
Deep Learning Methods for Processing Digitized Herbarium
Specimens

Filipe Lucas Borges Seleiro Martins

Thesis to obtain the Master of Science Degree in

Telecommunications and Informatics engineering

Supervisors: Prof. Jacinto Paulo Simões Estima
Prof. Bruno Emanuel Da Graça Martins

Examination Committee

Chairperson: Prof. Ricardo Jorge Fernandes Chaves
Supervisor: Prof. Jacinto Paulo Simões Estima

Member of the Committee: Prof. David Manuel Martins de Matos

June 2022

ii

I want to dedicate this to every friend and colleagues that I meet during my academic journey. The

knowledge sharing, the brainstorming sessions we have done in order to overcome the challenges

presented to us. Also the perseverance and quest of the pursuit of the know how’s we so enjoyed. Also

to my close friends that helped me to keep sane and relaxing and fun times, while keep been understand

full of the stress and the sacrifices made. Lastly to my close relatives that helped me though out this

journey, without them this would not be possible, specially to my brother that helped me financially on

the acquaintance of the GPU that i used along on this thesis, for them i would probably be here, I’m

grateful for everything.

iii

iv

Acknowledgments

I want to dedicate this section to the teachers that have guided this thesis and helped me keep in focus

setting the goals clear to accomplish, also by allowing me to change a bit the original thesis proposition

by changing the model to use and allowing to experiment with more modern architectures, that lead to

this case study of model design. Also to the teacher of U.C. Computational Intelligence for the Internet

of Things taught by João Paulo Carvalho that sparked the curiosity for this field.

v

vi

Resumo

Com centenas de colecções de herbários, actualmente em Museus de História Natural e outras in-

stituições semelhantes, acumulou-se um valioso património. Recentes iniciativas iniciaram ambiciosos

planos de preservação para digitalizar esta informação e disponibilizá-la aos botânicos e ao público em

geral através de portais web. Esta informação é crucial para o estudo da diversidade vegetal, ecologia,

evolução e genética. Um Herbário é uma colecção de espécimes de plantas preservadas e meta-dados

utilizados para o estudo científico. O método de digitalização e catalogação utilizando a visão computa-

cional, bem como as abordagens machine learning aplicadas às folhas de herbário, podem ambos ser

considerados promissores, métodos recentes baseados em redes neurais profundas ainda não estão bem

estudados para a resolução deste problema em comparação com outras áreas. Passaremos a projectar

um modelo que pode ser utilizado para alcançar a próxima geração de precisão para a catalogação de

Herbários. Para atingir este objectivo, exploraremos aplicar ao caso de estudo modelos e técnicas mais

avançadas. Utilizaremos dois modelos para extrair informação útil para a catalogar as espécies, o modelo

YOLOv4 que terá a tarefa de identificar as etiquetas presentes na folha em conjunto com um modelo

Transformer que ira extrair os dados uteis para catalogação utilizando uma técnica de geração de texto

condicionado em imagens. Os resultados obtidos foram pouco conclusivos, devido ao tipo de rede neuronal

desenvolvida ser bastante recente. Em conclusão foi que o modelo e bom para dados estandardizado, mas

falha por completo em dados do mundo real por serem demasiado aleatorios.

Palavras-chave: Transformers, Yolov4, herbarios, reconhecimento óptico de caracteres, recogn-

hecimento de campos texto, Geração de texto condicionado em imagens

vii

viii

Abstract

Hundreds of herbarium collections, currently in Natural History Museums and other similar insti-

tutions, have accumulated a valuable heritage and knowledge of plants over several centuries. Recent

initiatives started ambitious preservation plans to digitize this information and make it available to

botanists and the general public through web portals. Such information is crucial for the study of plant

diversity, ecology, evolution, and genetics. The method of digitization and cataloging using computer

vision, as well as the machine learning approaches applied to herbarium sheets, can both be considered

promising, recent methods based on deep neural network are still not well studied in this problem do-

main in comparison to other areas. We will go over a model that can be used to achieve next generation

precision and utilities for this field of cataloging Herbarium. To achieve this goal, we will explore and try

to apply state of the art techniques, models and architectures to the study case. We will use two models

to extract useful information for cataloging the species, the YOLOv4 model that will have the task of

extracting the labels present on the sheet together with the Transformer model that will extract useful

data for cataloging using a technique of text generation conditioned on images. The results obtained

were inconclusive, because the type of neural network developed was quite recent, more tests would have

to be done. Concluding the model is good for standardized data but fails completely on real world data

that is not very standardized.

Keywords:Transformers, Yolov4, VIT, GPT2, TOCR, Herbarium, Image Recognition and Clas-

sification, Optical Character Recognition, Specimens, Text generation conditioned on images

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xiii

List of Figures . xv

Nomenclature . xvii

Glossary . 1

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives and Deliverables . 2

1.3 Thesis Outline . 3

2 Models Background and related work 5

2.1 Theoretical Overview . 5

2.2 Convolutional Neural Networks for Computer Vision . 5

2.2.1 CNN Applied to Computer Vision . 5

2.2.2 YoloV4 - Object Recognition and Region Segmentation 10

2.3 The Transformer Architecture - Self Attention advancements and the vision transformers 16

2.3.1 ViT - The Image Captioning model . 19

2.3.2 GPT/GPT2 -The general purpose NLP Transformers 20

2.3.3 BEiT and DEiT - A different approach on Vision Transformer 20

2.4 Related Work . 21

3 Implementation 25

3.1 The Dataset . 25

3.1.1 Datasets - dataset reviewing and manual reviewing our dataset 25

3.1.2 Pre Processing module - Automatization of data manipulation and creation 28

3.1.3 Dataset Structure for Transformer module . 31

3.2 Transformer model - The Hugging Face Implementation 31

3.2.1 Training module for the Transformer model . 36

3.2.2 Inference module implementation . 37

xi

4 Training and Results 39

4.1 Training Module - Transformer model . 40

4.2 Tests - ViT large vs ViT base . 40

4.3 Results - ViT base to GPT2 . 41

4.3.1 Results - Similiar Dataset . 42

4.3.2 Results - Real World Data . 42

5 Conclusions 45

5.1 Achievements . 45

5.2 Future Work . 46

Bibliography 47

A Example of collate function 51

B Dataset Graphics 52

xii

List of Tables

2.1 Darknet53 composed with 53 layers of DenseNET[14]. 12

xiii

xiv

List of Figures

1.1 Herbarium Exemplaries . 2

2.1 Basic CNN architecture. 6

2.2 Kernel visualization. 6

2.3 Dilated Convolutions Visualization. 7

2.4 Padding Visualization. 7

2.5 Stride visualization. 8

2.6 Pooling visualization. 9

2.7 State of the Art typical CNN Architecture for object detection. 10

2.8 Cross Stage Partial Network applied to DenseNET[11]. 11

2.9 ResNet exemplification [15]. 12

2.10 SPP visualization [16]. 13

2.11 CNN and Feature Pyramid Networks. 14

2.12 Modified PAN as implemented on the YOLOv4 model. 14

2.13 Modified Sam as implemented on the YOLOv4 model. 15

2.14 The Transformer neural network architecture. 16

2.15 Scaled-Dot product and Multi head-Attention. 17

2.16 ViT model Architecture . 19

2.17 Elements usually present on the herbaria sheets . 21

2.18 Model architecture proposed in the paper Towards a scientific workflow featuring Natural

Language Processing for the digitisation of natural history collections” [26] 22

3.1 OverSimplified Pre Processing logic . 25

3.2 Pre-Processing Module Functions. 28

3.3 Boxes Simplification provided with our demo script . 29

3.4 Text Algorithm applied to the Boxes Simplification example 30

3.5 Results of generated fake labels blend onto a real image 30

3.6 Encoder Modeling using ViT Encoders as example . 32

3.7 Decoder Modeling using GPT2 decoders with LM head as example 35

3.8 Model Inference Logic Simplified . 37

4.1 Early Tests . 40

xv

4.2 ViT to GPT2 SacreBLUE Score Results . 41

B.1 Image of the distribution samples over the years with separation of language 52

B.2 Distribution of the datasets by language . 53

B.3 Global Coverage of the specimens . 53

B.4 Image of the distribution of herbaria specimen . 54

xvi

Nomenclature

AI Artificial Intelligence

CAD Computer-Aided Design

CAM Channel Attention Module

CBAM Convolutional Block Attention Module

CNN Convolution Neural Network

dV AE discrete Variational AutoEncoder

FPN Feature Pyramid Networks

LMhead Language Modeling head

LSTM Long Short Term Memory (network)

MIM Masked Image Modeling

MLP Multi-layer Perceptron

MSA Multi-head Self Attention

NER Name Entity Recognition

NLP Natural Language Processing

OCR Optical Character Recognition

R− CNN Recurrent Convolution Neural Network

ResNet Residual Neural Network

SGD Stochastic Gradient Descent

SPP Optical Character Recognition

tOCR Transformer Optical Character Recognition

V GG Visual Geometry Group

V IA VGG Image Anotator

xvii

V IT Vision Transformers

WER Word Error Rate

Y OLO You Only Look Once

xviii

Chapter 1

Introduction

With the age of a digital world, and subsequently of the internet, knowledge became more accessible,

written and updated from almost anywhere in the globe. Creating a need to digitize some physical

collections to expand their accessibility. The herbarium collections are no exception to these problems,

these are mostly physically present in public or private institutions. With the goal of this theses helping

to alleviate on the problem of cataloging Herbarium Colection our solution aims to automatize the

digitization of these collection using deep learning methods.

By developing a state of the art model architecture that has yet to be tested in this field of cataloging

herbarium collections. Our solution has the implementation of a non end-to-end model with the use

of two different types and architectures. The first model was created with the conventional convoluted

neural networks and a top charting model called YOLOv4 for the task of Image Detection, Recognition,

and Classification. This model will identify of the text labels presented on the herbarium sheet that are

a required input for our second model. The second model been a Transformer network that we developed

for this use case, the task of this model is to identifying and extracting useful data for cataloging, using

Text Generation Conditioned by Images. Theses models that make use of multiple encoders and decoder

this technique are not fully explored in the AI community. We will be implementing using as a base the

Transformers library by Huggingface [1]. The challenge of our implementation was to add support on the

Huggingface library [1] for multiple Vision encoders to multiple decoders models. By such combination

of transformer stacks: a Vision Transformers as a encoders and a NLP(Natural Language Processing)

Transformers models as a decoder we could generate text conditioned by images. We thought of this

architecture primarily to expand the functionality of the original task of Text Generation but to exploit

the cross attention mechanism to allow each decoder to focus on identifying and extracting different data

from the same input in hopes to function as a NER(name entity recognition). Our main challenge will be

presented on the herbarium sheets themselves, where most of them are not fully standardized, combined

with multiple other factors that will be a considerable when analysing the performance of our models for

cataloging such collections.

1

(a) (b) (c) (d)

Figure 1.1: Herbarium Exemplaries

1.1 Motivation

The preservation of our knowledge is a very important task. Making it to be available by digital

media simultaneously increases its accessibility and contribute for the preservation of it. Now a days

this preservation task is done mostly by institutions with manual labour in the field of Herbarium col-

lections thus requiring dedicated persons and time. We aim to automate the cataloging and archivation

processes,by implementing a state of the art Ai model.

1.2 Objectives and Deliverables

The AI field is in constant evolution either by the creation of new architectures and models or new

techniques being created to solve different challenges or optimizing existent models, but there is a little

focus on the field of conservation herbarium collections. This lead us to implement and test newer models

to tackle this problem.

As of yet most institutions catalogue this by hand, setting us on the path of developing a state of

the art model using the latest advancements on the field. Our development since the beginning was

very time bound, yet we achieved a fully working model with the minimal features using torch and

hugging face library. Hugging Face library is an open source library, and by further developing using

it will hopefully allow the general public to do more research over the subject, and on this type model.

Another advancement we tried to achieve was the development of pre-processing, allowing the possibility

of multiplying and creating multiple images of a single image using hand made annotations and multiple

computer generated labels. This pre-processing can be yet be improved and should make use of new

methodologies of blending and text writing to generate examples that are more closely resemble a real

image. by this brief explanation, we set as objectives for this work to:

• Creation of a pre-processing module that generates a Dataset on which to train our models by

filtering a subset of the original database of cataloged herbarium sheets, and consequently generate

2

multiple images from a single hand annotated and filtered image thus allowing to generate even

bigger Datasets for training.

• Creation of a model using the latest techniques and architectures for cataloging herbarium collec-

tions and explaining the benefits and the shortcomings of our implementation.

1.3 Thesis Outline

This dissertation is organized as follows: The motivation and challenge that our dissertation will

address were introduced in Chapter 1. We also set our dissertation’s objectives in this chapter. Chapter

2 will present the logic and the thought process for why we chose to develop this specific model by

presenting the work done by the models we got inspired on and their functionality. Chapter 3 will

introduce all the implementation required for our thesis starting by presenting the original database used

to create the Dataset and potentially problems that our model might need to overcome. Following the

preprocessing module that we used to create the Datasets for our models. As well our implementation

of our developed model, as well as, presenting some problems found for implementing on Huggingface

library. Chapter 4 will discuss some Results obtain and give some closure to the document. Finally,

Chapter 5 is the final conclusions and give possible directions for future work or other applications where

these architecture can be used.

3

4

Chapter 2

Models Background and related work

In this chapter, we will review the multiple models that paved the path for our model creation, by

reviewing each implementation and how we can use such techniques to achieve our goal.

2.1 Theoretical Overview

Since our solution doesn’t follow a end to end architecture, it is composed of multiple models that

work in conjunction to accomplish a single task. In our case we will try to accomplish our goal using two

models. One model for Object Recognition and Region Segmentation called YOLOv4, that we will go in

depth on what techniques it improves on and the logic behind it; The second model was developed based

on the unpublished paper of Microsoft TrOCR[2] and similar papers making use of vision encoders to

text decoders. We will be experimenting with model like ViT[3], Beit[4] and Deit[5] as our vision encoder

Transformer stacks with GPT2[6], Bert[7], Roberta[8] and other general purpose NLP transformer stacks

as our decoders. Both types of models were chosen carefully based on performance on multiple established

benchmarks [9] for specific tasks and must be for generic purpose.

2.2 Convolutional Neural Networks for Computer Vision

2.2.1 CNN Applied to Computer Vision

The concept on Convolutional Neural Networks (CNN) was specially developed for imaging process-

ing. They were developed based on the working of the neurons of an animal visual cortex, individual

cortical neurons are only connected to a certain region of the visual field known as receptive field. The

receptive fields of different neurons can partially overlap to ensure they cover the entire visual field. For

simplification we will use examples applied to computer vision. Starting with how a basic architecture

is usually constructed for these type of problem, then we’ll go in depth into each layer and what their

functions are, as well as some concerns to be on the look out. For a CNN to make any decision over

an image, we have to achieve good results in two major steps: feature extraction and classification. For

that to happen, the user must be concise on the feature selection relevant to the problem, together with

5

choosing a proper method for classification. The feature extraction process is everything related with the

preparation of the input image; the name of the modified image is known as feature maps. Classification

is usually done by dense network (MLP) that makes the decision over the previous feature maps. Since

Figure 2.1: Basic CNN architecture.

the CNN is based on animal vision, the input follows a NHWC, making each letter correspond to a

video-like component where N is the number of images in the batch, H the height of the image, W the

width of the image and C the number of channels of the image (ex: 3 for RGB, 1 for grayscale).

Before talking about the operation convolution, we need to understand what are the existent types

of convolution matrix and how they work. The utility of the convolution matrix (kernel) serves to do

feature selection by removing unnecessary information from our image. The Kernel represents a matrix

of coefficients usually with the common size of 3x3 or 5x5, that is applied to a patch of pixels in the

process called convolution. By doing this we can extract some features of the image that are relevant to

our model, like edges detecting or applying some sharpening, blur and other pre-processing that seems

relevant to our problem.

Figure 2.2: Kernel visualization.

The Convolution is a process of applying our kernel filter to our image for the purpose of filtering the

relevant data for our model. By definition, we can represent the convolution by expression:

g(x, y) = k ∗ f(x, y) =
i∑

dx=−i

j∑
dy=−j

w(dx, dy).f(x+ dx, y + dy) (2.1)

Where g(x,y) resultant image, k is the kernel and f(x,y) our original image. This generalization is only

6

applied when the resultant image is the same size as the original, due to padding or striding values the

resulting feature map may not have the same size when compared to the original.

The Dilated Convolutions is a special case of the conventional convolution whose inspiration of its

development is to increase the receptive field of the operation. By increasing the receptive field, it allows

for aggregation of multi-scale contextual information on the rest of the image allowing these techniques

to happen without losing resolution [10]. To increase the receptive field with the Conventional convolu-

tion, we need to increase the kernel size thus losing border information (described in depth on the next

paragraph) to prevent having to add padding.

Figure 2.3: Dilated Convolutions Visualization.

Padding is a technique that consists on filling the boundaries of the image with a value (usually

zero), in order to prevent loss of border information when applying convolution. Since the kernel matrix

is usually bigger than 1x1, the outer edge pixels do not count for the center of the cross correlation,

resulting in some loss of information. This technique also serves to keep the same image size in order to

simplify the code. This case is exemplified by the figure 2.4 below.

Figure 2.4: Padding Visualization.

7

Stride is a value that represents the number on indexes the kernel jumps for the next convolution.

It can also be responsible for some resolution loss. This value should be very carefully chosen in con-

junction with padding and the kernel size due to some impossible combinations that result in part of the

convolution occurring outside of the picture.

Figure 2.5: Stride visualization.

To calculate the size in one of the dimensions of the resulting feature map, we need to take into account

some of the parameters explained earlier. When this formulation is applied, the result must be integer,

otherwise it’s impossible for the chosen values of Stride, Padding and Kernel size to be compatible, thus

resulting in the convolution happening outside our image boundaries.

FeatureMapw =

(
W −K + 2P

S

)
+ 1 (2.2)

W represents the input size in one dimension, K is the Kernel size, P is the padding and S is the stride.

Pooling operation is used to reduce the spatial dimension, resulting in a down sampling of the feature

map. This operation affects the weight and height, but not the depth. To apply this logic of down

sampling there are multiple methods to convert a patch of pixels into a single output, the most common

being: maximizing pooling, where the max value of the patch is the only value kept; and the average,

where it’s kept the context of the whole patch.

8

Figure 2.6: Pooling visualization.

There are two main implementations that are used for image classification: one is the Linear Classifier;

another is the Dense Neural Network (DNN) Classifier. There are advantages and disadvantages for both

implementations; Linear Classifier is usually much faster and can be accurate when talking to simple

problems that can be easily linear and separable in data format; while the DNN is more complex and

computationally expensive, it is more suitable for general purpose, for the ability of better distinguishing

scattered data sets. Linear Classifier achieves its predicaments by applying a linear combination of the

feature set applied. Thus this model can only distinguish multiple classes that can be separated by a

hyperplane. This method is extremely light to compute. DNN Classifier implements a classical version

of MLP as we described before. The architecture is as a Feed forward Neural Network as is a common

practice since is the most general purpose Classifier due to the flexibility of the MLP to separate disperse

clusters of classes.

9

2.2.2 YoloV4 - Object Recognition and Region Segmentation

To go in depth on the YOLO (You Only Look Once)v4 [11] model that we used for Object Recognition

and Region Segmentation to identify regions of written data on herbarium sheets, we will explain the

model architecture and techniques used to compose this top charting model. The importance of this region

is where most of our meta data resides like Name of the herbaria, locality of capture and date. This Model

was choose based on performance and accuracy over the Object Detection on COCO dataset[12] as of

the 2021 according the leaderboard available at paperswithcode [9], as of today this model performance

still pretty good but recently losing top position by newer transformer models.

The SOTA CNN architecture in the field of object detection Networks using CNN architectures can be

separated into two main categories: The One-Stage detector, where we will explain the implementation of

YOLO; Two-Stage detector since its out of the scope of this thesis, this can be simply be explained each

regions are propositions and they will pass-through a specialized CNN layers to further refine. Before

explaining the proposed implementations of the models YOLOV4, we need to clarify some methods and

the basic structure for this type of purpose.

Figure 2.7: State of the Art typical CNN Architecture for object detection.

Each block of the architecture has a function: the Backbone where the feature-extraction occurs,

the Neck block which purpose is to add extra layers and some refinement between the backbone dense

prediction block, and the Head that can be single stage or two stage and is usually where the classification

and the attribution of bounding boxes occur.

Before explaining the YOLOV4 architecture we will go over some newer techniques implemented.

10

The backbone used on YOLOV4 is the CSPDarknet53 that is based on the previous backbone Dark-

net53 2.8??, as the change of name implies the addition of a technique of Cross Stage Partial Network

(CSPNet) [13] to the Darknet53. The goal of technique is to lighten the weight of the computational

need and memory costs by achieving richer gradients. This concept works because having richer gradients

meaning there is a reduction of needed larger digits representation than our native processor can achieve

(e.g Less bits alleviates memory requirements so naturally achieving faster calculations, also Double Float

Precision calculations need more Processor Clocks to calculate translating on slower calculations). The

way this technique achieves richer gradients is by partitioning feature map of the base layer into two

parts and then merging them through a proposed cross-stage hierarchy.

Figure 2.8: Cross Stage Partial Network applied to DenseNET[11].

11

Table 2.1: Darknet53 composed with 53 layers of DenseNET[14].

Another concept that is used besides the CSPNet in CSPDarknet53 for YOLOV4 is that the orig-

inal concept of Darknet53 [14] actually is a hybrid network with CNN and residual neural network

(ResNet) [15]. The principle is similar to the CSP, where the information can skip layers and still be

processed together with features like relation F (x) +X in order to prevent vanishing gradients. It also

serves to mitigate a problem of accuracy degradation. This happens when there is a excess of layers

which then leads the deep neural network to produce higher training errors. The hypothesis created is

that its easier to optimize residual mapping than to optimize an unreferenced mapping.

Figure 2.9: ResNet exemplification [15].

12

The YOLO and R-CNN networks has at is disposal multiple techniques that enhance the receptive

field, one of the used techniques is the use of Spatial Pyramid Pooling (SPP)[16]. This technique was

created to eliminate a technical limitation of the network and requires fixed image sizes, plus the SPP

ability to generate a fixed length output regardless of the input, therefore avoiding cropping or distorting

techniques where we can modify or lose context to our convolutions. The SPP layer pools the features

and aggregates into a single input the information.

Figure 2.10: SPP visualization [16].

13

One of these techniques is the use of a concept known as Feature Pyramid Networks (FPN) [17].

This method aims to explore object detection on multiple feature map on different scales thus construct-

ing a pyramid-like scheme of images or feature maps. The concept behind this is to take advantage

of featurization on each level of an image pyramid. It produces a multi-scale feature representation

where all levels are semantically strong. This method is proven to give accurate results while the pro-

cess of each map prediction can be done in parallel so the inference time doesn’t have much time penalty.

Figure 2.11: CNN and Feature Pyramid Networks.

Where the FPN was a technique used on the Yolo v3 [14] with great results. The concept of Path

Aggregation Network PANet [18] is present, although modified, in the neck of the YOLOV4 model

replacing the previous layer of FPN for this version. It’s mainly incorporated in the model to enhance

the process of instance segmentation by preserving spatial information. This modification suggested and

implemented version of PANet is a simple modification that instead of the usual addition, it was replaced

with concatenation.

Figure 2.12: Modified PAN as implemented on the YOLOv4 model.

14

The implementation of a Spatial Attention Module (SAM) serves to keep spatial attention on convo-

lutions. The original concept was proposed on Convolutional Block Attention Module (CBAM) [19], this

concept uses two modules combining the channel attention module (CAM) and then SAM. It’s well known

that attention plays an important role in human perception; So the development of this plugin module

that can add some attention mechanisms to networks was initially the goal of the original concept. This

is done by generating a single feature map by concatenating, both a max pooling and average pooling

feature maps, in depth to generate a single feature map that is going to be interpreted by a convolution

and normalized by sigmoid function. The authors of YOLO v4 tried to improve on this model, and were

able to simplify the concept by removing the pooling operations, applying the convolutions to the input,

and normalizing with a sigmoid that generates values between 0 and 1, which is later multiplied by the

original input in a process similar to masking.

Figure 2.13: Modified Sam as implemented on the YOLOv4 model.

Now that we got the grasp of essential techniques and concepts used in this type of process, let’s start

with YOLO v4 where the goal of this paper was to deliver in 3 main aspects: increase the efficiency and

accuracy so that could be run and trained on accessible Graphics Processing Units (GPU). To achieve

that, the authors modified some state of the art methods as previously explained by trying to make them

more efficient and suitable for single GPU training.

YOLOV4 model consists of: CSPDarknet53 as referred for backbone; The neck which is composed with

SPP, PAN; And for detection we got the YOLOv3 head that makes use of FPN to improve compatibility.

The first step of the detector is to predict where to place the bounding box. For this to happen

the network calculates the coordinates for each of the 4 corners, the feature map from the neck will

be separated onto 3 parallel streams where the spatial dimension between them is different; while the

detector is simply a dense network stacked on top of convolutions that reshape the feature maps. The

next step is just a simple fully connected network and the model allows that each prediction box may

contain multiple multi-label classifications.

Since the original Yolov4 implementation was on Darknet, we used a repository made by Tianxi-

aomo[20]that had made the accurate translation and implementation of the model on to python pytorch.

This translation in conjunction of a module that converts the original Darknet checkpoint trained in MS

COCO dataset[12] into pytorch checkpoint[21]. Since this model was not created by us we will give full

credits to the original creator Tianxiaomo on Github [20]. We fine tuned the YOLOv4 model using the

pretrained checkpoint in the MS COCO dataset[12] leading us to a shorter training period and great

results.

15

2.3 The Transformer Architecture - Self Attention advancements and the

vision transformers

Despite the multiple advances on this field of computer vision, there is a new emerging architecture

that was developed specially to be used with Natural Language processing(NLP) [22], with this types of

networks came some important advancements of attention mechanism ever made, these networks called

transformers networks were crafted with a self attention mechanism in mind. This Transformer networks

have been developed by Google, and multiple models based on this architecture have been created with

a huge success like Bert[7] achieving the best results for the NLP [23]. With these advancements there

was a need to experiment and expand the usability of this architecture on other fields. Leading to the

experimentation on the field of computer vision, the creation of ViT [3] lead to some great results already

paving the path to be promising model of Vision Transformers. Another main architectural advantage

that has over tradition CNN is that the Transformer networks are highly parallel computational by design.

Our main goal is still to predict accurate results based on the context of the input. There are two main

transformer stacks on this type of architecture an encoder and a decoder. The encoder where the input

sequence x = (x1, x2, ..., xn) is going to get encoded (conversion to tensor) to a continuous representation

on our space with vector of z = (z1, z2, ..., zn), for a given z after it’s used as a input for the decoder that

generates a vector of our output y = (y1, y2, ..., yn) thus this architecture are know as tensor to tensor or

sequence to sequence.

Figure 2.14: The Transformer neural network architecture.

16

Before talking about our encoder stack, there is some pre-processing required for our transformer

to work as intended. This process begins with the embeddings, which consists encoding our input to a

vector of size dmodel. This size is static for any input and it is going to have a representation in our vector

space, optimally tokens with similar meaning should be closer to one another in our dimension. Since

this architecture doesn’t contain any type of recurrence, it is necessary to add positional context for each

token, this is done through with positional encoder. Taking the size of our token and modulates through

a sinusoidal function with different frequencies according to the size.

PE(pos, 2i) = sin

(
pos

100002i/d/textmodel

)
(2.3)

PE(pos, 2i+ 1) = cos

(
pos

100002i/d/textmodel

)
(2.4)

Where pos is the current position and i is the total dimension.

An encoder module is constructed mainly with two sub-layers. The first one is a multi-head attention

mechanism that focuses on how surrounding positions affect the current one, it achieves this by doing a

all to all comparison and calculating a attention value. The second one is a simple position-wise fully

connected feed-forward network. Decoder structure is similar to the encoder blocks while the difference

is the repetition of two sub-layers on each decoder block. The additional sub-layers that composed the

decoder block are a normalizing layer that regulates the input to an additional multi-head attention layer.

This additional layer does a process called masking with the purpose to impose that the prediction over

the position i are only imposed and related by less than i positions.

Where this network improves is the new mechanism imposed on the multi-head self attention layers

allowing to make a correlation between the inputs and an output set based on the best probability of our

inference. The way these functions achieves this is by calculating a attention value for each input that

can be described Scaled dot product of multiple values. Those values that compose the aforementioned

attention function are defined by mapping a query and a set of key-value pairs to an output, where the

query, keys, values, and output are all vectors.

Figure 2.15: Scaled-Dot product and Multi head-Attention.

17

The scaled dot-product attention can be described 2.15 by the calculation for each embedding where

each will generate a query vector and a set of key-value vectors. Those vectors are a representation of

useful abstractions relevant to our problem. The vector are generated by multiplying our input vector

and a weight of matrices that was previously trained both Query(Q) and Key(K) vector have the same

dimension dk and dv for the Value vector. Since in practice a set of queries are computed simultaneously,

we packed them together into a matrix (Q ∈ Rw×dk), that consists a matrix with the queries vectors

multiplied by the weight matrix (WQ ∈ Rmodel×dk). The same process is applied to keys vectors and

values vectors where each is multiplied by a two weight matrices (WK ∈ Rmodel×dk and WV ∈ Rmodel×dv)

and also packed together into matrices: (K ∈ Rw×dk) and (V ∈ Rw×dv). Our attention value will be

represented as:

Attention (Q,K, V) = softmax

(
QKt

√
dk

)
V (2.5)

The scale factor was needed to counteract where large values produced by the dot-product could push

the Softmax function to regions where gradient is small 1 /
√
dk. So when applying scaling, our large

values number will be pushed closer to zero where the Softmax function has more variance thus improving

on this limitation. The multi-head attention mechanism allows that our model can access to multiple

representations in different sub-spaced by concatenating the information from multiple attention layers,

also known as heads.

This can be expressed as:

MultiHead (Q,K, V) = Concat (head1, head2, ..., headh)W
O (2.6)

Where headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
The training of this network it’s done by Back-propagation of the error and therefore optimizing

weights.

18

2.3.1 ViT - The Image Captioning model

The ViT model[3] is a particular transformer since it doesn’t use a decoder stack. This model is

composed with a encoder stack with a MLP head, which allow us to exploit this to pair up with a chosen

decoder, in our case will be paired with a NLP decoder to be used for image-to-text transcription and

to generate the meta data of the herbaria for cataloging reasons. Introducing the Transformer networks

for image recognition, starting with the first implementations that follow the traditional Transformer,

and the network the Vision Transformer (ViT) [3]. Although this network is for image captioning and

not for object recognition this can be useful to do paragraph recognition. Although ViT doesn’t use

encoder-decoder methodologies, it just borrows the self-attention layers of the encoder. For this model

to be compatible with the token like input, we need to reshape the image. This reshaping process is

represented by x ∈ RH×W×C into a sequence of flattened 2D patches xpatches ∈ RN×(P×P×C) where H

is height and W the weight of the original image, C is the number of channels, (P, P) is the resolution of

each image patch, and N = H×W
P 2 is the resulting number of patches, which also serves as the effective

input sequence length for the Transformer. This 2D representation of our image goes through a Linear

Projection to be flattened to a D size vector Xp ∈ RN×
(
P 2×C

)
×D.

This model also borrows the concept introduced on BERT’s transformer networks [7]. The use of a

learnable embedding in form of a CLASS Token embeddingz00 = xclass, which consists on a learnable

embedding, that gathers information from all the patches when attending to Multi-head Self Attention

(MSA) layers. The classification head simply implements a MLP with one hidden layer. The classification

head only uses this hidden output from this CLASS token. The authors decided to use the relative position

of the patches for the embedding, to encode the spatial information as instead of their absolute position.

They achieve this by using 1− dimensional for the Relative Attention.

Figure 2.16: ViT model Architecture

19

2.3.2 GPT/GPT2 -The general purpose NLP Transformers

The OpenAI GPT model was proposed in Improving Language Understanding by Generative Pre-

Training [24]. This model was developed with the goal of creating a general purpose language modeling

model. This model was trained with a methodology of a Unsupervised learning method, this allowed

the model to look for patterns instead of labels matching that is usually present on Supervised learning.

The concept of unsupervised learning applied was proposed by Andrew M. Dai [25] on the paper Semi-

supervised Sequence Learning that was proposed for RNN and LSTM RNN networks and applied to

transformers in this case. This algorithm consists of abstracting from the words to labels by implementing

a sequence to sequence learning patterns for the relation of tokens to other tokens. The GPT2 [6] is an

improvement over the previous model with the same goal, it has some changes and methodology of

training that addresses the ability of generalization instead of memorization moving towards a better

predictor and natural language generation. To achieve this they use a combination of pre-training and

supervised fine tuning. The GPT2 mostly follows the general language modeling architecture but each

normalizing layer was moved to the input of each sub-block, similar to a pre-activation residual network

and an additional layer normalization was added after the final self-attention block.

2.3.3 BEiT and DEiT - A different approach on Vision Transformer

BEiT and DEiT will be reference as possible alternatives to VIT encoders. The model DEiT [5] and

BEiT [4] visual transformers models will just be referenced since our implementation on huggingface

allows to switch encoder models easily. The Model BEiT Bidirectional Encoder representation from

Image Transformers, was developed by Microsoft [4] that experiments with a concept called masked

image modeling (MIM) while keeping the backbone same as ViT. They also changed the way feature

extraction works which is been based on discrete variational autoencoder (dVAE). For the task of image

classification tasks the DEiT: Data-Efficient Image Transformer is a type of Vision Transformer. The

model is trained utilizing a transformer-specific teacher-student technique. It is dependent on a special

token called distillation token, which ensures that the learner only learns from the teacher through

attention. These are the principal features of each models. We tested them since these didn’t meet our

acceptance we will only refer them to discuss results.

20

2.4 Related Work

In this section, we’ll go over some related papers of solution that could be used solve our problem.

Previous attempts of the task to cataloging Herbarium collections, usually focus on either one of the two

elements presented on the herbarium Sheets: Some papers develop a model that aims to only identify

specimen and the family using only the specimen characteristics and another that only focus on cataloging

using OCR techniques to extract information from the text label usually present.

Figure 2.17: Elements usually present on the herbaria sheets

One set of papers focused on reading directly the information from the text labels using Optical Character

Recognition (OCR) plus a Name entity recognition (NER) for field identification and the other will

look directly at the specimen present in order to identify it by characteristics. We will focus on the

paper published in 2020 ”Towards a scientific workflow featuring Natural Language Processing for the

digitisation of natural history collections” [26] that uses one of such methods. This paper model is design

to function on a wider specimens collections including animals, insects, herbarium and other scientific

collections, in order to be this generic the model is going to be retrieving information at semi standardized

text labels across the multiple types of collections, hence the abilities of this model to function in a wider

datasets for multiple types of collections. For comparison our solution will allow our model to access the

full information available included the herbarium specimen as well the text labels, for possible achieving

21

better results but also specializing our model to only work with herbarium collections.

Figure 2.18: Model architecture proposed in the paper Towards a scientific workflow featuring Natural
Language Processing for the digitisation of natural history collections” [26]

22

This paper proposes a process that can be fully automated and partially automated depending on

the desired speed and accuracy of the data extraction. This decision was made due to a observation

during research, since this model is reliant in OCR and other NLP based processes the variance present

on the written data with possible combinations of hand written, machine typing, languages, state of

preservation, coloration of the sheet and so on... it can be detrimental to the performance of the model.

This challenge of data variance is also present on our dataset so we will draw our own conclusions while

keeping in mind the conclusions drawn by the author of this paper.

The process starts with a scan and segmentation; this is a process where the original paper becomes

digitized for segmentation. The process of segmenting the digital image into the small elements where

the OCR will generate metadata the data the model is looking is described as 8 elements: look for

a Title of the Organisation that owns the specimen; A Barcode of the specimen’s machine readable

identifier, Scientific or common name of the species; The person who identified the specimen and the

date of identification; The geographical location where the specimen was collected; Habitat and altitude;

Additional notes written by the collector, Collector name, The name of the person who collected the

specimen, the identifier that they used to record and manage specimens, and the date that the specimen

was collected.

After the data been transcribed, this is where the process can vary depending on the method selected

between the automatic or semi-automatic. The semi-automatic will allow the user to manually select the

language to the NER model identify correctly the fields, while the automatic will allow the model to auto

select the language and possibly make the right decision.

23

24

Chapter 3

Implementation

3.1 The Dataset

Before we explain the implementation of our model, we have to explain our process for data prepa-

ration. We will go over our dataset statistics following our thoughts about the problematic to solve. We

will go in detail over our Pre-Processing module, explaining some processes we apply to our data like:

Filtration; Transformation; And image generation with the purpose of increasing the size of our usable

dataset without manually annotate more images.

3.1.1 Datasets - dataset reviewing and manual reviewing our dataset

Figure 3.1: OverSimplified Pre Processing logic

The dataset used for this thesis is an already established and compiled collection with over 1,800

herbarium specimens [27] for the purpose of cataloging. This collection has entries that date as late as

1970, so the state of preservation of the sheets and the legibility could prove a challenge for our model.

Besides this challenge, this collection has present multiple languages that the text labels could be written,

with more than eleven possible languages: English, French, Latin, Estonian, German, Dutch, Portuguese,

Spanish, Swedish, Russian, Finnish, Italian and Other unidentified languages, with all these languages

provide us with a good distribution around the globe and variety of the data presented on the labels.

Reference Appendices [B] to graphical distributions of the dataset. This dataset provides a JSON object

25

that is matched to each image, that contain some hand filled information relevant, in relation of the

specimen name and family, date of capture, location of capture, and many others.

With all this complexity and scattered information provided by multiple institutions, it is normal

that the data could have some mistakes and or variances on the time of filling this information, hence it

is essential that our model learns from data that is correct and partially normalized to a standard. Our

first step to achieve standardisation was a tool that serves to manually annotate our images from this

dataset. The VGG [28] - Image Annotator (VIA) [29], is a tool that allows attributes to be associated

with the image file to be annotated and/or each annotation box, in our case the annotations made are

to identify the regions of each text label presented on the image. The Attributes we decided to use were:

• ”file:”

• ”Preservation_Quality”

• Bad or Good

• ”region:”

• ”Label”

• Handwritten, Artificial or Both

• ”Label_Quality”

• Good, Bad or Average

• ”Label_Complete”

• Yes or No

• ”Name/Family”

• Yes or No

• ”Location”

• Yes or No

• ”Date”

• Yes or No

As shown above the the tree of attributes used with the possible values of each field.

All this fields where created in mind our models training and the use-fullness for the creation of

the training dataset. Starting with the single attribute associated with the image file is the state of

preservation of the entire sheet, specimen included, and making it fall into two categories: Good(state)

or Bad(state) of preservation. The labels been more complex in nature since is where most information

26

resides and it will be extracted there was a need to associate more attributes in case of finer we need to

filter some cases. This lead to the creation the 6 attributes presented below:

• ”Label” - associated with the type of writing present on the label.

• ”Label_Quality” - associated with the human legibility.(this can be influenced by the type of letter

also the preservation of the label itself.)

• ”Label_Complete” -relative to the label if is complete and matching to the JSON attributes (We

consider complete when the data of the Name and family of the specimen, location of capture, and

date since this are the field we aim to extract)(when miss matched we consider not present)

• ”Name/Family” - associated with the partial data of name and family of the specimen is present

on the label.(when miss matched we consider not present)

• ”Location” - associated with the partial data Location of the specimen is present on the label.(when

miss matched we consider not present)

• ”Date” - associated with the partial data of date is present on the label.(when miss matched we

consider not present)

The creation of overlapped fields is not to rule out the cases that the sheet could have multiple labels

that complement each other information we only remove the cases that information is not present at all

or fully miss matched from the JSON file provided.

27

3.1.2 Pre Processing module - Automatization of data manipulation and creation

Figure 3.2: Pre-Processing Module Functions.

The Pre-Processing module has multiple available functions that work in conjunction to manipulate

our data in order to reach some data standardization that will be used to train our model. We will

explain the logic behind the processes and the utilities implemented as we will make use of them. The

way we implemented this module it requires as input four Paths: The first path is a pointer to the VIA

file resulting from the manually reviewed portion of the process from the previous task; The second path

point to the folder where the dataset pictures are stored; The third the path for the folder where the

JSON images attributes are stored; Lastly is the path where the dataset creation will occur.

Taken this inputs, the module first step is to filter the data based on the JSON attributes looking

for missing or miss-formatted fields and excluding them from our usable examples. As example of miss-

formatted fields is the Date field that can have a lot of variance as in multiple representations due to

multiple standards around the globe. In this case we sampled based on the success of a date parser

function that normalizes and return a formatted date when successful (dd-mm-yyyy).

The second step begins the process of computer generated images.This step starts by the user to

provide, images files of empty herbarium labels. Then the user will be prompt to draw with rectangles

shapes on top of each provided file, that serve to indicate the useful space in the image of the multiple

text fields: Specimen, Family, Specimen/Family, Date, Location, Location_detailed, Random Name,

”Random int, RandomCharInt and Other. Some this fields are noise in order the model to ignore like in

real cases there can be presented with more information that we don’t aim to extract. Theses rectangles

eventually simplified and turned into line like text-box where our computer generated text will be placed

in. This process will generate a Json file per Empty Image Label, that will be placed onto the same folder

as the labels images. This file will contain the information of the raw boxes associated per attributes

with some useful data of our label, like height and width.

Like the last step the third step will require the user to place some font files in a specific path. The

pre-process module will make use of the provided fonts to write the computer generated text on to the

empty labels. Our selection of Fonts follow what we think what should be the optimal cases, these Font

should be similar to handwriting and Typewriters since its what is most common on the dataset labels.

On the time of writing the module will be choosing at random the fonts per label.

28

Before starting generating computer generated labels or ”fake” labels, we decided to do a resolution

matching between the Via annotation of the labels sizes with the empty labels resolution ratio, this is

done to cause the minimal deformation on the labels on the act of overlaying the fake labels on top of

the original labels.

Finally with all the information generated and compiled we proceed to the creation of our fake labels.

The first process is based on the previous step that matched Via label regions with the empty image

label. We start by reading the empty label image JSON atributes and simplify the raw rectangles boxes

that the user has previously drawn, converting them into text-box like. For this to happen we will just

explain briefly the code used. The code used is heavily recursive that test multiple relations box to box

in order to combine and or associate them based on the type and relative position to one another. The

output can be see on the 3.3.

Figure 3.3: Boxes Simplification provided with our demo script

The image on the left is the user input raw boxes while the right is the simplified output. The Blue Boxes

represent where the text will be split, thus multiple blue boxes means the text will be repeated and split

differently according to the useful space (the green boxes) on each.

After this process, we will run an algorithm that maximizes the text font size by optimizing the text

splits per usable space, and allowing to further subdivide the boxes vertically to create extra text-lines

when necessary (This algorithm does a brute force approach and can be improved on). The output can

be seen 3.4 applied to three sentences: ”The quick brown fox jumps over the lazy dog”; ”The quick brown

fox jumps over the lazy dogThe quick brown fox jumps over the lazy dog”; And ”The quick brown fox

jumps over the lazy dogThe quick brown fox jumps over the lazy dogThe quick brown fox jumps over the

lazy dog”.

29

Figure 3.4: Text Algorithm applied to the Boxes Simplification example

As for methodologies for blending, we tested multiple combinations of techniques to keep the outcome

as ”real looking” as possible, from the methodologies we tested one combination stood out for to be the

most convincing to be closest to the originals. The methodologies we tested while developing, we decided

to keep all in code allowing the user choose from multiple blending techniques. To explain the method we

did the blending we will go over each steps one by one: firstly we start generating a flat colour patch to

be blended to cover the original label with the most common colour of the original label; Then we colour

transfer from the original label to the ”fake” generated label; Lastly we Laplacian Pyramids blend the

images. The fifth step is a function that splits the text into lines of text in order to maximize the font

size per usable space. The sixth step blends the complete fake label onto the original using Laplacian

Pyramid Blend technique with colour matching. After the image multiplication, we will scale down and

crop and save each label to a file in order to generate the inputs for our models. The YOLOv4 model

requires a square image of resolution that is part of the series of (320 + 96 * N) x (320 + 96 * N) n ∈Z

to train and the transformer requires the pre-cropped labels as the input. The last two steps are just

creating the files required to each training module.

Figure 3.5: Results of generated fake labels blend onto a real image

30

3.1.3 Dataset Structure for Transformer module

In order to train our model, we had to set a structure for the file that is used on the supervised

learning, this file contains the images path references and the expected prediction text, labels. We use

a single structure for our dataset files that is used over our modules. This datasets is required for our

supervised training and optional on inference module. When the dataset file is not passed as parameter

for the inference module the metrics will not be able to be calculated. The Transformer training dataset

Json dictionary file is structured as the following:

• ”YData:”

• ”Number”:[int] | eg. [3, ...]

• ”Name/Family”:[[str]] | eg. [[”Abelia R.Br.”, ”Caprifoliaceae”], ...]

• ”Location”:[[str]] | eg. [[”Danzha Cun. In the vicinity of Zhaobitan forest farm, ca. 26.5 direct

km NNW of Houqiao (Guyong).”, ”China”], ...]

• ”Date”:[[str]] | eg. [[”29-5-2006”], ...]

• ”XPath:”

• ”FullImage”:[str] | eg. [”./Transformer_DataSet/Images_Filtered/Image_3.jpg, ...]

• ”Crop”: [[str]] | eg. [[”./Transformer_DataSet/Images_Filtered_Cropped/Image_3_crop_1.jpg”,”./Trans-

former_DataSet/Images_Filtered_Cropped/Image_3_crop_2.jpg”], ...]

Every Field on the YData is a reference to the image metadata, these are the labels we want the

model to predict. While the XPath fields are referencing the model required inputs, the image text labels

and full image.

3.2 Transformer model - The Hugging Face Implementation

This section will explain our implementation path and the limitations, we had to overcome for our

implementation. We will skip the YOLOv4 implementation since we only use it for data extraction

and was not developed by us. To keep the focus on our development. We will directly go in a depth

explanation about our transformer architecture design and implementation in the hugging face library.

Our model was developed with some concepts and ideas that were yet to be fully researched and

tested, in this case study we have implemented a multi encoder to multi decoder architectural modeling

in expectation that each transformer stack would function as a specialized worker in our process.

Starting by our custom encoder modeling 3.6 this torch module is comprised by two encoder stacks

of the same model. Each encoder transformer stack is tasked to encode a different type of images. In

expecting that would allow the attention mechanism to focus on the relevant data of each image type

presented. One encoder stack called the encoder_image and is responsible of encoding the full sheet

image where the specimen is presented while the second encoder called encoder_label is responsible to

encoder of the image labels that are identified by our YOLOv4.

31

Figure 3.6: Encoder Modeling using ViT Encoders as example

32

With the same present logic that the attentions mechanism can be exploited to do different tasks. Our

implementation of the custom decoder module 4.2 is composed by three decoder stacks of the same type,

since each attention mechanism present on each decoder stack is required and will work to identifying and

extract different data, we hope that this model architecture will prove an hypothesis that we can exploit

attention mechanism to function as a NER. Each of the three decoders stacks in our custom decoder

aims to extract different type of data: one is tasked to identifying the Specimen name and/or family;

Another the Location of capture; Lastly one decoder for the Date of capture. While the data for the

decoder that extract Location and Date can only be found on text on the multiple labels per sheet the

Specimen/Family is expected not only to work as a tOCR like the other, to extract data from the written

text label but to attend to the full sheet in hope of helping on the identification of the specimen.

If this works this multiple decoders architecture, this could lead on creating a opportunity on other

fields to exploit attention mechanism to perform other tasks.

The module we modified and reverse engineered was the hugging face modeling_vision_encoder_de-

coder.py [1], our modifications were made to be addictive by not compromising any features in place and

or the usability of our custom module. An advantage of decision of implementing this model architec-

ture in the hugging-face is that by modifying just modeling block instead of implementing the model in

PyTorch, we could test multiple vision encoder stack model in combination of any transformer stack as

decoder, that are currently available in the hugging face without requiring any code modification. This

will give us the possibility to test multiple model combinations all ready available on hugging face and

hugging face community library and possibly allow more user to experiment with this modeling block.

The first challenge, we were required to surpass is the way we input our images to the model. The

hugging face has a protocol that is required to follow since the model need information for the beam

search inference. In Order to understand what the input tensor represents we recurred to the developing

tools pairing with inspecting the output from ViT_feature_extraction [1].We found what each dimension

from the input tensor has four dimensions comprised of:

Pixel_Values = (Batch,Number_of_Channels,Width,Height) (3.1)

With this challenge in mind we started looking for a solution. Our solution came by reversing engineering

the ViT modeling module. This decision not only allowed us to achieve our solution but also a better

understanding of what is required to make our module to function. Later after some tests, we found that

the implementation of vision encoder stacks allows the input tensor to have unlimited Number of Colour

Channels. This find was the optimal solution, since any other dimensions are checked an utilized in some

way to the model to function. By keeping intact the batch size intact and the input sizes for the encoder

model this means our first challenge was surpassed.

We still in need to define a protocol in order to stack and un-stack the Pixel_Values using our findings.

This protocol is required to keep the identification of the two different image types: the single full image

of the herbaria sheet; And the multiple labels crops images from our YOLOv4 model. The first step on

our protocol was to normalize all the the input images to three colour channels. Then we starting to

33

define and order to vertically stack our images colour channels. By establishing an order to follow when

stacking this would allow to keep the information of each image type. The order establishes was based on

logic since there is only a single full image sheet we decided that this was the first image to stack leaving

the rest of the colour channels are for the crop label images.

In sum we reserve the first three colour channels for the Full sheet image and the rest N multiple of

three colour channels are for the labels crop images. Since our YOLOv4 can provide more than one label

crops image we were required to implemented a loop inside the forward function of our Custom_Encoder

a for each crop Pixel_Values to be encoded on the encoder_label. As seen 3.6. The only check we were

required to implement was this model needs a minimum six colour channels to be passed as the input.

This been: one image for each encoder stack. Resulting in a vector:

Pixel_V alues(1sheet & 1crop) = (Batch, 2 ∗ 3,Width,Height)

Pixel_V alues(1sheet & 2crop) = (Batch, 3 ∗ 3,Width,Height)

Pixel_V alues(1sheet & Ncrop) = (Batch, (1 +N) ∗ 3,Width,Height)

(3.2)

After the image embedding have been processed by each encoders, we simply concatenate all the words

generated in order the same order as the input. Since the numbers of words may not match from run to

run due to the number labels present from sheet to sheet can vary from image. We utilize padding with

zeros to the max batch size N_Words for this tensor in order to indicate the decoder only the use full

values we provide a mask that is natively supported on this models.

Encoder_hidden_States_mask = (Batch,N_Words, hidden_size) (3.3)

We have to overcome the problem of input sizes variation per prediction, due to the variation of the number

of label crops per example may vary. Our solution is to add a parameter called encoder_batch_lengths

that specifies the number of images per batch, this value is only checked when the batch size of the

Pixel_Values is higher than one. This decision was to solve this problem with this variable was that

when creating the Encoder_hidden_States_mask we could do value count until we found zeros from

padding but this is memory expensive and time consuming we decided to simply pass this parameter

as a input. provide an example of the Collate function for the dataset [30] library by huggingface for

Dataloader that generates this value.

34

Figure 3.7: Decoder Modeling using GPT2 decoders with LM head as example

35

Another problem that we needed to surpass found while testing our model using the generate function.

The generate method on the hugging face transformers is the methods that allows the model inference.

The problem encountered is that the generate function is not prepared to handle multiple decoder stacks

at once. Since this function is a core function for all models we decided to not modify it, due to complexity

and importance, any mistake made could be detrimental outcome of our model. So our solution needs

to circumvent this limitation any other way. The solution was to declare a single decoder stack like the

default model and by modifying the checkpoint for the purpose of extracting the weight maps for each

decoder stack on our custom decoder, we could load them individually and run multiple inferences with

the same input and different weights map.The inputs used for the decoder can be resumed as the sum of

the encoder generated ’words’. This solution is computer costly since this runs inference N times equal

to N the decoder stacks declared.

With this in mind we implemented a Training flag that is used during initialization when this flag is

set to true this initiates our custom multiple decoder stack when is false this initiates a single decoder

model. For this to work transparent for the user we implemented a class called generator_adaptor. Upon

initialization this class requires only the checkpoint path when its called, this simply initialize the model

using the configuration file found on the checkpoint folder created by our training module and saves

the path on a local variable where the checkpoint is location. By running the inference method called

generate to keep the signature the same the user is only prompted to pass the images while the module

takes care of splitting the checkpoint; Loading; And running inference. This modules simply outputs the

result of the three inference runs from each the decoder weights.

3.2.1 Training module for the Transformer model

Like referenced before our training module is fully implemented in using PyTorch, this didn’t oppose

any problems since the Huggingface models are in essence PyTorch modules. We will firstly start by ex-

plain some features implemented that are relevant for out model training. The main feature implemented

is that this module allows the user to load two distinct datasets: a dataset and a fakedataset. The dataset

is used as normally in almost every epochs, while the fakedataset will be used as noise generation when

training this will only used on some specific epochs. To define this specific epochs there is a value named

noise_epochs that defines the periodicity of the use of the fakedataset. This module also allows the user

to define parameter that are more common when training model: batch size, number of epochs, define a

optimizer, define a optimizer scheduler, checkpoint save location and defining a periodicity of the savings.

36

3.2.2 Inference module implementation

This subsection will explain the logic of the Inference module. Firstly we need to explain what are

the inputs required to make this model work and then we will present the logic of the data inside of this

module. This module to work requires some information:

• ”image_path_or_image_dir”: Path to the image or images folder path. (required)

• ”YOLOWeightFilePath”: Path of the YOLOv4 model checkpoint. (required)

• ”TransformerCheckpointFilePath”: Path of the Transformer model checkpoint. (required)

• ”image_to_label_file_path”: Path of the dataset file that contains the labels of the images

loaded.(optional: when not present no metrics will be initiated and evaluated)

With the knowledge of what information this module as access to, we will explain the logic and the

data transformations required to this non-end-to-end model to function. to explain we will divide into

steps and explaining the logic behind. Since our first model in the process is the YOLOv4 model for

Figure 3.8: Model Inference Logic Simplified

extracting the text labels. our first step requires that the original image needs to transform into a a

square image with the resolution series of (320 + 96 * N) x (320 + 96 * N) n ∈Z. We recommend setting

the size the same as training and the crop parameter the same as the pre-processing YOLOv4 dataset

creation parameters. By saving relevant data of each transformation this will allow map the inference

bounding boxes of the smaller image inputed to YOLOv4 to the original full resolution image to obtain

the maximum resolution on the crops. The last step is then we simply just compile all the images and

input to our Transformer.

37

38

Chapter 4

Training and Results

As referred the YOLOv4 model was trained using a pretrained checkpoint on the ms-coco dataset,

using the developed training module pre-configured from the package suite. This model was trained until

three hundred epoch, and is still a bit far to be one hundred percent accurate but this module is pretty

accurate over hall for this task. The task of this model is to identifying the text labels present in the

sheets, this simple task can be proven to be arduous. Since these sheets came from multiple institution

around the globe, with different standards, so each label is likely to have a lot of visual variation from

one another proving this challenge can be a arduous for the YOLOv4 Model.

One of the obstacles that we faced when evaluating the performance of our Transformer model is that

since this architecture is a non end to end model. The error could be generated by another ”link the chain”.

This is normal and is derivative from the nature of the non end to end architectures, optimally we had two

dataset ready for individual validation but since we didn’t had enough time to annotate more 200 images

to generate more examples we will be testing the full capability of both model working in sequence. Since

the transformer model is implemented using hugging face we had to test using other encoder and decoder

combinations like reference along this work. For that tested with multiple combinations. This test were

done using the available checkpoint from the huggingface pretrained for each of the following models; As

encoders we tested model like ViT, Deit, and Beit; The decoders tested were Roberta, and GPT2. All

this model were trained until the ten thousand iterations, on a data set with a little over eight hundred

entries this is around thirteen/fourteen epochs and checked the results. In multiple combinations the error

tended to infinite or the text generated was close to gibberish leading us to quit from most combination.

One of the tested combination stood out by giving semi-usable outputs since the fifth epoch of training

making us choose clearly and test this combination of the model ViT with GPT2 model. With this

decision made we performed tests using the multiple sizes available of these models. So we will start by

presenting the early tests with a comparison between the ViT Large with GPT2 versus the ViT Base

with GPT2 while sharing our opinion of the results. Lastly we will pick the best performer from the early

test and try to obtain our final results of training with the concluding thoughts.

39

4.1 Training Module - Transformer model

Our Training module is fully implemented using PyTorch, this is a very well known library with

many training options and optimization made available. We decided to train our transformer mostly

using our fake labels since these are a well behave examples that correspond to a direct transcript from

the prediction labels. Our training module allow to use up to two dataset for training one of these

dataset is used frequently while another is only set to be used during some epochs, we will use this

to induce noise while training for possible achieving better results. This list of epochs is defined by

variable num_noise_epochs by default we use this periodically like every five epochs. For the optimizer

we use AdamW that is a improvement on original Adam optimizer that allow the model to be good

at generalizing tasks, there is a general perception by the community and has been recorded that SGD

optimizer is slower but it’s a good generalizing optimizer and Adam allows for faster training but is worst

at generalization, hence the creation of AdamW as a mid term algorithm.

4.2 Tests - ViT large vs ViT base

For this model performance comparison we be analysing and sharing some thoughts by analysing

the metric BLEU using sacreBLEU [31] implementation. The BLEU metric and its implementation is

a model used to obtain a score based on perceptibly and similarity between the predicament string and

a set of acceptable References Labels or Reference Label, optimally we want this score closest to one

hundred.

(a) ViT Base to GPT2 SacreBLUE Score Results (b) ViT Large to GPT2 SacreBLEU Score Results

Figure 4.1: Early Tests

Our model test achieved a maximum BLEU score around 30% to 40% depending on the decoder. We

suspect that our model is not complex enough for this problem and or using wrong training parameters

or methodology. Usually for this metric is only considered a good score around 70% score is enough for

the human perception to understand what is written and to be considered similar to the original.So clear

our early results were not good enough to solve this problem.

40

Figure 4.2: ViT to GPT2 SacreBLUE Score Results

When overlapping the results we obtain we can see a clear winner but the results were unexpected.

Even though there is and advantage for the ViT large in the input resolution, from the original 224x224

of the base model to 384x384 on the large model. The ViT base manage to achieve better results overall.

We suspect that this decrease of score came from the only difference between when modeling this models.

When choosing ViT large versus the Base there is a increases the hidden_size tensors thus requiring a

extra linear layer between the encoder and decoder to make them compatible. This layer is only initialized

when there is a miss match on the sizes between the encoder and the decoder, leading us to believe this

could be our culprit for the results seen. And since this extra layer is not require and or present when

using the ViT Base since this hidden_sizes already is match-up with the GPT2 this could lead less errors.

with this in mind we will realize our final tests only using the ViT-base with GPT2 since these are the

better performer.

4.3 Results - ViT base to GPT2

For this analysis we will present and obtain results using the BLEU metric using sacreBLEU [31]

with a metric that is absolute word error rate - WER [32] [33]. The WER metric is a hard metric this is

calculated using a simple formula that can be expressed as:

WER =
(Correct_words+ Inserted_words+Deleted_words)

Lenght_original_phrase
(4.1)

This metric correlates with the difference between two phrases and has in count: the extra word inserted,

word deletion, and the correct words in relation to the original phrase size. This optimally should be

closest to zero. We will present results for two distinct datasets: one that is similiar to our training

dataset that is a standarized by out data process; Another obtained using a random data that is not part

of our training dataset thus been not standarized in any way and may contain some errors.

41

4.3.1 Results - Similiar Dataset

The results presented are from another dataset generated based on the same as the pre-processing as

the training dataset. We will present this result as semi-valid due to the randomness in generating false

labels. These results present a very different reality than the previous tests. These results with BLEU

similarity score above 80% means that this model is very good at extracting information. Which means

one of two things, that this model may be overfitted to our traino data set and the layout of the fake

labels or simply that the complexity of the real world data is too random for our model to be able to

work, which we will present next.

Similar Data of the Training dataset:

BLEU:

Decoder Name: 91,71

Decoder Location: 81,10

Decoder Date: 100

WER:

Decoder Name: 0,074

Decoder Location: 0,18

Decoder Date:0,0

YOLO:

Failed to identify Labels on 2 images of 128 images.

4.3.2 Results - Real World Data

The data used in this metric was a set of images that were filtered only by our pre-processing module,

but were not included in our training dataset because they were not manually annotated using VIA. Thus,

this data was not fully standardized and may have some errors. The results are not satisfactory, proving

that our model is not suitable for extracting information from all cases and only from semi-standardized

data.

Real World Data:

BLEU:

Decoder Name: 3,86

Decoder Location: 2,43

Decoder Date:6,29

WER:

Decoder Name: 1,06

Decoder Location: 1,18

Decoder Date:0,99

YOLO:

Failed to identify Labels on 17 images of 1078 images.

42

This model results can be very good in case of standardized data but its no suitable for real world cases.

While our results were not satisfactory in relation of usability on the field, we were time constrained for

tweaking and fine tuning our parameters of training. Based on the result obtained by the unpublished

paper for tOCR by Microsoft [2] proves that Deit and Beit paired with RoBERTa [8] can obtain better

result than ViT paired with RoBERTa for the solely task of OCR, we also believe these models could

also have great results for our task, given the right training.

43

44

Chapter 5

Conclusions

The results of this model are inconclusive but it can get good results when the data is standardized

but it is not good enough to generalize to random real world data. Further testing would have to involve

increasing the number of cases in the training dataset, by hand annotating more images along with adding

more empty labels and fonts to increase the training cases found. Transformers are known in general

not to be very good at generalization and very dependent on how they are trained and on the training

data used. Although the results were subpar to other attempts this type of multiple encoder to multiple

decoder architecture still has a lot of potential. We keep that the original thought that this problem is

very complex in nature to any single model to handle, a separation by language or other is need. As

a final thought is that multiple decoders can be exploited for the attention to extract data or achieve

different goals. For our use case we exploited the attention mechanism to function as a NER with some

grade of success, confirming our hypotheses.

5.1 Achievements

Despite our results we have implemented and tested a model design that is yet to be studied in depth

(multiple encoder to multiple decoders). There are multiple fields where this model design could have

great success : one in example is in the field of CAD when modeling 3d objects across multiple 2d views

in order to generate a single 3d model and also the reverse could be possible with deconstructions of a

3d object into 2d views. Another example can be in the field of multimedia communication in case of

video encoding or decoding that could use motion vector and image frames to generate more efficient

encoders/decoders and also in the field of NLP with multi translations output with many possible use

cases. Since our design has been available on GitHub and Documented hopefully sheds some light and

creates curiosity on possible more implementation of this type of models. Especially implementing such

a well known library with great support and continuous improvements provided by the huggingface team

and a striving AI community will allow more people to be exposed to these types of models designs and

testing on more use cases.

45

5.2 Future Work

As an improvement to our transformer model we could limit the data available for the Location and

Date decoders to avoid errors since the information is really only available on the text labels from the label

encoder generated words. Another possible improvement is to add the support to the complex module for

multiple decoder attention mechanism to the hugging face inference function, generate() natively. While

our solution to bypass the generate() limitation works, this still requires loading the model N times the

decoders to run inference over the same inputs, this process could use parallelism computing to greatly

improve its speed. Also the possibility of our region segmentation model to look for the bar code since

its represents directly the specimen name encoded.

46

Bibliography

[1] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,

M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao,

S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Transformers: State-of-the-art natural language

processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing: System Demonstrations, pages 38–45, Online, Oct. 2020. Association for Computational

Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

[2] M. Li, T. Lv, L. Cui, Y. Lu, D. Florencio, C. Zhang, Z. Li, and F. Wei.

Trocr: Transformer-based optical character recognition with pre-trained models.

September 2021. URL https://www.microsoft.com/en-us/research/publication/

trocr-transformer-based-optical-character-recognition-with-pre-trained-models/.

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,

M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words:

Transformers for image recognition at scale, 2020.

[4] H. Bao, L. Dong, and F. Wei. Beit: Bert pre-training of image transformers. arXiv preprint

arXiv:2106.08254, 2021.

[5] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient im-

age transformers & distillation through attention. In International Conference on Machine Learning,

pages 10347–10357. PMLR, 2021.

[6] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are

unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional trans-

formers for language understanding, 2019.

[8] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and

V. Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019. URL https://

arxiv.org/abs/1907.11692.

[9] R. S. licensed under CC-BY-SA. paperswithcode state of the art, 2018. URL https://

paperswithcode.com/sota.

47

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.microsoft.com/en-us/research/publication/trocr-transformer-based-optical-character-recognition-with-pre-trained-models/
https://www.microsoft.com/en-us/research/publication/trocr-transformer-based-optical-character-recognition-with-pre-trained-models/
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://paperswithcode.com/sota
https://paperswithcode.com/sota

[10] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions, 2016.

[11] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. Yolov4: Optimal speed and accuracy of object

detection, 2020.

[12] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L.

Zitnick, and P. Dollár. Microsoft coco: Common objects in context, 2014. URL http://arxiv.

org/abs/1405.0312. cite arxiv:1405.0312Comment: 1) updated annotation pipeline description

and figures; 2) added new section describing datasets splits; 3) updated author list.

[13] C.-Y. Wang, H.-Y. M. Liao, I.-H. Yeh, Y.-H. Wu, P.-Y. Chen, and J.-W. Hsieh. Cspnet: A new

backbone that can enhance learning capability of cnn, 2019.

[14] J. Redmon and A. Farhadi. Yolov3: An incremental improvement, 2018.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition, 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for

visual recognition. Lecture Notes in Computer Science, page 346–361, 2014. ISSN 1611-3349. doi:

10.1007/978-3-319-10578-9_23. URL http://dx.doi.org/10.1007/978-3-319-10578-9_23.

[17] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks

for object detection, 2017.

[18] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation network for instance segmentation, 2018.

[19] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon. Cbam: Convolutional block attention module, 2018.

[20] @Tianxiaomo. pytorch-yolov4. https://github.com/Tianxiaomo/pytorch-YOLOv4, 2020.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-

amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems

32, pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.

Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

[23] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman.

Superglue: A stickier benchmark for general-purpose language understanding systems, 2020.

[24] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding by

generative pre-training. OpenAI blog, 2017.

48

http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://dx.doi.org/10.1007/978-3-319-10578-9_23
https://github.com/Tianxiaomo/pytorch-YOLOv4
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[25] A. M. Dai and Q. V. Le. Semi-supervised sequence learning, 2015. URL https://arxiv.org/abs/

1511.01432.

[26] D. Owen, L. Livermore, Q. Groom, A. Hardisty, T. Leegwater, M. van Walsum, N. Wijkamp, and

I. Spasić. Towards a scientific workflow featuring natural language processing for the digitisation of

natural history collections. Research Ideas and Outcomes, 6:e55789, 2020.

[27] M. Dillen, Q. Groom, S. Chagnoux, A. Güntsch, A. Hardisty, E. Haston, L. Livermore, V. Runnel,

L. Schulman, L. Willemse, Z. Wu, and S. Phillips. A benchmark dataset of herbarium specimen

images with label data. Biodiversity Data Journal, 7:e31817, 2019. ISSN 1314-2836. doi: 10.3897/

BDJ.7.e31817. URL https://doi.org/10.3897/BDJ.7.e31817.

[28] A. Dutta and A. Zisserman. The VIA annotation software for images, audio and video. In Proceedings

of the 27th ACM International Conference on Multimedia, MM ’19, New York, NY, USA, 2019.

ACM. ISBN 978-1-4503-6889-6/19/10. doi: 10.1145/3343031.3350535. URL https://doi.org/10.

1145/3343031.3350535.

[29] A. Dutta, A. Gupta, and A. Zissermann. VGG image annotator (VIA).

http://www.robots.ox.ac.uk/ vgg/software/via/, 2016.

[30] Q. Lhoest, A. Villanova del Moral, Y. Jernite, A. Thakur, P. von Platen, S. Patil, J. Chaumond,

M. Drame, J. Plu, L. Tunstall, J. Davison, M. Šaško, G. Chhablani, B. Malik, S. Brandeis, T. Le Scao,

V. Sanh, C. Xu, N. Patry, A. McMillan-Major, P. Schmid, S. Gugger, C. Delangue, T. Matussière,

L. Debut, S. Bekman, P. Cistac, T. Goehringer, V. Mustar, F. Lagunas, A. Rush, and T. Wolf.

Datasets: A community library for natural language processing. In Proceedings of the 2021 Confer-

ence on Empirical Methods in Natural Language Processing: System Demonstrations, pages 175–184,

Online and Punta Cana, Dominican Republic, Nov. 2021. Association for Computational Linguistics.

URL https://aclanthology.org/2021.emnlp-demo.21.

[31] M. Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on

Machine Translation: Research Papers, pages 186–191, Belgium, Brussels, Oct. 2018. Association

for Computational Linguistics. URL https://www.aclweb.org/anthology/W18-6319.

[32] J. Woodard and y. . .-j. . W. t. . A. Nelson, J.T.

[33] A. Morris, V. Maier, and P. Green. From wer and ril to mer and wil: improved evaluation measures

for connected speech recognition. 01 2004.

49

https://arxiv.org/abs/1511.01432
https://arxiv.org/abs/1511.01432
https://doi.org/10.3897/BDJ.7.e31817
https://doi.org/10.1145/3343031.3350535
https://doi.org/10.1145/3343031.3350535
https://aclanthology.org/2021.emnlp-demo.21
https://www.aclweb.org/anthology/W18-6319

50

Appendix A

Example of collate function

def CollateCustom(batch):

its required to pad the batch check max size and pass this information for the model

Sizes = []

for item in batch:

Sizes.append(len(item[4])+1)

YName = []

YLocation = []

YDate = []

XFullImage = []

alocate a NP array of empty objects

XCrop = np.empty((len(batch), max(Sizes)), dtype=object)

for i in range(len(batch)):

YName.append(batch[i][0])

YLocation.append(batch[i][1])

YDate.append(batch[i][2])

XFullImage.append(batch[i][3])

XCrop[i][0:len(batch[i][4])] = batch[i][4]

return YName, YLocation, YDate, XFullImage, XCrop, Sizes

51

Appendix B

Dataset Graphics

Figure B.1: Image of the distribution samples over the years with separation of language

52

Figure B.2: Distribution of the datasets by language

Figure B.3: Global Coverage of the specimens

This image set is self-plagiarized from A benchmark dataset of herbarium specimen images [27].

53

Figure B.4: Image of the distribution of herbaria specimen

54

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Objectives and Deliverables
	1.3 Thesis Outline

	2 Models Background and related work
	2.1 Theoretical Overview
	2.2 Convolutional Neural Networks for Computer Vision
	2.2.1 CNN Applied to Computer Vision
	2.2.2 YoloV4 - Object Recognition and Region Segmentation

	2.3 The Transformer Architecture - Self Attention advancements and the vision transformers
	2.3.1 ViT - The Image Captioning model
	2.3.2 GPT/GPT2 -The general purpose NLP Transformers
	2.3.3 BEiT and DEiT - A different approach on Vision Transformer

	2.4 Related Work

	3 Implementation
	3.1 The Dataset
	3.1.1 Datasets - dataset reviewing and manual reviewing our dataset
	3.1.2 Pre Processing module - Automatization of data manipulation and creation
	3.1.3 Dataset Structure for Transformer module

	3.2 Transformer model - The Hugging Face Implementation
	3.2.1 Training module for the Transformer model
	3.2.2 Inference module implementation

	4 Training and Results
	4.1 Training Module - Transformer model
	4.2 Tests - ViT large vs ViT base
	4.3 Results - ViT base to GPT2
	4.3.1 Results - Similiar Dataset
	4.3.2 Results - Real World Data

	5 Conclusions
	5.1 Achievements
	5.2 Future Work

	Bibliography
	A Example of collate function
	B Dataset Graphics

