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Abstract

Air transport is essential for social and economic development and cohesion of regions, partic-
ularly in geographically remote areas, like islands, though some routes are unprofitable due to low
passenger demand. Public Service Obligations (PSO) aim to preserve those routes, assuring minimum
transportation services to communities. The present work aims to develop robust tools to support
the decision-making process led by the responsible authorities regarding air transport subsidized
networks. Thereby, a Passenger Demand Prediction model and a robust Route and Flight Schedule
Optimization program were developed. Given the computational complexity of this optimization
problem, two relaxation approaches were also introduced. The proposed approach was applied to
the Rhodes (Greece) based PSO network case study. First, the demand prediction results indicate
that the demand in this network is affected by the population of the islands, touristic attractiveness,
seasonality, and sea transport competition. It was also shown that the Covid-19 pandemic affected
the impact of some of these explanatory variables. Second, it was confirmed that making only use
of the expected demand to optimize the network yields a less robust solution, incapable of serving
a plausibly optimistic scenario. This study contributes to the literature by accounting for different
passenger demand scenarios simultaneously upon the optimization which is shown to be vital, since a
deterministic approach is unable to adapt to uncertainty inherent to demand prediction.
Keywords: Public Service Obligation; Greek Islands; Robust Optimization; Air Transport Network
Design; Passenger Demand Prediction

1. Introduction

One of the main concerns of air transport liberal-
ization is that airlines invest more on already prof-
itable routes and discard routes with insufficient
passenger demand. This concentration leads to
the underdevelopment of remote areas. The Euro-
pean Union (EU) defined Public Service Obligations
(PSOs), aiming to preserve those vital yet unprof-
itable routes, assuring minimum transportation ser-
vices to remote communities, so that residents have
access to a transport system that confers connec-
tivity to main urban areas. This subsidy scheme
should keep a fair competition basis in the market
and ensure that the financial support given does not
turn out as a burden for taxpayers.

PSOs may be imposed by Member States on do-
mestic and intra-EU routes. Authorities release
an open public tender, specifying the PSO stan-
dards, to which any airline can apply. The selec-
tion process accounts for the adequacy of the pro-
posed service (including the prices and conditions
which can be offered to users) and for the subsidy
amount required (if any) by the airline from the
Member State. This work focuses on the definition

of the minimum service standards under which a
pre-defined subsidized network should be operated
by optimizing the network’s route and flight sched-
ule. It is essential to acknowledge the great uncer-
tainty inherent to passenger behavior and exoge-
nous factors and, with this in mind, apply robust
decision-making methods to design the air trans-
port network.

The different objectives of all stakeholders (pas-
sengers, airlines, and government) should be con-
sidered. Within a decision support framework sim-
ilar to the one schematized in Figure 1, the present
work presents two main contributions: i) the devel-
opment of passenger demand prediction models and
ii) a robust Route and Flight Schedule Optimiza-
tion program, that takes several passenger demand
scenarios into account simultaneously.

2. Literature Review

The literature on both passenger demand predic-
tion and air network design and operational opti-
mization was explored. However, only subsidized
networks optimization state-of-the-art is hereafter
described.

An Integrated Flight Schedule and Fleet Assign-
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Figure 1: Example for a decision support framework.

ment (IFSFA) model is developed in [8], minimiz-
ing total costs accounting for the interests of pas-
sengers, airlines, and government. [7] builds up on
the previous paper by including airport costs and
applying it to a PSO network in Norway. The des-
ignated Socially-oriented FSFA (SFSFA) model is
applied to a single operational day divided into 15
or 30 minuntes time steps and considers itineraries
of up to two stops. Xpress (Fico, 2011) commer-
cial software was used and the computation time
required to reach optimal solutions varied between
7.0 h and 30.8 h, in a Quad-Core processor with 4
GB of RAM.

The design of aviation networks under PSO is
optimized in [6], minimizing both operational costs
and total social costs. The objective of this article
is to develop both demand predictive models and
optimization models for flight scheduling and fleet
planing, building on the model developed in [8] by
adding the cost of connection time for passengers.
The case study consists on two PSO networks: one
based in Rhodes and another based on Thessaloniki.

3. Methodological Approach for Demand
Prediction

Firstly, one needs to identify significant explanatory
variables in order to define the demand prediction
model. Then, it can be used to estimate the three
different passenger demand scenarios to feed as in-
put to the optimization model, as summarized in
Figure 2.

3.1. Introduction to Gravity Models
Gravity models are suitable to address previously
non-existent routes and deal with limited historical
data. They can be formulated by

Vij = k
(AiAj)

α

dγij
, i 6= j, dij = dji , (1)

where Vij is the passenger volume between two
cities i and j, Ai is the attraction factor for city
i, dij is the distance between them, and k is a
constant. Parameters α and γ control the influ-
ence of attraction factors and distance, respectively.
Model (1) expresses non-directional passenger vol-

Figure 2: Methodological approach for passenger
demand estimation diagram.

2



ume, but it can easily be adapted to a directional
model by considering a deterrence factor Bαi for the

city of origin i and an attraction factor Aβj for the
city of destination j. Oftentimes, deterrence and
attraction factors are the same, thus variables from
(1) sustain, only allowing different parameters α
and β for Ai and Aj , respectively [5].

Constant k and parameters α and γ can be es-
timated by linearizing (1) through a logarithmic
transformation (base-10 logarithm is used),

log(Vij) = log(k) + α log(AiAj)− γ log(dij) , (2)

and then performing a linear regression with data
from already established routes using least-squares
estimation. The attraction factor is usually ex-
pressed by a combination of explanatory variables.

3.2. Explanatory Variables
The assessment of the significance of each explana-
tory variable was based on the p-value of the null-
hypothesis, which is that there is no relationship
between the explanatory variable under discussion
and the dependent variable. A 5% significance level
was considered. The R-squared value was used to
assess the absolute overall quality of the model.
However, other concerns like the presence of mul-
ticollinearity and overfitting were considered. The
Akaike Information Criteria (AIC) was calculated,
as it is a comparative statistic measure that ac-
counts for both their goodness of fit and their com-
plexity, defined by

AIC = −2l + 2p, (3)

where p is the number of estimated parameters (i.e.
explanatory variables + intercept) and l stands for
the maximum log-likelihood.

3.3. Design of Demand Scenarios
The model previously described is used to obtain
three different passenger demand scenarios to use as
input for the Route and Flight Schedule Optimiza-
tion program. A Monte Carlo (MC) simulation,
schematized in Figure 3, is performed to compute
such estimations accounting for the covariances be-
tween the model’s coefficients, and hence conferring
robustness to the predictions.

For each iteration, the coefficients themselves are
sampled assuming a multivariate normal distribu-
tion with the mean and covariance values that re-
sulted from the regression of the logarithmic trans-
formation presented in (2). The sampled coeffi-
cients are applied to the model to compute Vij for a
desired number of connections c, between airports
i and j. Each Vij observation is stored as a vector
V of length c.

The criterion to stop iterating is based on the
convergence of the trace of the sample covariance

Figure 3: Monte Carlo simulation diagram.

matrix, Q. The three steps described above are
repeated b times. At the end of each batch k of b
iterations, tr(Q) is computed, with

Q =
1

N − 1

N∑
n=1

(Vn − V )(Vn − V )T , (4)

where N stands for the number of observations,
equal to k × b. The sum of the c diagonal entries
of Qk, tr(Qk), computed at the end of batch k, is
compared with the result from the previous batch
k− 1. If the relative difference between tr(Qk) and
tr(Qk−1) is lower than 0.001%, then the number of
iterations is considered sufficient. If not, another
batch of iterations is performed.

The distribution of the resultant MC iterations,
for the sum of passengers for every route,

∑
ij Vij ,

is then used to define the most probable, a pes-
simistic, and an optimistic scenario, using the me-
dian and percentiles. PVij stands for a generic per-
centile from the distribution of the iterations for
passengers for route ij, P∑ stands for a generic per-
centile from the distribution of the iterations for the
sum of

∑
ij Vij . There can be more than one itera-

tion m ∈ {1, . . . ,M} with the same total number of
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passengers
∑
ij Vijm , yet differently distributed by

the routes (with Vijm standing for the number of
passengers for route ij in iteration m). Therefore,
the differences between the number of passengers
estimated for route ij in iteration m and their in-
dividual percentiles, |PVij

− Vijm |, are taken into
account. This way, the iteration m in a given per-
centile that presents the lowest sum of∑

ij

(PVij − Vijm)2 (5)

is selected as the scenario referring to the said per-
centile.

4. Methodological Approach for Optimiza-
tion

The contribution of the developed optimization
model is the introduction of different scenarios of
passenger demand in order to account for uncer-
tainty. Therefore, the focus is not to enhance state-
of-the-art models by considering detailed operation
costs in order to get closer to a real-world appli-
cation, aiming for a fully integrated model, but to
explore robustness. With this in mind, a simple
approach based on [6] was followed to be then fur-
ther extended by assuming a robust optimization
perspective and carefully designing different passen-
ger demand scenarios to accomplish that. The only
costs considered are: the costs for the airline related
to the operation of flights and to parking aircraft
for longer than 2 hours, and the social costs related
to passengers time onboard and waiting on ground
between flight legs.

The formulation of the mixed integer linear pro-
gramming (MILP) problem includes the definition
of the sets, parameters, decision variables, and con-
straints. For more details, see the full thesis.

To satisfy the demand for a link (combination of
origin i and destination j), passengers are assigned
to direct routes, or to itineraries with up to three
stops, i.e. up to four flight legs. Operational time
per day is segmented into smaller time periods, with
t representing the initial instant of a time step or
the period between time steps itself.

Decision Variables

x(f, t, d, r) : number of flights operating on route f ,
with aircraft of type r departing at time step t
of day d;

y(a, t, d, r) : number of aircraft of type r on ground
at airport a during time step t of day d;

uD(f, t, d, s) : number of passengers placed on di-
rect route f , departing at time t of day d, con-
sidering scenario s;

u1(g, t, d, w, s) : number of passengers placed on
the one stop itinerary g departing at time step
t of day d, and waiting for w time periods in
the stop airport, considering scenario s;

u2(h, t, d, w1, w2, s) : number of passengers placed
on the two stop itinerary h departing at time
step t of day d, waiting for w1 and w2 time
periods in the first and second stop airports,
respectively, considering scenario s;

u3(i, t, d, w1, w2, w3, s) : number of passengers
placed on the three stop itinerary i departing
at time step t of day d, waiting for w1, w2,
and w3 time periods in the first, second, and
third stop airports, respectively, considering
scenario s;

gc(a, t, d, r) : binary decision variable that equals
to 1 if aircraft of type r is on the ground at
airport a for more than 2h as of time step t of
day d.

Constraints

Fleet availability : limits the number of aircraft to
the available fleet, by guarantying that the sum
of aircraft of type r on the ground and flying
corresponds to the available number of aircraft
of that type r;

Time step continuity : ensures aircraft placement
is coherent from one time step, t − 1, to the
next, t, i.e. for each aircraft type r, the number
of aircraft on the ground during time period
t− 1 plus the aircraft arriving immediately be-
fore time step t has to be the same as the num-
ber of aircraft staying on the ground for time
period t plus aircraft departing at instant t;

At hub maintenance : ensures that every aircraft
begins and ends the operational day at the hub.
Note that this constraint also guaranties con-
tinuity from one day to the next;

Seat capacity compliance : guaranties that, for ev-
ery scenario, s, the number of passengers car-
ried in each route f operated at time t of day
d is lower or equal to the joint seat capacity
of the aircraft flying that route. Note that one
has to consider passengers carried in route f as
a leg of their itineraries;

Pre-defined requirements compliance : ensures
that the solution respects the minimum num-
ber of flights per week and minimum seats per
week for route f , defined a priori ;

Airport fee charging: sets binary decision variable
gc to 1 whenever an aircraft stays on the
ground for more than two hours (assuming each
time period t is equivalent to half an hour).

Objective Function
The minimization problem follows

minimize

9∑
k=1

Oi , (6)

subject to the aforementioned constraints, where
Ok, with k = 1, ...9 stand for:
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Operating flights costs, O1: sum of the cost of fly-
ing every route f with aircraft of type r flown
at any time t during all operational days d;

Parking aircraft costs, O2: sum of the cost of hav-
ing aircraft of any type r parked for more than
two hours at any time t during all operational
days d;

Passengers onboard time costs: sum of passengers
onboard time cost for direct routes f , O3, and
up to three stops itineraries g, h, and i, corre-
sponding to O4, O5, and O6, respectively;

Passengers waiting time costs: sum of passengers
waiting on ground between legs time cost for up
to three stops itineraries g, h, i, corresponding
to O7, O8, and O9, respectively.

Aiming to reduce the number of decision variables
to be considered by the software, uD, u1, u2, and u3
are declared as dynamic arrays, so that each array
cell is explicitly created only for possible itineraries.
In this way, when running the loops performed for
each constraint, only the existing entries of these
arrays are considered, instead of enumerating all
possible tuples of indices. Thus, this approach re-
duces computational effort by implicitly applying
in every loop the “At hub maintenance” constraint,
and keeping several stops itineraries comprised in a
single operational day.

Problem Relaxation
This problem is too complex to be optimized

within a reasonable time, since it is applied to an
entire operational week with passenger demand on
both ways for almost every combination between
the 8 airports (56 links). Therefore, must be re-
laxed to ease tractability. A cluster strategy, where
islands were separated into clusters and restrictions
for inter-cluster traveling were defined, was pur-
sued. This approach is detailed in Section 7.1,
upon the application in the Greek islands case study
in particular. This technique allows the number
of possible itineraries to be significantly reduced,
maintaining the problem fairly close to the original,
as it is a reasonable approximation. The permit-
ted direct routes and multiple stops itineraries are
pre-computed and fed directly to the optimization
software.

5. Rhodes based PSO Network Case Study
The region under study is the Dodecanese
Archipelago (EL421), that comprises one big is-
land, Rhodes, with 115,000 inhabitants (accord-
ing to 2011 Census), surrounded by 7 smaller is-
lands with airports (mean population of 10,236),
and more than a hundred even smaller islands, only
18 of which are inhabited, that will not be ac-
counted for. Figure 4 presents a map identifying
all airports mentioned in the present work. For the

sake of readability, every airport is referred to by
its airport IATA code.

Figure 4: Case Study Greek Islands map.

The Greek islands to be analyzed within the
present work case study are covered by PSO routes
that link them with Rhodes Diagoras Airport
(RHO). There are four “PSO groups”, which are
highlighted with color (this nomenclature will be
used hereafter and RHO is considered a “PSO
group” by itself, as it is the common airport for
all four analyzed subsidized routes).

In the Nomenclature of Territorial Units for
Statistics (NUTS) classification a higher level
stands for smaller divisions within the previous level
defined regions. The first, second, and third dig-
its of the code stand for levels 1, 2, and 3, respec-
tively. The network to be optimized by applying the
method developed in the present work consists on
the 8 islands within EL421 conferring an adequate
complexity to the case study. As NUTS 3 corre-
spond to the smaller divisions, the fact that many
islands are located in a common NUTS 3 region can
impair the usability of the available econometrics
data.

All islands under discussion have, of course, one
airport, and at least one port serving ferry boats, an
important alternative travel mode. The sea trans-
port between islands in Greece also relies on the
governments’ subsidies.

Tourism is an important contributor to the Greek
economy. Eurostat points the number of nights
spent at tourist accommodation establishments as a
key indicator for analyzing the tourism sector, and
the list of the EU regions with the highest num-
bers in 2019 is dominated by coastal regions around
the Mediterranean Sea [4]. South Aegean islands
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(EL421 + EL422) in particular have a great touris-
tic presence: with a population of 340 870, only
3.17% of Greece’s population, it registered 27 mil-
lion nights spent at tourist accommodation estab-
lishments, according to Eurostat [1], about 25% of
the overall total in Greece.

Still regarding tourism, seasonality is an essential
factor. With 45.5% of total nights spent in tourist
accommodation in 2016 occurring in only two sum-
mer months (July and August), making Greece the
2nd EU Member State with the highest seasonal
deviation [3].

A crucial event to take under consideration in this
case study is the Covid-19 pandemic, as it strongly
affected not only passengers’ mobility but the entire
world economy, and, therefore, certainly tourism.
In August 2020, Greece suffered a 67.68% decrease
in nights spent at tourist accommodation establish-
ments when compared to August 2019 [2].

6. Demand Prediction Model

6.1. Description of available data-set
The choice of the type of prediction model to de-
velop was based on the available data. The lack of
time-series data available hinders the application of
Panel-Data Techniques or the introduction of any
kind of dynamic component to the passenger de-
mand model. The development of a gravity model
was considered the most suitable approach, as liter-
ature suggests it is fit to predict demand on previ-
ously non-existing connections or when limited data
is available.

When calibrating every model hereafter pre-
sented, data provided by airport infrastructure
manager Fraport Greece was used for the dependent
variable, passenger demand volume for connections
between islands i and j, Vij . Note that this data
only included connections with i or j referring to
RHO. There were 82 valid data points for Vij , cor-
responding to the sum of passengers flying a link,
throughout a month. Table 1 presents the main de-
scriptive statistics of the sample. The table includes
the explanatory variables used, with d for distance
between airports (km), P for Population, G for Per
Capita GDP, and T for number of nights spent by
tourists in that island.

Table 1: Data-set descriptive statistics.

Vij dij Pi Pj Ti Tj

Mean 463 206 107657 109332 230 235

Med. 123 154 115000 115000 296 296

SD 836 112 154206 153770 129 127

Min. 4 100 492 492 15 23

Max. 4090 465 623065 623065 562 562

6.2. Identification of Explanatory Variables

Several different combinations of explanatory fac-
tors were explored and two of them are presented
hereafter. Matlab was the software used to esti-
mate the linear regression models throug a standard
least-squares method.

Model 3

This model considers population of island i, Pi,
a variable referring to the number of nights spent
by tourists in island i in a year per capita, Ti, as a
proxy for that island’s touristic attractiveness, and
a dummy variable, to distinguish high and low de-
mand seasons, S, with S = 10 for August, and
S = 1 for November:

Vij = k dγij P
δ
i P

ε
j T

θ
i T

ι
j S

λ . (7)

As the base-10 logarithm is used for the trans-
formation, S = 1 (low season), is equivalent to not
affecting the prediction, when S = 10 (high season),
the prediction will be multiplied by the factor 10λ.

The results of the linear regression of the logarith-
mic transformation of (7) are presented in Table 2.
All added variables were shown to be significant.
Coefficients for Ti and Tj , assume positive values,
as one would expect. λ also takes a positive value,
as August clearly presents higher passenger volumes
Vij . In this case study, the ferry boat becomes more
preferable when islands are closer, making this al-
ternative mode of transport an important compe-
tition for lower distances. This could explain why
the distance coefficient γ, with a good level of sig-
nificance, assumed a positive value.

With an R2 of 0.47, this model is reasonably
adapted to this case study but still suitable for
other touristic regions with different characteristics.
As shown is Table 3, when analyzing Model 3, the
only correlation to be concerned about is the one
between dij and T , but it can be explained by a
mere coincidence of this particular case study, as
the North Aegean islands are both less touristic and
further away from Rhodes, consequently showing a
negative correlation coefficient.

Model 7

The addition of a Covid-19 dummy variable re-
sulted in a high p-value for the respective coeffi-
cient, which indicates that separate models would
be more suitable to describe the years before and
during the pandemic, as different factors may influ-
ence Vij under such circumstances. However, this
approach was not considered suitable because there
is no sufficient data, only 55, and 27 data points for
the periods previous and during the pandemic, re-
spectively. Therefore, it was opted to consider the
moderation of the explanatory variables according
to the Covid-19 pandemic, resulting
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Vij = k dCγ
′

ij P δi P
ε
j T

(θ+Cθ′)
i T

(ι+Cι′)
j Sλ F

(µ+Cµ′)
ij ,

(8)
where Fij stands for a factor between ferry and air
travel time, serving as a proxy for ferry competi-
tion, and C = 0 and C = 1 stand for the period
before and during the pandemic, respectively. This
variables were selected by performing a backward
stepwise procedure.

The results of the linear regression of the logarith-
mic transformation of (8) are presented in Table 2.
Tourism, Ti and Tj , continues to have a positive
effect on passenger demand, both before the pan-
demic and during the pandemic, but less prominent
during the pandemic period (0 < θ + θ′ < θ and
0 < ι + ι′ < ι). The same is verified for ferry com-
petition Fij , with coefficient µ + Cµ′. Population,
Pi and Pj , and seasonality, S, seem to influence
similarly passenger demand, independently of the
pandemic.

With R2 = 64%, Model 7 is more tailored to
this specific case study as they consider the ferry
boat competition. When interpreting it, it is impor-
tant to acknowledge the correlation between vari-
ables dij and F (presented in Table 3) when an-
alyzing the effect of these variables on passenger
demand Vij within the pandemic context. The pos-
itive correlation between these two values was ex-
pected. However, Model 7 variables are moderated
with C, making the coefficients for the period before
the pandemic (C = 0) equivalent to 0 for dij (γ dis-
regarded) and 1.0 for F (µ = 1.0), whereas for the
period during the pandemic (C = 1) coefficients are
equivalent to 0.76 for dij (γ+γ′ = 0+0.76) and 0.28
for F (µ+ µ′ = 1.0− 0.72), making this correlation
irrelevant for estimations outside of the pandemic
context, i.e. it is correct to interpret the coefficient
µ = 1.0 as the effect of ferry competitiveness on
passenger demand when no pandemic influence is
verified. Within the pandemic context, one cannot
discriminate the effect of distance from the effect
of ferry competitiveness on demand volume by an-
alyzing the coefficients estimated for Model 7.

6.3. Scenarios Estimation
The data available to compute the models is inad-
equate for the application of the methods devised.
In fact, given that only direct flights to and from
RHO, which include passengers in multiple stops
itineraries, are available, the predicted demand is
grossly over-estimated. Therefore the results had
to be normalized using an artificial constant. It
was computed so that: i) the number of observed
passengers (all traveling to and from RHO), and
ii) the number of estimated passenger demand be-
tween airports from different PSO groups, are in
the same order of magnitude. This rationale ensures

Table 2: Models coefficient estimates and p-values.

Model 3 (7) Model 7 (8)

Coef. Var. Est. p-value Est. p-value

log(k) - -6.8 <0.01 -4.2 <0.01

γ dij 1.5 <0.01 - -

δ Pi 0.17 0.03 0.20 <0.01

ε Pj 0.19 0.01 0.22 <0.01

θ Ti 0.91 <0.01 0.86 <0.01

ι Tj 0.79 <0.01 0.75 <0.01

λ S 0.38 <0.01 0.35 <0.01

µ Fij - - 1.0 <0.01

γ′ dij - - 0.76 0.010

θ′ Ti - - -0.31 0.11

ι′ Tj - - -0.27 0.17

µ′ Fij - - -0.72 0.02

R2 0.47 0.64

l -50.63 -35.25

p 7 11

AIC 115.26 92.50

Table 3: Correlation coefficients.

log(dij) log(P ) log(T ) log(S)

log(dij) -

log(P ) 0.28** -

log(T ) -0.42*** 0.26** -

log(S) -0.12 0.04 0.07 -

log(F ) 0.55*** 0.16 -0.2* -0.05
***p-value<0.01; **p-value<0.05; *p-value<0.10

that the number of passenger demand estimated for
the whole network is not under-estimated either. If
suitable data were, i.e. origin and final destination
for each passenger, the devised methods could be
used without further considerations.

When using Model 7, the moderation of the pan-
demic context effect in other explanatory variables
was considered, therefore an additional step was
added to the Monte Carlo simulation loop described
in Figure 3, so that the probability of occurring
pandemic context, pC (probability of C = 1), was
considered.

The most likely scenario assumes one of the itera-
tions corresponding to the median of the total sum
of passengers, highlighted in Figure 5 with green
dots), selected according to the criterion described
in Section 3.3. The percentiles used to obtain the
pessimistic and optimistic passenger demand sce-
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narios to feed as input to the optimization program,
correspond to 1/6 and 5/6, and highlighted with
red and blue dots, respectively. The rationale be-
hind these percentiles is the split of the iterations
in three equally likely ranges for the total sum of
passengers (colored areas) and use their median to
represent them (colored dots).
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(a) outside pandemic context (C = 0)
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Figure 5: Monthly total passenger demand esti-
mated using Model 7 iteration frequency, outside
and within a pandemic context.

7. Implementation of the Optimization pro-
gram

The optimization program will be applied consider-
ing time steps of half an hour, since air travel time

between islands ranges between 23 and 61 minutes,
corresponding to 1 to 3 time steps. This amount
of time is reasonable because the smaller the time
steps the higher the complexity of the optimiza-
tion problem, which should be avoided, but a longer
time step would impair the usability of the results,
as most trips would be assumed to take the same
travel time. The operational days are assumed to
begin at 8 a.m. and end at 12 p.m., corresponding
to 16 hours per day. It is beneficial to have the least
number of operational days per week possible, as it
allows a reduction of operational costs and also re-
duces the complexity of the optimization problem.

The higher the number of permitted waiting
times are, the more inconvenient a several stop
itinerary can be to passengers and the higher the
complexity of the optimization problem is. How-
ever, if it is too low, then a great number of con-
nection possibilities for non-direct itineraries is dis-
carded, leading to an unfeasible problem.

7.1. Problem Relaxation
The clusters were defined accounting for the prox-
imity between islands and the entry and exit air-
ports were decided using an higher passenger vol-
ume criterion (Figure 6). Regarding the inter-
cluster traveling restrictions, all clusters were al-
lowed to connect directly with C1, as RHO func-
tions as a hub. Two more inter-cluster connections
were allowed: i) between the two clusters with more
islands, C2 and C4, in order to decrease the number
of stops of non-direct itineraries, and ii) between
C3 and C4 because of high passenger flow (Fig-
ure 7). Two additional restrictions were applied:
i) multiple stop itineraries exiting and returning to
the same cluster were excluded and ii) inter-cluster
traveling within a multiple stop itinerary was lim-
ited to 3 clusters, i.e. only one intermediate cluster
could be added besides the origin and destination
cluster.

Figure 6: Entry and exit airports for each cluster.

8. Results
The results from the application of the Route
and Flight Schedule Optimization program to the
case study presented hereafter were obtained us-
ing the passenger demand scenarios predicted with
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Figure 7: Inter-cluster traveling restrictions.

Model 3, on an Intel(R) Core(TM) i7-8700K CPU
@ 3.70GHz with 16 GB of RAM with the optimizer
version 35.01.01 of the IBM’s FICO Xpress soft-
ware.

Figure 8 shows the evolution of the optimality
gap considering two days with 12 operational hours
each. Table 4 summarizes those results.

Figure 8: MIP search optimality gap, solutions
depth, and objective evolution for two days with
12 operational hours each.

The allocation of the whole passenger volume to
one single operational day, with the same 12h led
to the solution presented in Figure 9. It assumed a
43.18% optimality gap, with 24 hours of computa-
tion time (decreasing insignificantly since the first
hour and a half). On one hand, to fairly compare
these networks, the cost of the three aircraft being
parked on the hub airport RHO for one entire day
must be added, resulting 45,021 ¿. On the other
hand, significant savings due to closing the airport
for the entire day would possibly overcome those
extra expenses.

As expected, taking into consideration different
passenger demand scenarios significantly increases
the complexity of the problem. The deterministic
approach that lead to the solution in Figure 10,
reached a 32.50% optimality gap, lower than the
43.18% from the 3 scenario approach, in less compu-
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Figure 9: Solution for one day with 12 operational
hours.

tation time. The cost of this solution corresponded
to 33,127 ¿, but this value should not be directly
compared to the 3 scenario approach. The expected
value must be calculated instead, as shown in Table
5. It was expected that the cost upon the verifica-
tion of the most likely scenario would be lower for
the deterministic approach, as it was optimizing the
network precisely for that situation. However, this
network would not be able to serve all passengers in
case of the optimistic scenario, therefore, this net-
work is not prepared for the uncertainty inherent to
passenger demand.
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Figure 10: Solution for problem with passenger de-
mand estimated with Model 3, cluster relaxation
(b)(iii), no passenger partition, considering just the
most likely scenario.

Table 4: Optimization results.

number of days 2 1 1

number of scen. 3 3 1

comp. time (s) 86400.0 99113.2 60412.3

opt. gap 65.90% 43.18% 32.50%

est. cost (¿) 82663 42321 33127

The major conclusions one can draw from these
results are that: i) decreasing the complexity of the
problem (reducing the operational time and apply-
ing relaxation techniques) is essential to obtain bet-
ter results and ii) although a deterministic approach
reduces complexity it leads to solutions incapable to
adapt to the uncertainty inherent to demand pre-
diction. Therefore, the Route and Flight Schedule

9



Table 5: Calculation of estimated costs.

Costs 3 scen. 1 scen.

network
operation

O1 36799 27787

O2 300 450

passangers
time

pessimistic 4130 3975

m. likely 5055 4890

optimistic 6480 unfeasible

est. total
∑9
k=1Ok 42321 -

Optimization program developed, considering sev-
eral demand scenarios, was proven to be a more
robust tool.

9. Conclusions

The major achievements of the present work con-
sist on the methods developed to account for un-
certainty, namely: i) the prediction of different pas-
senger demand scenarios looking upon the covari-
ances between the estimated prediction model’s co-
efficients, ii) the development of the robust Route
and Flight Schedule Optimization program, pre-
pared to consider them simultaneously, and iii) the
definition of relaxation techniques in order to han-
dle the computational complexity of the problem.

The development of the Passenger Demand Pre-
diction models for the Rhodes based PSO network
case study, indicated the influence of the popula-
tion of the islands, their touristic attractiveness, the
seasonality, and the sea transport competition. It
was also shown that the Covid-19 pandemic affected
the impact of some of these explanatory variables.
Model 3 (that accounted for the effect of the popu-
lation, the touristic attractiveness, and the impact
of seasonality) is easily portable to other remote
regions with similar characteristics to the explored
case study. Examples of these characteristics are: i)
the lack of surface transport alternatives (verified,
for example, in islands), ii) routes with reduced at-
tractiveness commercially-wise because of low pas-
senger demand volumes, or iii) strong seasonal im-
pact (e.g. due to tourism). The simulation meth-
ods applied to generate the pessimistic, most likely,
and optimistic scenarios, taking the covariances be-
tween coefficients of the models into account, are
also a novelty.

The consideration of several passenger demand
scenarios when optimizing the network’s routes and
flight schedule is the major novelty presented in the
present work. This approach allows the acknowl-
edgment of the uncertainty not only pertaining the
passenger demand prediction techniques, but also
the partial arbitrariness of passenger behavior it-

self and exogenous factors, like the occurrence of
unexpected events. The results have shown that,
although considering only the most likely scenario
may result in decreased costs when that scenario
is verified, the solution from that deterministic ap-
proach would not be capable of serving a plausibly
optimistic demand scenario. Therefore, the devel-
oped Route and Flight Schedule Optimization tool
is proved to be robust and suitable to be integrated
in a decision support framework regarding subsi-
dized routes with low passenger demand.

The handling of the problem complexity through
the definition of two different relaxation methods:
cluster restrictions and passenger demand partition,
is also an important contribution. It stood clear
that the relaxation of the original problem was es-
sential to obtain solutions in practical computa-
tional times. Albeit introducing a mild approxi-
mation, these relaxation approaches are shown to
be vital to obtain better solutions in reasonable
computational time than if no relaxations were em-
ployed.
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