
Microservice Decomposition for Transactional Causal
Consistent Platforms

Madalena Santos
madalenacsantos@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

May 2022

Abstract

Today, there are many software applications that have been designed using monolithic configurations
that could benefit from being decomposed into a combination of microservices or, in some cases, state-
less functions. However, when decomposing a monolithic application in microservices, the programmer
needs to write additional code to correct the anomalies that may be generated when executing the
composition in a decentralized system. Tools that support the decomposition of monolithic applications
into microservices automatically compute a number of complexity metrics, providing an estimate for the
amount of effort required to code the compensating actions for a given decomposition. This information
guides the programmer in finding the most suitable decomposition. A limitation of these tools is that
they have been developed under the assumption that the execution environment is unable to offer any
type of support for transactions. We aim at extending these tools with mechanisms that can consider
the different consistency models supported at runtime, in particular, Transactional Causal Consistency.
For this purpose we will use automated procedures to identify potential anomalies generated during the
execution of a given decomposition under the TCC model. The identification of these anomalies can be
used to guide the development of compensating actions, and offer a principled method to estimate the
complexity associated to the deployment of a given decomposition.
Keywords: Microservices, Data Consistency, Serializability Anomalies, Distributed Systems

1. Introduction

The microservice architectural style has been widely
adopted for the past years. In opposition to monolithic
architectures, microservice architectures decompose an
application into a set of small and well-contained ser-
vices, each having its own cohesive set of responsibil-
ities. This modularization of the system function offers
benefits, mainly the ease of development and testing due
to the reduction of complexity of services. Microservices
allow for higher availability and fault isolation: a fault in
one of the services will not bring the whole system down,
as is the case with monoliths, where one misbehaving
component could compromise the operation of the en-
tire application.

Implementing a microservice architecture can bring
many advantages, but can also impose additional com-
plexity during the development. Services need to be able
to handle faulty behaviour and unavailability of other ser-
vices. Most microservices and FaaS architectures rely
on weakly consistent storage services. This means that
a modular decomposition of the monolithic application is
exposed to intermediate states and to inconsistent data
versions that may cause the occurrence of anomalies. To
mitigate the impact of these anomalies, the programmer
must develop additional code, for instance, compensat-
ing actions, that can correct the effects of unintended be-

haviours generated during the execution. Monolithic ver-
sions of the same application are not exposed to these
anomalies, considering they usually rely on a transac-
tional substrate that can offer strong consistency.

Given the tension between the benefits that come
from modularity and the additional complexity that re-
sults from the lack of isolation, the task of finding the
best decomposition for an otherwise monolithic applica-
tion is not trivial. To ease this burden, a number of tools
to support this decomposition automatically compute a
number of complexity metrics, that provide an indicative
estimate for the amount of effort required to code the
compensating actions that can correct latent anomalies
during the execution of a given composition [6, 13]. A
limitation of these tools is that they have been developed
under the assumption that the execution environment is
unable to offer any type of support for transactions.

This project is based on the insight that there are a
number of transactional consistency models that have
been developed for geo-replicated systems and have
enormous potential to simplify the programming of ap-
plications that use microservice and FaaS architectures.
Most notably, we are interested in materialising the con-
cept of Transactional Causal Consistency (TCC) [9, 14]
in this context.

We extended previous works that support the decom-

1



position of monolithic applications into a set of microser-
vices with mechanisms that can take into account the
different consistency models supported at runtime, in
particular, TCC. For this purpose, we used automated
mechanisms to identify anomalies that can arise during
the execution of a given decomposition under the TCC
model. In particular, we leveraged on existing tools, such
as CLOTHO[11], a framework that detects serializability
violations of Java applications executing on top of weakly
consistent distributed databases. CLOTHO discovers
serializability anomalies in these executions and trans-
lates them back into concrete test inputs that can then
be used for assessment by application developers. The
identification of these anomalies can be used to guide
the development of compensating actions, and offer a
principled method to estimate the complexity associated
to the deployment of a given decomposition.

2. Background and Related Work
2.1. Monolithic versus Microservice Architectures
In a monolithic architecture, all functionalities of an ap-
plication are executed by a single machine or server that
implements all the application logic. Furthermore, the
application state is typically stored in a single database.
This setup makes it straightforward to execute functional-
ities in the context of transactions, safeguarding isolation
between concurrent executions of the same or different
functionalities [12].

In a microservice architecture, different functionali-
ties can be executed by different machines, each mak-
ing use of an independent storage system. Function-
alities that are executed uniquely inside a single mi-
croservice can be executed employing some transac-
tional substrate, but those that are executed over mul-
tiple microservices cannot be guaranteed to yield high
isolation semantics[12], as will be discussed below.

Both architectural patterns have advantages and dis-
advantages.

Monoliths, on the one hand, present limitations in per-
formance due to the large shared data domain that is
accessed by all functionalities of the system. This pro-
vokes a major setback in availability and fault-tolerance,
and thus instigates the need for a novel, distributed ar-
chitectural pattern that addresses these concerns. On
the other hand, when using monoliths, the programmer
can leverage transactions to avoid reasoning about con-
currency.

In turn, microservice architectures have the opposite
pros and cons. For one, the modularity provided by
this paradigm allows the allocation of different developer
teams, programming languages, and data storage tech-
nologies to each service. Also, individual services exe-
cute in individual processes or machines, which provides
the additional benefit of lowering the probability of full-
scale failure when a set of the services is anomalous.
For another, distributed systems are harder to program,
and those who take up this pattern have to tackle the
overhead caused by remote communication and global
synchronization of data. Maintaining strong data con-
sistency is immensely challenging and the tendency of
faults is significantly larger. To design performant and

correct microservices, architects and programmers need
to consider all the consequences of failure for every re-
mote execution, as well as those deriving from the diffi-
culty of synchronizing distributed objects.

2.2. Serializability
A transaction is an abstraction that allows the program-
mer to group a sequence of operations on multiple ob-
jects of a data store such that they are executed as an
atomic unit. Transactions can either commit or rollback:
if a transaction commits, all its effects are permanent
and visible to other transactions; if it cannot commit, the
transaction will be rolled-back, reversing all operations
that it consists of and leaving the database unchanged.
Furthermore, the execution of a transaction is isolated
from the concurrent execution of other transactions, re-
lieving the programmer from explicitly implementing con-
currency control. The properties of transactions are also
known as the ACID properties[15]: Atomicity, stating that
all changes to data are performed as if they were a sin-
gle operation and either all changes happen or none do;
Consistency, which requires that the transactions always
leave the database in consistent states that respect busi-
ness rules; Isolation, specifying that intermediate states
of a transaction should not be seen by other transac-
tions; Durability, implying that the changes to data are
to be definitive after the transaction is committed, and
cannot be undone even in the case of system failures.

Transactional systems have been widely studied in the
literature, namely - but not exclusively -, by the database
community. Different consistency criteria that character-
ize precisely how transactions are isolated from each
other have been proposed. The strongest consistency
model for transactional systems is serializability, stat-
ing that a concurrent execution of a set of transactions
should be equivalent to some serial execution of these
transactions. Serializability is intuitive for programmers
and designers: if an application is correct in serial exe-
cutions, it will remain correct in concurrent executions.

However, enforcing serializability is expensive, be-
cause automated techniques to enforce concurrency
control introduce inefficiencies in the system operation.
In distributed systems, enforcing serializability requires
ordering the transactions in a total order and coordi-
nation, typically in the form of a two-phase commit
protocol[8]. For these reasons, the consistency mod-
els implemented by modern datastores are often weaker
than serializability. Bailis et al. [2] conducted a survey
where 18 off-the-shelf popular database systems were
analyzed, and only three of those provided serializability
as the default consistency model. Perhaps surprisingly,
eight of the systems considered in their evaluation did
not provide serializability at all.

2.3. Consistency in Microservice Architectures
Microservice architectures are deployed on distributed
systems and therefore inherit the advantages and chal-
lenges associated with distribution. On the one hand,
as discussed before, microservice architectures can be
made more fault-tolerant and more scalable than cen-
tralized systems. On the other hand, implementing coor-

2



dination among multiple services is costly and may im-
pair system availability. The trade-off between availabil-
ity and consistency in distributed systems is captured by
the CAP Theorem[5], stating that any given distributed
system can deliver only two of the following three de-
sired characteristics: consistency, availability, and parti-
tion tolerance. Intuitively, this limitation results from the
fact that nodes may not be able to coordinate when there
is a partition in the network. Therefore, in the presence
of a partition, one must choose between consistency and
availability.

Most microservice architectures favour availability
and, therefore, avoid depending on distributed transac-
tions that span multiple services. Instead, transactions
can be used internally by each individual microservice,
such that functionalities that are executed by the same
microservice are isolated from each other, but function-
alities that are executed by multiple microservices are
assumed to execute without any form of concurrency
control. This implies that end-users will be exposed to
intermediate states in the functionality execution graph
that would not occur in a monolithic system. Further-
more, intermediate states of different functionalities can
interact with one another, which adds to the number of
inconsistent states that the business logic of one func-
tionality needs to consider.

Given that most microservice architectures favour
availability and scalability, programmers need to deal ex-
plicitly with the anomalies that may be generated when
executing different microservices concurrently, without
isolation. In following paragraphs we enumerate the
main anomalies that can occur for which the programmer
needs to write compensating actions. These anoma-
lies are illustrated with the help of Figures 1a, 1b, 3, 2a
and 2b, where each transaction is represented by a gray
box, and operations of transactions are represented by
ellipses inside the boxes. The connecting dotted arrow
with label vis represents the visibility relation between
operations. If two operations are connected by such ar-
row, it means that the effects of the first can be seen by
the second.

Dirty Read A Dirty Read anomaly is the result of
some transaction being allowed to observe the effects
of either uncommitted, aborted or intermediate states of
another transaction executing concurrently. In Figure 1a,
transaction T2 reads x1. This value results of an interme-
diate state of transaction T1, considering that it is over-
written by value x2 later in the same transaction. In a
serial execution, the read made by T2 should return the
committed value x2.

Dirty Write Berenson et al. [3] define a Dirty Write
anomaly by drawing on the following example: some
transaction T updates one data object and, before it has
the opportunity to commit or rollback, transaction T’ initi-
ates and updates the same data object. If either transac-
tion T or T’ were to rollback, it is unclear what the value
for the data object should be.

For the context of this work, we define this anomaly as
the behavior perceived by a third transaction T3, when
reading updates made by two concurrent transactions,

T1 and T2. Under atomic executions, T3 should observe
either version 1 or version 2 of both objects, never a dif-
ferent version of each object, which is what is depicted
in Figure 1b.

update (x1)

update (x2)

select (x1)

T1
T2

vis

(a) Dirty Read

update (x1)

update (y1)

update (x2)

update (y2)

T1 T2

T3

select (x2)

select (y1)

visvis

(b) Dirty Write
Figure 1: Consistency anomalies: Dirty Read and Dirty Write

Lost Update A lost update anomaly (Figure 2a) oc-
curs when two transactions, T1 and T2, update the same
object concurrently based on their local values for that
object. Because neither of the two transactions observes
the other’s update, this anomaly originates a faulty be-
havior. If we consider the initial value x1 = 0, a serial
execution of the two transactions would lead to a final
state of x = 20. However, in a concurrent execution
of this example program, if the underlying consistency
model does not forbid this behavior, the final state could
yield a value of either x = 10 or x = 20.

Write Skew The Write Skew anomaly (Figure 2b) can
be described as a generalization of 2.3 to multiple data
objects. It occurs when transaction T1 reads object x
and writes to object y, and transaction T2 reads object
y and writes to object x. This is commonly the case
when some program state needs to be maintained be-
fore making a modification to a certain object. For exam-
ple, consider a banking system where x and y represent
the current values of two different accounts. Transaction
T1 reads the value of one account, and, if some con-
straint is observed, updates the other account. Concur-
rently, transaction T2 reads the value of the account that
is being modified by T1, and decides to update the other
account. Since none of the transactions is able to ob-
serve the other’s updates, an inconsistent final state will
be originated by this execution, and user constraints may
be violated.

select (x1)

update (x1 + 10)

T1 T2

select (x1)

update (x1 + 10)

(a) Lost Update

select (x0)

update (y1)

T1 T2

select (y0)

update (x1)

(b) Write Skew
Figure 2: Consistency anomalies: Lost Update and Write Skew

Long Fork A Long Fork anomaly (Figure 3) happens
whenever two concurrent transactions, T1 and T2 make
concurrent updates to distinct objects. A third transac-
tion, T3, can see the update made by T2, but not the

3



one made by T1. A fourth transaction, T4, only sees the
update made by T1. Therefore, from the perspectives
of T3 and T4, the writes made by T1 and T2 happen in
different orders.

select (x1)

select (y0)

update (x1)

T3

T2

vis

T1

update (y1)

T4

select (x0)

select (y1)

vis

Figure 3: Consistency anomaly: Long Fork

2.4. Transactional Causal Consistency
Causal Consistent memory [1, 7] is a widely studied cri-
terium for distributed systems, as it provides an ideal
equilibrium between availability and consistency. It has
been proven to be the strongest guarantee compatible
with high availability [10, 2]. Causal Consistency cap-
tures the notion that causally-related operations should
appear in the same order to all sites in a system. If
an update is visible at some site, then all the updates
that it is dependant on should also be visible at that site.
Because causally-consistent memory does not require
the establishment of a total order of events, it allows
for scalable, partition tolerant and available implemen-
tations, and thus is widely used in practice. Transac-
tional Causal Consistency is the transactional extension
to Causal Consistency, guaranteeing the consistency of
reads and writes for a set of keys - a transaction - by
demanding that all operations are applied on top of the
same causal snapshot.

2.5. Decomposing Monolithic Applications into Mi-
croservice Compositions

In [13], Santos and Rito Silva propose a tool to estimate
the cost of migrating a monolith to a microservice ar-
chitecture, and mechanisms to generate several differ-
ent decompositions based on a proposed set of criteria.
The tool works by collecting data from the source code
of the monolithic system using static analysis. More pre-
cisely, the tool assembles the read and write operations
made to the system’s domain entities and the sequence
of those accesses done by each functionality. This infor-
mation is used to derive metrics of correlation between
domain entities. Intuitively, two entities are correlated if
they are accessed together by one or more functionali-
ties. The work is based on the premise that one should
favor decompositions where the entities that are more
frequently accessed together should be clustered in the
same service, to reduce the amount of synchronization
needed between clusters.

The values for the similarity between entities capture
how coupled they are, and this information is fed to a
clustering algorithm that will generate new candidate de-
compositions for the monolith.

To evaluate the candidate microservice configura-
tions, the authors propose complexity metrics that esti-

mate the development effort needed to migrate the origi-
nal system into each of the decompositions. These met-
rics are related to the number of accesses made by dis-
tinct microservices to correlated entities. The rationale
for this is that, as we have discussed earlier, when enti-
ties are accessed by functionalities implemented by the
same microservices, the accesses can be performed in
a transactional context, but when they are made by func-
tionalities in different microservices, the accesses can-
not be protected by a transaction and will expose anoma-
lies that need to be compensated for, generating com-
plexity in development.

The authors of this work compute the value for the
complexity of one candidate decomposition in the follow-
ing manner:

Complexity of decomposition d: The complexity
of a decomposition is the average of the complexities of
all the functionalities in d.

Complexity of a functionality f in a decompo-
sition d: The complexity of f in d is the sum of the
complexities of accessing the clusters in the sequence
of accesses of f.

Complexity of accessing cluster c on the se-
quence of accesses of a functionality f: The
complexity of accessing c is the sum of complexities of
the accesses made by f to the entities in c.

Complexity of accessing entity e in cluster c by
functionality f: The complexity of accessing an en-
tity depends on the type of operation being made: if en-
tity e is being read by f, the complexity of the access is
related to the number of other functionalities that write to
e. If entity e is being written to by f, the complexity of the
access is related to the number of other functionalities
that read e.

The value for the complexity of a given decomposition
helps architects and system designers in choosing the
most valuable one in the set of generated decomposi-
tions, taking into account the available resources (e.g.
number of developers and time) to carry out the process
of partitioning a monolith.

Their work also makes a valuable contribution to the
problem of deciding the boundaries and responsibilities
of each service when decomposing a monolith. The
clustering algorithm used by the authors takes as input
the values of the similarity measures for each pair of en-
tities in the system. For each input monolith, different
combinations for the valuation of each similarity mea-
sure are created, and for each combination, a decom-
position is generated. After calculating the complexity
for each generated decomposition, the authors reckoned
that there is no single combination for the weights of the
similarity measures that can be universally applied to all
monoliths and originate the decomposition with the low-
est complexity.

4



2.6. Verifying Serializability of Applications to Calcu-
late Complexity

While the previously-mentioned work provides essential
insights on how to determine boundaries between mi-
croservices and contribute with valuable complexity met-
rics, it only reasons about static relations between the
entities of the system when calculating complexity, not
taking into account the specific parameters given as in-
puts to the programs on each individual execution. This
does not allow for a precise identification of the inter-
actions that may generate concurrency problems, gen-
erating a large number of false positives when counting
potential sources of anomalies in applications.

In order to solve this, our work tends towards a more
dynamic approach for the computation of complexity. We
assessed a number of works that provide mechanisms
or tools to determine consistency anomalies in the form
of serializability violations of programs, but in this doc-
ument we will only discuss the most relevant one. The
remaining studied frameworks are included in the disser-
tation.

2.6.1 Directed Test Generation for Weakly
Consistent Database Systems
(CLOTHO)

CLOTHO [11] is a framework that detects serializability
violations of Java applications that make use of weakly
consistent distributed databases. It employs a static an-
alyzer and a model checker to generate abstract execu-
tions of the input program, discover serializability viola-
tions in these executions and translate them back into
concrete test inputs that can then be used for assess-
ment by application developers.

More specifically, CLOTHO takes as input a Java class
that manipulates a database through a JDBC API where
each method is treated as a transaction, and outputs a
set of satisfying assignments to the parameters of the
input application that cause serializability anomalies.

CLOTHO generates a precise encoding of database
applications, which allows it to accurately represent the
complex dependency relations between SQL select and
update operations. As in many other works, the authors
reason over abstract executions of input applications. An
abstract execution of a program is a generalization of its
execution that captures visibility and ordering relations
among read and write operations on the database. Po-
tential serializability violations in an abstract execution
manifest as cycles in a dependency graph that repre-
sents said visibility and ordering relations. When en-
countering such violations, CLOTHO synthesizes con-
crete tests that can be used to drive executions of the
program that will exhibit its points of failure. The abstract
representation of database programs used by CLOTHO
is automatically generated from the input program’s Java
source code. It is then passed to an encoding engine
that constructs first-order logic formulae that captures
the conditions under which a dependency cycle forms.
A theorem prover is then used to compute the generated
SAT representation of the problem. All satisfying solu-

tions given by the solver are converted to test configu-
ration files that contain the collected abstract anomalies.
Such files provide details about concrete executions that
can potentially manifest the discovered anomalies. This
work stands out from others for the fact that it offers a
test-and-reply environment that allows mapping anoma-
lies identified in the abstract executions to be translated
to concrete inputs that can be executed subsequently.

3. Using CLOTHO to Model Microservices
We have implemented a novel method for calculating
the complexity of decomposing a monolithic system into
microservices, on the basis that the number of anoma-
lies occurring in the execution of a set of microservices
equates to effort that needs to be put into developing
compensating actions to mitigate these anomalies. Our
work leverages upon the efforts made by the authors of
[11] and [13].

In the first stage of the analysis made by
CLOTHO [11], the input program is translated into an
abstract representation, which captures key features of
the program, including the database schema, the set of
transactions, and the set of operations (data retrieval and
modification) that each transaction consists of. It is as-
sumed that CLOTHO’s input programs are interpreted on
a finite number of partitions, each of which has its own
copy of the database. The execution of these programs
is described as a finite sequence of system states. Each
state is represented by a triple, (str, ar, vis), where str is a
set of operations of the program, ar records the exact se-
quence of database operations that have been executed
and vis relates two effects if one witnesses the other at
the time of creation. A local view of the database at each
partition can be constructed from a system state by ap-
plying the effects of operations stored in the str compo-
nent of the partition according to the respective order in
the ar component.

After constructing the abstract model from the in-
put program, CLOTHO begins the identification of non-
serializable executions in the abstract representation of
the program. The authors consider that a certain exe-
cution of the input program is serializable if there exists
another strictly serial execution that is constructed by re-
ordering the operations of the first execution, such that
the final set of effects in both executions is equivalent.
Programs that contain a serializability anomaly can be
decomposed into a serial execution followed by a non-
serializable execution.

The problem of determining the serializability of an ex-
ecution is reduced to the detection of cycles in the de-
pendency graph of the final state of the execution. The
nodes of this graph are the set of operations in an ex-
ecution state. The edges of the dependency graph are
from the set of dependency relations {WR,WW,RW}.
The Read dependency, WR, relates two operations if
one witnesses a value that is written by the other; the
Write dependency, WW, relates two operations if one
overwrites the value written by the other; the Read
anti-dependency, RW, relates two operations if one wit-
nesses a value that is later overwritten by the other.
Recalling the previous definition of serializability, the re-
ordering of the operations to obtain an equivalent serial

5



execution cannot exist if there are cyclical dependencies
in the dependency graph. Thus, if there is a cycle in the
dependency graph of the execution of a program, such
program is not serializable.

The identification of dependency cycles in an execu-
tion is done by checking the satisfiability of a First-Order-
Logic formula. This formula contains variables for each
of the dependency, visibility and arbitration constraints
in the execution, and is designed such that the assign-
ments to these variables in a satisfying model can be
used to reconstruct the anomalous execution of the orig-
inal program. One of the components of the FOL en-
coding contains the rules for the consistency model of
the underlying database. These can be described using
the previously mentioned vis and ar relations between
read and write operations. The authors of CLOTHO in-
clude the constraints for a few popular consistency mod-
els, but CLOTHO itself does not implement any of them.
This means that all transactions are executed consider-
ing that replicas of the system maintain no synchroniza-
tion between each other - Eventual Consistency.

The output of this tool is the number of serializabil-
ity anomalies found in the input program. For each of
the discovered anomalies, CLOTHO automatically deter-
mines the execution order of queries and values of input
arguments required for its manifestation. This informa-
tion can be viewed in the form of a graphic that also in-
cludes dependency and visibility relations between op-
erations in the anomaly.

The Analyzer module of CLOTHO contains two differ-
ent components: the front-end compiler that performs
the analysis of the input Java program, detecting loops,
conditional structures and database accesses, and the
Z3 component, which makes use of the Z3 library[4]
to determine satisfying assignments to the constructed
FOL formula.

In order to supply CLOTHO with different consistency
models other than Eventual Consistency, we had to pro-
vide the SMT solver Z3 with stronger constraints. We
followed the guide presented on the work of Rahmani
et al.[11], which proposed the following constraints, for
which the logic formulae and description in detail is de-
scribed in the dissertation document:

• Causal Visibility (CV)
• Causal Consistency (CC)
• Transactional Causal Consistency (TCC)
• Read Committed (RC)
• Repeatable Read (RR)
• Linearizability (LIN)
• Serializability (SER)

The above isolation guarantees were implemented by
extending the Analyzer module of CLOTHO. All these
models were implemented in the context of this work,
and were tested making use of the benchmarks devel-
oped by the authors of CLOTHO: Dirty Read, Dirty Write,
Long Fork, Lost Update and Write Skew.

The reason for the use of these benchmarks for the
testing of our own extension to CLOTHO is that it pro-
vided a stable and forward manner to validate the cor-
rection of the different consistency models, seeing that

the results of the execution of the different consistency
anomalies under the implemented guarantees is theo-
retically known. The results and settings of these tests
can be seen under Section 4.

3.1. Obstacles
During the course of this project, a number of obstacles
occurred in the adaptation of CLOTHO.

CLOTHO was originally designed to test the correc-
tion of programs making use of distributed databases.
This means that it assumes a scenario where different
replicas execute the same program (e.g. the same code)
and eventually, concurrency problems will manifest due
to different replicas having to maintain different versions
of the same database.

However, Microservices do not work the same. The
Microservices architectural model is based on the
premise of separation of concerns, which means that
each service executes different functionalities, and can
make use of different technologies and databases. By
principle, two different services will be responsible for
two different sets of system domain entities, and concur-
rency challenges will not be about maintaining two dif-
ferent versions of the same entity, but making sense of
different entities that should look that they were updated
atomically.

CLOTHO keeps one copy of the same database in
each replica and this ultimately means that we cannot
simulate an architecture of Microservices where each
service keeps different schemas and entities.

In order to make sense of this problem, we routed to-
wards a different solution, one that would make it pos-
sible to use CLOTHO as is to test a distributed system
with some level of separation of concerns.

We considered FaaS as an alternative to the Microser-
vices architetural style. Function-as-a-Service describes
an application where storage services are disaggre-
gated from the machines that support function execution.
These applications consist of compositions of functions,
where each function may run on a separate machine and
access remote storage. Programmers can upload ar-
bitrary functions and execute them in the cloud without
having to provision or maintain the servers. Because dif-
ferent functions may not run on the same machine, the
challenge of maintaining data consistency rises.

In some ways, a parallel between the FaaS and Mi-
croservices architectural models can be established:
functions in the FaaS model would correspond to differ-
ent services in the Microservices model. Increasing the
number of instances running the same function is equiv-
alent to adding replicas to a service in the Microservice
architecture. In this sense, we could adapt out initial idea
to a FaaS system with only one replicated function and
calculate the number of anomalies that would arise in
this context. Then, we would have to alter the calcula-
tions in the complexity metric given by [13] in order to be
able to apply it to a FaaS system instead of a Microser-
vices’ one.

However, when studying the complexity metric in [13],
we understood that this was not feasible, since the com-
plexity value for any system where there is only one clus-
ter of domain entities - which is the case in a FaaS sys-

6



tem with a single function - is always zero. This value
would not be comparable to the number of anomalies
output by CLOTHO.

In mono2micro[13], the complexity value is deter-
mined based on similarity measures. In a 1-function
FaaS system, all domain entities of the system would
be accessed by the same function, the only one that ex-
ists. This leads to all domain entities being clustered in
the same service. Since there is no decomposition, the
complexity of decomposing this system is zero.

From a different point of view, supposing we would
generate bogus domain entity decompositions in this 1-
function FaaS system. In order to create decomposi-
tions for which the complexity value is non-zero, there
would have to different transactions altering different
databases.

It is not possible to mimic the partition of domain enti-
ties in CLOTHO.

One possible solution to this problem is to limit the
interactions between transactions in CLOTHO in pur-
suance of emulating the system of microservices. The
complexity metric in [13] only considers concurrency
issues happening in distributed transactions, i.e, that
traverse multiple services. To convey this pattern to
CLOTHO, we would need to only consider serializability
anomalies happening between transactions of different
services. One way to implement this is to label the trans-
actions according to the service they would execute on,
and modify CLOTHO to only analyze anomalies between
transactions that have different labels on them. Anoma-
lies inside each service need not be considered because
they execute under Serializability. Only the anomalies in
interactions between different services add to the com-
plexity of decomposing a monolith.

Another hindrance to our work was the fact that, in or-
der to use CLOTHO to test applications, these needed
to be in the form of Java classes, where each method
is a transaction in the system. Not a lot of real-life ap-
plications are build this way. Mainly, the programs used
for testing during the course of this project were small
examples assembled by us and translated into code that
could be processed by CLOTHO.

3.2. Changes Made to CLOTHO
Consistency Models CLOTHO, by default, as-
sumes an execution environment where no isolation or
atomicity guarantees are given. The seven consistency
guarantees discussed in Section 3 were implemented
during the scope of this project. To do so, we created
new code on the Z3 component of CLOTHO. This code
makes use of the Java binding for Z3.

Distinguishing Labels for Transactions As
mentioned in Subsection 3.1, one aspect to the adap-
tation of CLOTHO was to figure out how to mimic the
distributed nature of Microservices. Each service should
execute different local transactions, where serializability
(or other equivalent strong consistency criteria) is main-
tained. To this extent, anomalies found under the inter-
actions of the same transaction are negligible.

With the purpose of limiting the analysis to only trans-

actions executing in different services, we attributed la-
bels to each transaction, signifying the service/cluster
that it would be executed on.

Further on, during the analysis of the anomalies in a
program, we only allowed CLOTHO to check for anoma-
lies between a pair of transactions that did not belong to
the same cluster, i.e, was not attributed the same label.

This was done by skipping loops in the code whenever
the label for the transaction was identical.

Implementation of New Relation Between Op-
erations During the implementation of the new con-
sistency models, we came across the lack of a relation
between operations: the st relation - designating opera-
tions that belong to the same transaction.

After analyzing the code of the CLOTHO framework,
we found a different but similar relation, the sibling rela-
tion, that related two operations if they belonged to the
same transaction instance.

The two are different: st is more general, since it is
true for all operations for which the sibling relation is true,
but it is also true for operations for which the sibling re-
lation is not true but the class originating the parents of
those operations is the same.

For two different instances of the same transaction
class, all child operations belong to the same transac-
tion, but the siblings are the pairs of operations inside
each transaction instance.

4. Evaluation
4.1. Validating the Implemented Consistency Models

The first step towards evaluating our program and its cor-
rectness is to test the newly implemented consistency
criteria. In order to do so, we compare theoretical val-
ues for the number of anomalies in several transactional
applications under different consistency levels with the
ones calculated by our program.

The following are the benchmarks are used to perform
the assessments. These are Java classes that imple-
ment methods representing different transactions used
as input to CLOTHO.

4.1.1 Dirty Write

two_reads(key):

read(key)

read(key)

one_write ():

write(key , x)

Listing 1: Dirty Write class abstraction as used in CLOTHO

7



4.1.2 Dirty Read

one_read(key):

read(key)

two_writes ():

write(key , x)

write(key , y)

Listing 2: Dirty Read class abstraction as used in CLOTHO

4.1.3 Long Fork

two_reads(key1 , key2):

read(key1)

read(key2)

one_write ():

write(key , x)

Listing 3: Long Fork class abstraction as used in CLOTHO

4.1.4 Lost Update

one_increment(key , amount ):

x = read(key)

write(key , x+amount)

Listing 4: Lost Update class abstraction as used in CLOTHO

4.1.5 Write Skew

one_increment(key1 , key2 , x):

read(key1)

write(key2 , x)

Listing 5: Write Skew class abstraction as used in CLOTHO

The five benchmarks were tested under the different
consistency criteria. Table 1 assembles the expected
values for the number of anomalies of each benchmark
under a certain consistency model, according to aca-
demical research.

EC CV CC TCC RC RR LIN SER
Dirty Read ✓ ✓ ✓ ✓ ✓ x x x
Dirty Write ✓ ✓ ✓ ✓ x ✓ x x
Long Fork ✓ ✓ ✓ ✓ ✓ ✓ x x
Lost Update ✓ ✓ ✓ ✓ ✓ ✓ ✓ x
Write Skew ✓ ✓ ✓ ✓ ✓ ✓ ✓ x

Table 1: Expected results for the existence of anomalies in each
benchmark for each consistency model. The tick symbol (✓)
indicates that the consistency allows some anomalies for the
benchmark, whereas the cross symbol (x) implies that the con-
sistency model does not allow any anomalies for such bench-
mark

Table 2 presents the results obtained when executing
the modified version of CLOTHO with each of the dif-
ferent benchmark classes as inputs, while tweaking the
consistency level by wavering between the implemented
consistency models. The value in each cell represent

EC CV CC TCC RC RR LIN SER
Dirty Read 1 1 0 0 0 1 1 0
Dirty Write 3 3 3 0 3 0 1 0
Long Fork 3 3 3 0 3 0 1 0
Lost Update 2 2 2 2 2 2 0 0
Write Skew 2 2 2 2 2 2 0 0

Table 2: Observed number of serializability anomalies when ex-
ecuting benchmarks in CLOTHO under each consistency model

the results observed after a large number of executions
of each test instance under each model, to safeguard the
reliability of these tests.

4.2. Validating the Novel Complexity Metric
Mono2micro[13] collects data from codebases imple-
mented with Spring Boot and the Fenix Framework,
and can only be executed using previously developed
applications BlendedWorkflow, FenixEdu Academic and
LdoD, which are much too complex to be tested by
CLOTHO. In order to validate our new complexity met-
ric, we need to test both CLOTHO and mono2micro us-
ing the same input application, which entails producing
a new test example that is complex enough to manifest
different behaviours when analyzed by the two tools.

Instead, we developed a new test scenario small
enough to be manually tested by mono2micro, and con-
vert to Java code to be tested by CLOTHO. This test
instance consists of three simple transactions:

writeB(intkey):read(varA)write(varB,key)checkvars():varA=read(varA)varB=read(varB)assertcoherence(varA,varB)Listing6:Testclassab-strac-tionasusedinCLOTHO

The intention of this test instance is to mimic the fol-
lowing scenario: the microservice system managing this
application has 3 different microservices: the first is re-
sponsible for handling domain entity A, the second for
domain entity B, and the third service is responsible for
checking coherence between these two domain entities.
Each service executes, respectively, the first, second
and third transactions in Listing 6. In respect to transac-
tion check vars, asserting the coherence of domain en-
tities implies that the serializability of the writes of these
variables was respected.

Computing the value for decomposition complexity us-
ing mono2micro’s metric was the next step. The follow-
ing formulae were used, as presented in [13]:

complexity(d) =

∑
f∈F complexity(f, d)

#F
(1)

Equation 1: Complexity of a microservice decomposition: the
complexity of a decomposition is given by the average of the
complexities of its functionalities

complexity(f, d) =
∑
c∈C

complexity(c, f, d) (2)

Equation 2: Complexity of a functionality f in decomposition
d: the complexity of a functionality is given by the sum of the
complexities of accessing each service c in the sequence of
accesses made by f. Note that if functionality f is not distributed,
its complexity is 0

8



complexity(c, f, d) = # ∪a∈c complexity(a, f, d)
(3)

Equation 3: Complexity of accessing service c through func-
tionality f in decomposition d: the complexity of accessing a
service is the cardinality of the union of the complexities of each
entity accessed by f in s

Finally, the complexity of accessing an entity through
functionality f in decomposition d, complexity(a, f, d) is
given by the number of other distributed functionalities
that access that same entity using a different access
mode. Access modes can be either read or write. Then,
the complexity of reading an entity is the number of other
distributed functionalities that write to it, and the com-
plexity of writing to an entity is the number of other dis-
tributed functionalities that read it.

The complexity of the decomposition presented in
Listing 4.2 can be calculated using the following reason-
ing. There are two different services: clusterA, dealing
with domain entity A, and clusterB , dealing with domain
entity B. There are three functionalities (transactions):
writeA, which is composed of a write operation to do-
main entity A; writeB , which is composed of a read op-
eration of domain entity A, followed by a write operation
to domain entity B; check vars, which is composed of
a read operation of domain entity A followed by a read
operation of domain entity B.

The complexity of the decomposition is given by the
average of the values for the complexity of the three
functionalities. Functionality writeA is not distributed - it
only accesses service clusterA, and thus, its complexity
is zero. Functionality writeB is a distributed functional-
ity, and accesses service clusterA and service clusterB .
Then, the complexity of functionality writeB is given by
the sum of the complexities of accessing the two ser-
vices. The complexity of accessing service clusterA is
the cardinality of the union of the complexities of each
entity accessed by writeB in clusterA. Only one ac-
cess is made by that functionality in that service: a read
operation to domain entity A. The complexity of read-
ing A is the number of other distributed functionalities
that write to it, which is zero. The complexity of ac-
cessing clusterB in the context of functionality writeB
is 1, since there is one other distributed functionality that
reads B, check vars. This, the complexity of functionality
writeB has a value of 1. The complexity of functionality
check vars can be computed in a similar way, and its
value is also 1. Finally, the average of the complexities
of the three functionalities has a value of 2

3
.

The following phase for validating our complexity met-
ric is to test the same program using CLOTHO. Al-
though mono2micro only considers Eventual Consis-
tency, CLOTHO is able to determine the number of se-
rializability anomalies when the program is executed un-
der multiple consistency models. We decided to include
this strengthening of the underlying consistency model
to demonstrate the benefit of improving the level of iso-
lation on microservice systems. The results for the eval-
uation of such program with CLOTHO are displayed in
Table 3.

While analyzing the results of the evaluation pre-

EC CV CC TCC RC RR LIN SER
Example Program 3 3 0 0 0 1 1 0

Table 3: Observed number of serializability anomalies when
executing our test program in CLOTHO under each consistency
model

sented on the previous sections, the following was con-
cluded: in relation to the implemented consistency crite-
ria, we consider that this development was successful,
since all the obtained values conform to what would be
expected, as seen in Tables 1 and 2.

Regarding the soundness and relevance of the new
complexity metric given by analyzing test input programs
using CLOTHO, we consider that it is a pertinent novel
way to estimate the expected effort to decompose a
monolithic system, as it determines exactly what the key
serializability violations in the input programs are, giv-
ing programmers thorough evidence of where that effort
must be applied in order to develop correct and sound
distributed systems. Comparing the metrics produced
by this work and the work of mono2micro[13], we ob-
serve that, although the numbers on the developed test
instance are not significantly different, due to the fact
that said instance is not extensive and serves only as
a proof-of-concept, our metric and testing tool provide
more far-reaching hints concerning the points of failure
of a microservice system.

Adding to this, our metric also considers different con-
sistency models, which means it is more versatile in re-
gards to the set of programs and systems that it can
be applied to. Mono2micro overlooks the existence
of stronger consistency criteria, and always assumes
Eventual Consistency. Using CLOTHO also allows us
to study the direct improvement that strengthening the
consistency model of the underlying system can have on
the simplification of the development of the transactional
programs on top of these systems.

5. Conclusions
Partitioning a monolithic application into different ser-
vices is not an easy task: although the decomposition
of responsibilities provides some benefits, it also inter-
feres with the task of reasoning about system logic. This
work provides some insight into the intricacy of monolith
decomposition, by improving previously developed met-
rics to assess the complexity of this development, and
adding important information to the points of failure of
the resulting systems.

This project was limited by a few obstacles, namely in
the usage of tools that were not completely appropriate
to microservice systems. A possible path for future de-
velopment is to further extend our work to better adapt
to this architectural type.

References
[1] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and

P. W. Hutto. Causal memory: definitions, implemen-
tation, and programming. Distributed Computing,
9(1):37–49, 1995.

[2] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Highly available transac-

9



tions: Virtues and limitations. Proc. VLDB Endow.,
7(3):181–192, Nov. 2013.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL iso-
lation levels. In Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of
Data, SIGMOD ’95, pages 1–10, New York, NY,
USA, 1995. Association for Computing Machinery.

[4] L. De Moura and N. Bjørner. Z3: An efficient smt
solver. In Proceedings of the Theory and Practice
of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, page 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[5] S. Gilbert and N. Lynch. Perspectives on the CAP
theorem. Computer, 45(2):30–36, 2012.

[6] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani.
A Metrics Suite for Evaluating Flexibility and Com-
plexity in Service Oriented Architectures, pages
41–52. Springer-Verlag, Berlin, Heidelberg, 2009.

[7] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Commun. ACM,
21(7):558–565, July 1978.

[8] J. Lechtenbörger. Two-Phase Commit Protocol,
pages 3209–3213. Springer US, Boston, MA, 2009.

[9] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd.
The SNOW theorem and latency-optimal read-only
transactions. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
16), pages 135–150, Savannah, GA, Nov. 2016.
USENIX Association.

[10] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency,
availability, and convergence. 05 2012.

[11] K. Rahmani, K. Nagar, B. Delaware, and S. Ja-
gannathan. CLOTHO: Directed test generation for
weakly consistent database systems. Proc. ACM
Program. Lang., 3(OOPSLA), Oct. 2019.

[12] C. Richardson. Microservices Patterns: With exam-
ples in Java. Manning Publications, 2018.

[13] N. Santos and A. Rito Silva. A complexity metric for
microservices architecture migration. In 2020 IEEE
International Conference on Software Architecture
(ICSA), pages 169–178, 2020.

[14] A. Z. Tomsic, M. Bravo, and M. Shapiro. Distributed
transactional reads: The strong, the quick, the fresh
& the impossible. In Proceedings of the 19th Inter-
national Middleware Conference, Middleware ’18,
pages 120–133, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[15] G. Vossen. ACID Properties, pages 19–21.
Springer US, Boston, MA, 2009.

10


