i = hi(x

(k)
i ),

(2.3)

where x
(k)
i specifies the position of agent i at the control instant k. It is of note that the functions fi, gi,

hi are not the same as the ones in the continuous formulation (2.1).

However, this document will use a slight abuse of notation to describe them in order to simplify the

understanding between both systems. A physical formation control system that works in discrete time

will have an underlying system in continuous time in order to manage the physical elements of the

system. The discrete time system will provide an objective to the continuous time system which will then

control the actions of the agent. With this formulation, we define the 3 main types of formation control:

2.1.1 Position-based control

Agent i senses their position xi with respect to a global coordinate system. Each agent i actively

controls xi in order to achieve a global formation. To achieve a desired formation, each agent i requires

only their individual desired position x∗
i , and each agent can then act independently to arrive at their

desired position. Measurements yi contain some absolute variables that are sensed with respect to a

8



global coordinate system. The constraint (2.2) is given as:

F (z) := z = F (z∗). (2.4)

where z = [z0...zN ]. Agents actively control zi. Communication is necessary in the event that collisions

between agents are possible. In conclusion, this type of formation control requires complex sensors

to actively sense the agent’s position in regards to a global coordinate system, but also requires less

communication between agents.

A solution for position-based formation control extended for double-integrator agents which requires

inter-agent interaction is studied in [8]. The agents are modeled by ẍi = ui, with respect to a global

coordinate system. The objective is for the agents to move to a desired position while keeping their

formation’s shape during the translation. The following second-order consensus protocol is proposed:

ui = −
n∑

j=1

gijkij [(ξi − ξj) + γ (ζi − ζj)] , i ∈ N (2.5)

.

where gij = 1 if i and j communicate and 0 otherwise, and kij is a scalar. The goal of the consensus

protocol is to ensure ||ξi − ξj || → 0 and ||ζi − ζj || → 0 when t → ∞. Specifically, if ξi is the position

of agent i, and ζi is the velocity of agent i, then (2.5) represents the acceleration of the ith agent. The

consensus protocol is then analysed for time-invariant information exchange topologies. A decentralised

position-based approach for multiple non-holonomic systems is studied in [9], which is then expanded

to include uncertainty in [10]. [11] studies the trajectory tracking problem for robots in unicycle-type

kinematic model with the assumption that each agent can sense its own position in regards to a global

coordinate system. This model is then expanded in [12], which additionally proposes mutual coupling

between robots. Additionally, the concept of virtual structure was introduced in [13], which leads to the

concept of feedback control [14], which is a solution to coordinated motion control (formation control),

based on a virtual structure, i.e. position based.

This will be the formation control type used for this dissertation’s comparisons in the Experimental

Results section.

2.1.2 Displacement-based control

Agents actively control displacements of their neighbouring agents zj − zi to achieve the desired for-

mation. Measurements yi contain relative variables that are sensed with respect to a global coordinate

system. As opposed to position-based control, they do not contain any absolute variables that need

to be sensed with respect to the global coordinate system. The formation is specified by the desired

9



displacements with respect to a global coordinate system zj − zi. The constraint (2.2) is given as:

F (z) := [...(zj − zi)
T ...]T = F (z∗) (2.6)

for i, j = 1, ..., N . As a result, this type of formation control requires moderately complex sensors to

measure the displacement of the agent and its neighbouring agents, as well as a moderate amount of

communication between agents to communicate the displacement.

Decentralized displacement-based formation control has been proposed in [15]. The article proposes

that each agent be assigned a control law that is the sum of two parts, a repulsive potential field,

responsible for the agent’s collision avoidance, and a attractive potential field, responsible for the agent’s

convergence on the objective. The law proposed is as follows

ui = −
∑
j∈Ni

∂Wij

∂xi
−

∑
j∈Mi

∂Vij

∂xi
(2.7)

where Wij is a continuously differentiable function of the Euclidian distance between agents i and

j, defined on βij ∈ [0, d2], where d is the desired displacement between agents and Wij → ∞ when

βij → d2. This function is the attractive potential field. Vij is also a continuously differentiable of the

Euclidian distance between agents i and j. Vij attains the maximum value when βij → 0. The potential

force can either be bounded, in which case the value of Vij is finite, or unbounded, in which case

Vij → ∞ when βij → 0. This function serves as the repulsive potential field. It is of note that xi is

not a measure of the agent’s actual position, given that agents sense the displacement between their

neighbours and not their positions, however the agent’s local coordinate system is aligned with the global

coordinate system.

The control law’s stability is then studied with the use of a Lyapunov function and proven as stable,

and then the system is applied to nonholonomic kinematic unicycle-type agents as well as in cases of

dynamic graphs, i.e., edges being formed and broken in time.

A displacement-based approach to formation control of robots that is robust to position measurement

errors is described in [16]. The displacement based formation of "cyclic pursuit", that is, to have an agent

i follow agent i + 1 is studied with wheeled vehicles in [17]. Different methods of displacement-based

control with simple agents are studied in [18], culminating in the article on displacement-based formation

control detailing the necessary conditions for formation control on graphs with wheeled vehicles found

in [19].

10



2.1.3 Distance-based control

Inter-agent distances ||zj −zi|| are actively controlled to achieve the desired formation, which is given by

the desired inter-agent distances. Individual agents are assumed to be able to sense relative positions

of their neighbouring agents with respect to their own local coordinate systems. The orientation of their

local coordinate systems are not necessarily aligned with each other. The constraint (2.2) is given as:

F (z) := [...||zj − zi||...]T = F (z∗) (2.8)

for i, j = 1, ..., N . This type of formation control requires relatively simple sensors, given that inter-

agent distances can be measured and controlled without considering a global coordinate system’s origin

or orientation. However, inter-agent communication between neighbours is relatively high in order to

achieve the desired formation.

The stability of distance-based control in a 2-dimensional system is studied in [20]. It is shown that if

the formation control law is a negative gradient, then it is provably correct when the formation graph is a

tree. The proposed control law is of the form

ui = −
∑
j∈Ni

∂γ (βij(x))

∂xi
= −

∑
j∈Ni

2ρij (xi − xj) , i ∈ N (2.9)

where Ni is the set of the neighbours for agent i, βij(x) is the Euclidean distance between agent i

and agent j. γ is the formation potential, a function of the distance between i and j, γ = γ(βij), that is

continuously differentiable, γ(d2ij) and γ(βij) > 0 for all βij ̸= d2ij . dij is the desired inter-agent distance.

The system’s stability is then examined by using a Lyapunov Function, and it is then proven that the

system reaches a static configuration, i.e., it is stable.

It is of note that certain types of formation control do not necessarily fit into these 3 categories, for

example, a flocking formation based on simple interaction among individual agents [21–23], estimation-

based control formations [24, 25], angle-based control [26] and behaviour-based control [27, 28]. The

results reached in [20] were also applied to flocking formations based on double-integrator agents.

2.2 Linear Quadratic Regulator

The Linear-Quadratic Regulator (LQR) solution was achieved with Matlab’s dlqr function. The error is

calculated and applied to the system in order to optimise it. This is a simple form of formation control,

applying the error directly to the displacement of the agent’s position to their optimal position.

11



2.3 Control Lyapunov Functions

2.3.1 Lyapunov Functions

Lyapunov stability is defined using the following formulation in continuous time:

ẋ = f(x) (2.10)

The equilibrium point x = 0 is

• stable if, for each ϵ > 0, there is δ = δ(e) > 0 such that

||x(0)|| < δ ⇒ ||x(t)|| < ϵ,∀t ≥ 0 (2.11)

• unstable, otherwise

• asymptotically stable if it is stable and a δ can be chosen such that

||x(0)|| < δ ⇒ lim
x→∞

x(t) = 0 (2.12)

Applying this to Lyapunov’s Stability Theorem:

Let V : D → R be a continuously differentiable function such that

• V (0) = 0, V (x) > 0, ∀x ∈ D\{0}

• V̇ (x) ≤ 0, ∀x ∈ D

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0,∀x ∈ D\{0} (2.13)

then x = 0 is also asymptotically stable.

2.3.2 Control Lyapunov Functions

The application of Lyapunov Functions to formation control problems stems from the use of Control

Lyapunov Functions (CLF) and Control Barrier Functions (CBF). These use the attractive qualities of

Lyapunov Functions, namely, Lyapunov Stability, to formation control problems. In the following section,

we define these functions.

A Control Lyapunov Function (CLF) is a positive definite function V (x) for a system ẋ = p(x) + j(x)u

that satisfies, for every x ̸= 0:

inf
u∈U

[LpV (x) + LjV (x)u] < 0 (2.14)

12



where U is the set of all possible actuations. The sum p(x) + j(x)u can be translated into the function

fi(xi, ui) from (2.1), with agent number i being omitted for reading clarity. It is of note that in this

formulation, the expression for the agent’s state p(x) is separated from the expression for the agent’s

actuation j(x)u. This is useful due to the simplified computation applied to the optimisation problem that

will be presented in this section.

The CLF can then be used in an optimisation-based approach for a formation control system by

optimising the set of stabilising controllers KV (x):

KV (x) = {u ∈ U : LpV (x) + LjV (x)u ≤ −σ(x)} (2.15)

where σ(x) > 0 is the desired rate at which the CLF should decay. which leads to the optimisation:

min
u ∈ U

1

2
||u||2

s.t. LpV (x) + LjV (x)u ≤ −σ(x)

at every point the smallest input u is selected, which ensures the CLF decays at the specified rate

σ(x). As mentioned before, LpV (x) and LjV (x)u are separable, therefore the computation required to

complete this optimisation problem is lessened due to the problem being simplified into 2 parts. The

computation can then be done as such:

min ũ

s.t. Lp(x) + ũ

where u = g(x)−1ũ. This allows the computation to remain convex due to p(x) and g(x) being constant

values when x is fixed. This property is especially useful on systems where p(x) is non-convex. Following

this approach, and generalising to a formation control problem with agent i ∈ N , i can approach the

desired position xi by optimising ui in accordance to the equation:

min
ui ∈ Ui

1

2
||ui||2

s.t. LpV (xi) + LjV (xi)ui ≤ −σ(xi)

An example of this application is documented in [29], where the Control Lyapunov Functions are

studied in regards to their use in formation control of a class of robots.

Control Lyapunov Functions serve as a method for agents in a formation to reach their desired po-

sition through solving an optimisation problem. However, collision avoidance is ignored if they are used
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exclusively as a system of formation control. Therefore, there are applications of Lyapunov Functions

that serve an opposite role to Control Lyapunov Functions, that is, to avoid a position or set of positions,

which are the Control Barrier Functions.

2.3.3 Control Barrier Functions

Control Barrier Functions (CLB) serve as systems applied to formation control for avoidance of undesir-

able outcomes, such as collisions between agents or with the environment. Specifically, we consider the

following sets:

C = x ∈ Rn : c(x) ≥ 0

∂C = x ∈ Rn : c(x) = 0

O = x ∈ Rn : c(x) < 0

Set C denotes safe positions for agents. Set ∂C denotes the boundary between safe and unsafe

positions. Set O denotes unsafe positions, such as those that may cause collisions between agents.

The use of CBFs serves to ensure that c(xi) /∈ O, ∀i ∈ N . Therefore, the function c(x) is a CBF if there

exists a locally Lipschitz extended class K∞ function α such that:

sup
u∈Rm

[Lpc(x) + Ljc(x)u] ≥ −α(h(x)) (2.19)

It is of note that h(x) is only allowed to decrease in the interior of the safe set int(C), but not on the

boundary ∂C, that is, C is forward invariant. With this, a set of safe controllers can be defined:

KCBF (x) = {u ∈ Rm : Lph(x) + Ljh(x)u+ α(h(x)) ≥ 0} (2.20)

which ensures c(x) ∈ C. Combining the Control Lyapunov Functions and Control Lyapunov Barriers,

we obtain a control system in the following Quadratic Programming (QP) formulation:

min
(u, δ) ∈ Rm+1

1

2
∥u∥2 + 1

2
κδ2

s.t. LpV (x) + LjV (x)u+ γ(V (x)) ≤ δ (CLF),

Lph(x) + Ljh(x)u+ α(h(x)) ≥ 0 (CBF)

the CBF constraint guarantees that u∗ ∈ KCBF (x) keeps the system trajectories invariant with re-

spect to the safe set int(C). The relaxation variable δ in the CLF constraints softens the stabilisation

objective, maintaining the necessary feasibility of the QP.
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Control Lyapunov Functions are studied as a form of formation control in [29], which is then exempli-

fied by two robots carrying a beam controlled by CLF. In [30], Control Lyapunov Functions are used along

with a leader-follower dynamic of formation control with car-like robots. The use of Control Lyapunov

Function in QP is well studied: [31], as well as the use of Control Barrier Functions: [32, 33]. Addition-

ally, a robust solution using Control Lyapunov Function and Control Lyapunov Barrier based Quadratic

Programs (CLF - CLB - QP) with the addition of measurement noise have also been studied [34].

2.4 Model Predictive Control

Model Predictive Control (MPC) can easily be applied to formation control problems, as each instance

can be considered as an optimisation problem which is then applied to an optimiser. Centralised solu-

tions to the optimisation problem are well studied, due to the control objectives and operating constraints

being represented explicitly in the optimisation problem solved at each control instant. The main chal-

lenges stem from their application in decentralised systems, with distributed computation, noisy data

and occasionally sensing data only in specified intervals.

Some examples of previous work on distributed MPC are reported in [35–37]. Notably, [36], [37] both

report examples in physical systems, namely decentralised water management systems, which receive

noisy data. Considering the linear discrete time multi-agent dynamic system

x
(t+1)
0 = Ax

(t)
0 x

(t+1)
i = Ax

(t)
i +Bu

(t)
i ∀i ∈ N, t ≥ 0, (2.22)

The application of MPC to the formation control problem is straightforward. According to [38], the

MPC control problem can be characterised as follows. At decision instant k, the controller samples the

state of the system x(k). The following optimisation problem is then solved to find the control action.

min
X(k), U(k)

J(X(k), U(k))

s.t. x(k+i+1|k) = f(x(k+i|k), u(k+i|k)) (i = 0, ...,K − 1),

G(X(k), U(k)) ≤ 0,

x(k|k) = x(k)

(2.23)

where

X(k) = {x(k+1|k), ..., x(k+K|k)}

U(k) = {u(k|k), ..., u(k+K−1|k)}
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for control horizon K. The same notation for x and u is used for equation (2.3), with the addition of the

prediction notation. That is, x(k+1|k) is the predicted state (or position) of an agent at control instant

k + 1, based on the information at instant k.

The standard MPC formulation can then be summarised as a series of static optimisation problems

in order to obtain a distributed formulation {SPk|k = 0, 1, 2, ...} of the form:

SPk : min
S

J(S)

s.t. G(S) ≤ 0,

H(S) = 0

(2.24)

where S is the vector of decision variables, including state and input variables over the prediction

horizon. Distributed MPC consists of the decomposition of SPk into a set of P subproblems, {SPki|i =

1, 2, ..., P}. Subproblems are then assigned to different agents in order to ensure that:

• Each problem is much smaller than the whole, that is, each SPki has far fewer decision variables

than SPk.

• Each problem is coupled to only a few other subproblems, meaning SPki shares variables with

only a few other subproblems.

It is proven in [38] that the distributed MPC problems compose a solution to the overall MPC problem

if they follow the proposed theorem, which is simplified here:

If, for all i:

•
∑

Ji = J when J is a scalar, or
∑

Ji = WTJ when J is a multiobjective vector, where W is a

vector of nonnegative weights;

• Ji and Gi are convex;

• Hi is linear;

• The agents within each neighbourhood work sequentially;

• The equality constaints can be relaxed without emptying the feasible region of SPk.

• Ji is bounded from below in the feasible region;

• The starting point is in the interior of the feasible region;

• Each agent cooperates with its neighbours in that it broadcasts its latest iteration to these neigh-

bours;

• Each agent uses the same interior-point method (barrier method) with the same Lagrange multi-

pliers to generate its iterations.
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Then, in the case where J is a single objective, SPk has a unique solution and {∪slki|l = 0, 1, 2, ...}

will converge to this solution. If J is a multiobjective vector, {∪slki|l = 0, 1, 2, ...} will converge to a point

on the Pareto surface of SPk.

With this result, we can conclude that there are computational advantages to solving a set of sub-

problems by separating them through a set of agents working within the same structure. Notably, we

can also conclude that distributed MPC is feasible and viable as a method for formation control if the

formation follows the theorem’s requirements. Similar results have also been achieved in [39], namely

the advantage of cooperative control strategies over non-cooperative strategies in system performance

as well as in [40], which proposes a system that incorporates centralised control performance while op-

erating in a decentralised manner. Other examples of formation control using MPC are [41,42], applied

to vehicles and robotics, respectively. An example of a problem involving spacecraft formations with

limited communication is studied at [43]. Surveys on MPC are common [38], [44] due to their wide use

in optimisation problems in industrial settings where high performance is required.
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2.4.1 Collision Avoidance

Collision Avoidance in this system is achieved by the method detailed in [45]. In section 4.5.3 of the

book, a method to achieve linear constraints from non-linear obstacles is presented. The method relies

on creating constraints that define the planes tangent to the obstacle.

A simplified version of the proposed algorithm is used in this thesis:

Algorithm 2.1: Obstacle Avoidance Strategy
begin

Solve optimisation problem without obstacle constraints
Determine planes tangent to obstacle facing each point in the trajectory
Solve optimisation problem with tangent planes as linear constraints

• Solve optimisation problem without obstacle constraints, saving the agent’s positions in each

iteration.

• Determine planes tangent to obstacle facing each point in the trajectory, using the saved

positions. This requires a calculation to discover the tangent line which passes through the unsafe

set’s limits.

• Solve optimisation problem with tangent planes as linear constraints, which leads to a sys-

tem where safety is assured.

This strategy incurs a time penalty, since it requires the problem to be solved without obstacle con-

straints, and then with obstacle constraints. These constraints slow down computation considerably, as

is shown in the later results section.
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In the following chapter, we will discuss how the simulations were executed, as well as what mea-

surements were taken to measure the performance of the various methods.

3.1 Obtained Measurements

The following measures were taken in runtime to assess the viability of each method of formation control

Time: The time of execution will be measured.

Formation Error: The current difference between the agent’s positions and the desired formation

will be measured.

Distance Travelled: The agent’s total travel distance will be measured.

Energy Spent: The actuation will be measured at each iteration. This is meant as an approximation

to battery power spent.

3.2 Formations

The regularly used formations place the agents in a virtual circle around a point. The point is then

moved, causing the formation to follow it.

Notably, each agent can act independently. The formation’s definition supplies each agent with their

optimal position, meaning no communication between agents is required. The optimisation is collective

and computed once per timestep. Naturally, it would be possible for each agent to individually compute

their optimal actuation instead.

Functions to create these formations and then supply them to each solver are available in the repos-

itory for future work.

The formations tested either move in a straight line or move in a "sine wave" pattern. Certain forma-

tions will also shift the agent’s positions at chosen intervals. The velocity of the formation will also be

variable.

The trajectory that the formation took will be illustrated along with the final results. The color of each

agent’s trajectory will be different to better distinguish them.

3.3 Obstacles

For the Model Predictive Control (MPC) and Control Lyapunov Function (CLF) methods, the simulations

will have a varying number of obstacles to increase complexity. The number of obstacles chosen was

0, 1 and 5 to differentiate complexity. Each will then be evaluated according to the measurements
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outlined in Section 3.1. The obstacles are circles of varying radii, which are placed in order to partially

or completely block the formation’s path.

Figure 3.1: A formation with 5 agents and 1 obstacle.

The method to avoid obstacles is dependent on the method used for the simulation. Both Lyapunov

Functions and MPC have a specific collision avoidance practice. Notably, LQR will not be simulated with

any obstacles.
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The following sections will describe the simulation results. The sections are divided into different

simulations, where the formation has no obstacles in its past, one obstacle, and many obstacles.

4.1 No Obstacles

In the following sections, the simulation results for the formations will be shown.

4.1.1 Linear-Quadratic Regulator

4.1.1.A Straight Line Movement

We begin with the most basic simulation, a formation that moves in a straight line, with no obstacles.

Figure 4.1: The final results of the LQR simulation moving in a straight line.

Used Formation: straight_5_200_8.mat

Elapsed Time: 0.7994s

Units Travelled: 140.41

Energy Spent: 20.20

The behaviour worth noting is the initial actuation, where the agents move towards their optimal

positions in the formation. Afterwards, the system becomes stable, and no actuation is necessary, since

the agent’s velocity remains in accordance with the formation’s movement.

4.1.1.B Wave Movement

In this simulation, the formation follows a sine wave movement. This adds more complexity, since it

requires actuation to maintain the formation, rather than it being stable after a certain point.
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Figure 4.2: The final results of the LQR simulation moving in a wave pattern.

Used Formation: wave_5_200_8.mat

Elapsed Time: 0.7604s

Units Travelled: 169.70

Energy Spent: 40.30

It is worth noting that the elapsed time is smaller than in 4.1.1.A. This difference can be explained by

factors external to the computation itself, as it is dependent on the system it is run on.

4.1.1.C Wave Shifting Movement

In this simulation, the formation follows a sine wave movement. Every 40 iterations, however, the optimal

positions of the agents shift, adding more complexity.

Figure 4.3: The final results of the LQR simulation moving in a sine wave pattern with shifting positions.
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Used Formation: s_wave_5_200_8.mat

Elapsed Time: 0.7576s

Units Travelled: 274.64

Energy Spent: 144.82

The spikes of energy spent every 40 iterations are easy to notice. The formation errors are quickly

resolved with the actuation.

4.1.2 Control Lyapunov Functions

The next section will have the same experiments using the CLF method.

4.1.2.A Straight Line Movement

Figure 4.4: The final results of the CLF simulation moving in a simulation moving in a straight line.

Used Formation: straight_5_200_8.mat

Elapsed Time: 5.5138s

Units Travelled: 134.91

Energy Spent: 87.62

The minimum error of the formation is noticeable in 4.4. This minimum error is caused by the CLF

having a different system dynamic to the LQR that was previously discussed, as well as the CLF having

found a local minimum and not being able to find a more stable actuation. This minimum error will

remain throughout the next simulations as well. The much higher energy total spent should be noted in

this case, compared to 4.1.1.A, being 4.33 times higher.
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4.1.2.B Wave Movement

In this simulation, the formation follows a sine wave movement.

Figure 4.5: The final results of the CLF simulation moving in a sine wave pattern.

Used Formation: wave_5_200_8.mat

Elapsed Time: 6.0689

Units Travelled: 200.02

Energy Spent: 203.60

The trajectory not being a perfect wave should be noted. The peaks and valleys of the trajectory are

noticeably not uniform. The energy spent remains much higher than the total in the LQR system (5.05

times higher).

4.1.2.C Wave Shifting Movement

In this simulation, the formation follows a sine wave movement. Every 40 iterations, however, the optimal

positions of the agents shift, adding more complexity.
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Figure 4.6: The final results of the CLF simulation moving in a sine wave pattern with shifting positions.

Used Formation: s_wave_5_200_8.mat

Elapsed Time: 6.6582s

Units Travelled: 234.68

Energy Spent: 759.97

The spikes of energy spent every 40 iterations are easy to notice. It is worth noting that the energy

spent on this version is 5.25 times higher than the LQR version of the same formation. The somewhat

erratic movement at the shift is also to be noted.

4.1.3 Model Predictive Control with horizon = 1

The following sections will display the results of the simulation for the MPC method. This
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4.1.3.A Straight Line Movement

Figure 4.7: The final results of the MPC simulation moving in a simulation moving in a straight line.

Used Formation: straight_5_200_8.mat

Elapsed Time: 9.9809s

Units Travelled: 132.60

Energy Spent: 13.03

The same minimum error can be seen as in 4.1.2.A. This is due to both methods being vulnerable to

finding local minimums and not acting towards a global minimum. However, it should be noted that the

energy spent by this system is lower than the LQR version, being 0.64 times the value of energy spent.

4.1.3.B Wave Movement

In this simulation, the formation follows a sine wave movement.
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Figure 4.8: The final results of the MPC simulation moving in a sine wave pattern.

Used Formation: wave_5_200_8.mat

Elapsed Time: 11.9757s

Units Travelled: 167.58

Energy Spent: 87.32

4.1.3.C Wave Shifting Movement

In this simulation, the formation follows a sine wave movement. Every 40 iterations, however, the optimal

positions of the agents shift, adding more complexity.

Figure 4.9: The final results of the MPC simulation moving in a sine wave pattern with shifting positions.

Used Formation: s_wave_5_200_8.mat
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Elapsed Time: 9.5033s

Units Travelled: 201.24

Energy Spent: 124.74

The movement as compared to 4.1.2.B is noticeably smoother. However, the trajectory maintains a

minimum error.

4.1.4 MPC with large horizon

The following section will display the results when using the MPC method of formation control with a

high horizon (h = 10). This is the usual way to use MPC, as it allows for the optimization to "look ahead"

and avoid local minimums, as well as minimize more accurately.

4.1.4.A Straight Line Movement

Figure 4.10: The final results of the MPC simulation moving in a simulation moving in a straight line.

Used Formation: straight_5_200_8.mat

Elapsed Time: 12.0441s

Units Travelled: 138.19

Energy Spent: 38.98

This simulation differs from the previous ones, we can notice that instead of a non-zero error being

found as a stable local minimum, the "look ahead" allows the simulation to virtually remove this error

and achieve a very stable formation. This shows the obvious benefits of using a high horizon in these

simulations.
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4.1.4.B Wave Movement

In this simulation, the formation follows a sine wave movement.

Figure 4.11: The final results of the MPC simulation moving in a sine wave pattern.

Used Formation: wave_5_200_8.mat

Elapsed Time: 12.1193s

Units Travelled: 205.49

Energy Spent: 140.99

The benefits of using a high horizon are also noticeable here. The error remains minimal, with a small

increase at each "peak" of the wave trajectory. The trajectory also maintains a smooth curve following

the sine wave.

4.1.4.C Wave Shifting Movement

In this simulation, the formation follows a sine wave movement. Every 40 iterations, however, the optimal

positions of the agents shift, adding more complexity.
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Figure 4.12: The final results of the MPC simulation moving in a sine wave pattern with shifting positions.

Used Formation: s_wave_5_200_8.mat

Elapsed Time: 12.3726s

Units Travelled: 246.90

Energy Spent: 225.19

This simulation illustrates another benefit of the high horizon being used. Even though the formation

requires a sudden movement to shift the agent’s position, the simulation accounts for this and moves

the agents before the actual formation changes, allowing for a much softer curve in the error graph. All

other simulations had a high peak when this shift happened.

4.1.5 Results

The following are charts detailing the measurements for the computations in the previous sections.
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Figure 4.13: Chart of time for each computation

The LQR method, used as a baseline, clearly shows a much faster computation time. It should be

noted that despite having a much larger horizon, the MPC with h = 10 does not run much slower than the

h = 1 version. The greedy approach from the Lyapunov Function method also shows a clear advantage

for execution time compared to the others.

Figure 4.14: Chart of error for each computation

The noticeable data from this chart shows the advantage of using MPC with a high horizon. The
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average error is much lower than the low horizon version and the Lyapunov Function method.

It should also be noted how close the average error is between the Lyapunov method and the MPC

with h = 1 one is. This can be explained by both methods arriving at the same stable local minimum,

making their execution very similar.

Figure 4.15: Chart of distance travelled for each computation

The distance travelled between the different methods is not very varied, but it should be noted how

the distance travelled with MPC with h = 1 is lower on each formation. Both the Lyapunov and the MPC

with low horizon methods arrive at a local minimum stable point. This point is notably lagging behind

the formation, especially notable on the straight trajectory. However, there is a notable overshoot of the

initial trajectory with the Lyapunov method, while the MPC with low horizon method smoothly arrives at

this point without overshooting. This can explain the extra distance from the Lyapunov method.

The extra distance travelled from the MPC with h = 10 is simple to explain, it does not lag behind the

formation, and therefore it travels further than the others.
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Figure 4.16: Chart of distance travelled for each computation

It is easy to notice the much higher energy spent by the Lyapunov method. Despite both MPC with

h = 1 and the Lyapunov method arriving at very close local minimums, there is a much higher energy

usage by the Lyapunov method. The Lyapunov method promotes a high actuation with causes the

agents to quickly arrive at their destination, and they notably overshoot their trajectory, which causes a

high energy actuation to break and stabilize their positions.
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4.2 1 Obstacle

The following chapter will illustrate simulations for both the wave and shifting wave formations, with an

added obstacle in the formation’s path. Notably, the unconstrained LQR is omitted from this chapter.

The obstacle used is a circle, centered at position (15, 15) with a radius r = 7.

4.2.1 Control Lyapunov Functions

4.2.1.A Wave Movement

In this simulation, the formation follows a sine wave movement.

Figure 4.17: The final results of the CLF simulation moving in a sine wave pattern.

Used Formation: wave_5_200_8.mat

Elapsed Time: 8.6595s

Units Travelled: 193.12

Energy Spent: 230.62

The behaviour of the Control Barrier Function (CBF) is noticeable in this simulation. While the safety

of the agents is assured, this restriction causes some erratic movement at the edge of the safe set of

positions.

4.2.1.B Wave Shifting Movement

In this simulation, the formation follows a sine wave movement. Every 40 iterations, however, the optimal

positions of the agents shift, adding more complexity.
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Figure 4.18: The final results of the CLF simulation moving in a sine wave pattern with shifting positions.

Used Formation: s_wave_5_200_8.mat

Elapsed Time: 8.5774s

Units Travelled: 230.69

Energy Spent: 795.49

This simulation again illustrates the erratic movement at the edge of the safe set of positions.

4.2.2 MPC with horizon = 1

4.2.2.A Wave Movement

In this simulation, the formation follows a sine wave movement.

Figure 4.19: The final results of the MPC simulation moving in a sine wave pattern.
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Used Formation: wave_5_200_8.mat

Elapsed Time: 12.1193s

Units Travelled: 205.49

Energy Spent: 140.99

This simulation illustrates the different behaviour at the edge of the safe set from the MPC constraints.

Movement at the edge is much smoother, supporting the system safety.

4.2.2.B Wave Shifting Movement

In this simulation, the formation follows a sine wave movement. Every 40 iterations, however, the optimal

positions of the agents shift, adding more complexity.

Figure 4.20: The final results of the MPC simulation moving in a sine wave pattern with shifting positions.

Used Formation: s_wave_5_200_8.mat

Elapsed Time: 17.5975s

Units Travelled: 197.33

Energy Spent: 238.64

4.2.3 MPC with horizon = 10

4.2.3.A Wave Movement

In this simulation, the formation follows a sine wave movement.
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Figure 4.21: The final results of the MPC simulation moving in a sine wave pattern.

Used Formation: wave_5_200_8.mat

Elapsed Time: 48.3834s

Units Travelled: 213.17

Energy Spent: 209.71

4.2.3.B Wave Shifting Movement

In this simulation, the formation follows a sine wave movement. Every 40 iterations, however, the optimal

positions of the agents shift, adding more complexity.

Figure 4.22: The final results of the MPC simulation moving in a sine wave pattern with shifting positions.

Used Formation: s_wave_5_200_8.mat
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Elapsed Time: 61.1805s

Units Travelled: 245.51

Energy Spent: 260.34

4.2.4 Results

Figure 4.23: Chart of time for each computation

MPC with h = 10 already shows a much higher computation time with the added obstacle.
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Figure 4.24: Chart of error for each computation

It should be noted that the MPC with h = 10 method has a higher error than in the version without

obstacles. This is expected in this simulation given that the agents can’t arrive at their optimal position if

their optimal position is inside an obstacle.

Figure 4.25: Chart of distance travelled for each computation

The notable smaller travel distance of the MPC with h = 1 should be noted. This can be explained

by both the smoother behaviour at the edge of the safe set by both the MPC methods, causing the
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Lyapunov function to have a higher travel distance due to the erratic movement at the edge of the safe

set. Meanwhile, they both have lower travel distance than the MPC with h = 10 due to them lagging

behind the formation.

Figure 4.26: Chart of distance travelled for each computation

The Lyapunov method still spends more energy to maintain the formation than the others in the

Shifting Wave formation. However, it should be noted that in the Wave formation, the energy spent is

much closer to the other methods, which can lead us to a conclusion on the energy required to maintain

the safe set by the MPC methods. It can be concluded that the energy they require to maneuver around

the obstacles is higher than the one spent by the Lyapunov method.

43



4.3 Many Obstacles

4.3.1 Control Lyapunov Functions

4.3.1.A Wave Movement

In this simulation, the formation follows a sine wave movement.

Figure 4.27: The final results of the CLF simulation moving in a sine wave pattern.

Used Formation: wave_5_200_8.mat

Elapsed Time: 17.3169s

Units Travelled: 188.34

Energy Spent: 254.08

4.3.1.B Wave Shifting Movement

In this simulation, the formation follows a sine wave movement. Every 40 iterations, however, the optimal

positions of the agents shift, adding more complexity.
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Figure 4.28: The final results of the CLF simulation moving in a sine wave pattern with shifting positions.

Used Formation: s_wave_5_200_8.mat

Elapsed Time: 17.0234s

Units Travelled: 225.30

Energy Spent: 812.97

4.3.2 MPC with horizon = 1

4.3.2.A Wave Movement

In this simulation, the formation follows a sine wave movement.

Figure 4.29: The final results of the MPC simulation moving in a sine wave pattern.

Used Formation: wave_5_200_8.mat
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Elapsed Time: 42.0137s

Units Travelled: 162.34

Energy Spent: 187.48

4.3.2.B Wave Shifting Movement

In this simulation, the formation follows a sine wave movement. Every 40 iterations, however, the optimal

positions of the agents shift, adding more complexity.

Figure 4.30: The final results of the MPC simulation moving in a sine wave pattern with shifting positions.

Used Formation: s_wave_5_200_8.mat

Elapsed Time: 50.4328s

Units Travelled: 162.32

Energy Spent: 209.53

4.3.3 MPC with horizon = 10

4.3.3.A Wave Movement

In this simulation, the formation follows a sine wave movement.
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Figure 4.31: The final results of the MPC simulation moving in a sine wave pattern.

Used Formation: wave_5_200_8.mat

Elapsed Time: 215.9923s

Units Travelled: 211.82

Energy Spent: 234.98

4.3.3.B Wave Shifting Movement

In this simulation, the formation follows a sine wave movement. Every 40 iterations, however, the optimal

positions of the agents shift, adding more complexity.

Figure 4.32: The final results of the MPC simulation moving in a sine wave pattern with shifting positions.

Used Formation: s_wave_5_200_8.mat
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Elapsed Time: 201.0858s

Units Travelled: 242.14

Energy Spent: 269.20

4.3.4 Results

Figure 4.33: Chart of time for each computation

The increase in computation time required by the MPC with h = 10 method is noticeable. An increase

in the number of obstacles leads to a much more computationally heavy optimization. To compare, it

took 48.38s to complete the Wave formation simulation with one obstacle, while the time has increased

to 215.99s with 5 obstacles, which is 4.47× the time required before. The increase of time with the

Lyapunov method was 2×, in comparison.
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Figure 4.34: Chart of error for each computation

As before, the high average error from the MPC with h = 10 method can be explained by the optimal

position being inside an obstacle.

Figure 4.35: Chart of distance travelled for each computation
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Both the distance and energy result conclusions are the same as in 4.2.4.

Figure 4.36: Chart of distance travelled for each computation
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5.1 Findings

In the previous section, we found some noticeable similarities as well as differences between the Lya-

punov Function system and the MPC with h = 1. Both are prone to stabilize in local minimums instead

of achieving a global minimum, which is expected for Lyapunov Functions, given that they have a greedy

approach to optimization, unlike MPC with a high horizon which achieves a global minimum error quickly.

However, using MPC with a large horizon also drastically increases computation time, especially with

the introduction of obstacles. Care should be taken when applying large horizons to MPC computations,

given that they increase accuracy and allow the system to avoid local minimums, however, that may not

be worth the increase in computation time.

The obstacle avoidance methods for Lyapunov Functions and MPC are different and as such pro-

duce different behaviours on the edge of the safe set of positions. CBFs produce somewhat erratic

behaviour when agents are in the edge of the safe set of positions, while the MPC linear constraint

method produces a much smoother trajectory, maintaining distance from the edge of the unsafe set.

It should be noted that despite being the one with the highest error on average, the CLF and CBF is

consistently faster than the other methods.

It should also be noted that Lyapunov Functions have a much higher energy usage on average,

especially when the formation requires a sudden movement, expending a lot of energy to quickly correct

the position.
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