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Abstract
Password-based authentication is still the dominant form of
authentication on the web, yet users do not adopt password
managers for fear of them being insecure, unreliable and other
reasons. In this project we modify a password manager to
try to comply with certain data security properties as a way
to increase adoption of this type of software that has been
increasing in importance.

Taking BitWarden’s Google Chrome extension as our cho-
sen password manager, we define password manager states
and data security properties regarding the master password
that we would like to comply with, perform tests and analyse
password retention problems in the application. While the
BitWarden extension interacts with many layers, we decided
to only change the application layer, as a way to understand
how much can be done by the developers of these types of
applications.

We then introduce our modified extensions that try to solve
the issues presented before and introduce a testing frame-
work that is able to automatically interact with the extension
through the graphical user interface to replicate the use case
chosen. While our solution does not completely solve the
issue, we were able to reduce the problem slightly.

1 Introduction

The need for more passwords has been increasing over the
years as password-based authentication is still the dominant
form of authentication on the web[8] and as users sign up to
more and more services, they require more and more pass-
words. Unfortunately, because the number of passwords a
typical user needs to remember is increasing, users tend to
reuse passwords across multiple services or small variations
of the same one and reuse previously leaked passwords [38].
Many users tend to follow these practices to avoid the cogni-
tive burden of recalling different passwords [12, 33] especially
when passwords that are difficult for an attacker to guess are
also hard to memorize for the user. This is compounded by

the fact that users see the high amount of effort required to
get just a low percentage of passwords in data breaches and
think the ease of use of password reuse outweighs the risk.

PMs come as a solution to this problem by inheriting the
responsibility of remembering passwords from the user to the
software. This in turn allows the user to associate stronger
passwords, that are hard to memorize, but even harder to at-
tack, to the services they use boosting the user’s security and
avoiding the unsafe practices of password reuse, all while
offering usability features such as automatic strong pass-
word generation resilient and auto-completion of log in forms
to name a few. PMs also help protect the user against data
breaches. By using a strong unique password for each ser-
vice, even if one service gets its data breached the rest will
be safe since there is no password reuse. This also lowers
the amount of work a user has to do whenever a data breach
occurs, since it is easier to change one password (the one that
was breached), than to change all passwords if the user reused
the same password or variations of it on all their services.
And while having strong unique passwords is not exclusive
to using a PM, it certainly makes it easier to do so.

And this is important as the number of data breaches are
on the rise [15], leaving many users vulnerable to attacks.

However, PMs are not immune to attacks and a portion
of potential users do not feel that using a PM would provide
greater security [9] for their secrets, some think they are inse-
cure [1, 2, 4, 34] and some of them outright distrust [2, 34]
PMs as a whole. Because of these reasons and others, these
users refuse to adopt PMs.

In this project, we decided to focus our attention to a partic-
ular type of attack that can be used to steal sensitive data from
a computer’s memory. These attacks involve making a copy
of the device’s random access memory (RAM) either through
a cold boot attack [22] or through vulnerabilities that might
exist such as HeartBleed [13], MeltDown[29], Specter[27],
etc...

In the context of a PM application, it is expected that secrets,
such as passwords or cryptographic material derived from
passwords, will have to be in the memory of the process at

1



some point in time throughout the use of the application. If an
attacker is able to extract the memory at the right time, they
will be able to extract and steal that information. As such, it
is critical that these secrets are deleted from memory as soon
as they are no longer necessary. Although there are different
types of sensitive data an application can hold, we will only
focus on user passwords.

Our study will take BitWarden[5] as our PM, more specifi-
cally the Google Chrome (Chrome)’s [19] extension of Bit-
Warden as the case of study. We will be focusing on logging
into the PM with a master password (MP) and by dumping the
memory of the BitWarden extension process, analyse when
the MP is in memory as well as when it should not be ac-
cording to some desired data security properties. We then
implement solutions at the application level to try and elimi-
nate this secret in memory when it is no longer needed.

2 Background work

This chapter presents the relevant background work needed
to understand the following chapters. We will be introducing
what a password manager (PM) is in general, desired data
security properites of a PM, BitWarden’s login process, the
different layers of abstraction between the application code
and the machine and insecure code practices that can retain
passwords longer than necessary.

2.1 Password Managers
2.1.1 What are they?

The main feature of PMs consists in storing username infor-
mation and the correspondent password into what is known as
the password vault (PV). The PV is then responsible for stor-
ing the user’s information in an encrypted fashion to ensure
that the user’s secrets are kept hidden from attackers.

Since there are various PMs available online, some offer
more features such as, password generation, auto-completion
of login forms, cloud storage of the PV, cross-device synchro-
nization and the list goes on but in the end the basic concept
remains the same. The PV may also store other relevant infor-
mation like website data, namely URL and icons to name a
few, creation date, fill count and other. This information will
be referred to as metadata since it is not vital for logging into
an account.

2.1.2 How are passwords stored

Password storage is done by creating a password vault, either
on the local system or on the cloud. When a PV is stored
locally, they are usually an encrypted file residing on the local
system’s disk. When stored on the cloud, it also encrypted
in some fashion, with the details differing from provider to
provider. The algorithms used to encrypt a PV file differs from

PM to PM and most require a MP to reverse the encryption
and be able to access it.

2.1.3 What is stored on the password vault?

A password vault contains entries. There are as many entries
as the user wants or needs, but the regular behaviour is having
an entry for each different account. Each entry stores the
necessary information for logging into the account with the
minimum usually being the username and password.

In addition, it is not unusual to store metadata along with
the entry on the password vault. This includes but is not
limited to:

1. Website metadata such as URL, Icon and name.

2. Password metadata such as creation time, modification
time, last use time, fill count and expiration date.

3. User settings namely notes and autofill settings.

Unfortunately not every PM guarantees encryption of all
metadata. For example, KeePassX and KeePassXC both en-
crypt all metadata [30]. Extension-based password managers
encrypt most metadata, but all have at least one item they
do not. Browser-based managers that rely on the operating
system to encrypt their vaults protect the relevant metadata
too. Those that do not rely on the operating system have a
significant amount of unencrypted metadata.

2.1.4 How are password vaults encrypted?

In general, most app-based and extension-based encrypt their
vaults using a MP. Requirements for the MP vary between
applications with some not requiring one at all. Browser-
based systems (except Firefox) rely on the operating system
instead to help them encrypt the password vault and as such
implementations vary.

2.2 Desired Data Security Properties of a Pass-
word Manager

Since this project is done in the context of the PassCert project,
BitWarden was chosen as the base PM. The PassCert project
is an effort to create a proof-of-concept PM that through
the use of formal verification, guarantees properties on data
storage and password generation[21]. which is the BitWarden
extension for chrome.

With the basic function of a PM in mind, we will define
2 states in which the application is running: (a) not run-
ning; (b) locked (pre-login); (c) unlocked (and running); and
(d) locked (session terminated)[31] .

We will not analyse the PM in its not running state (when
Chrome is not opened or the extension is disabled) as we have
decided to focus on the security of the MP in the login process
of BitWarden.
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2.2.1 Locked (pre-login)

We define BitWarden to be in the "locked (session termi-
nated)" when the vault has not been unlocked in the current
session. In this state we concede that the MP is stored in the
memory of the program and is visible to potential attackers
as the application need the MP to perform the tasks necessary
to authenticate the user.

2.2.2 Unlocked (and running)

We define the BitWarden PM to be in the "Unlocked (and
running)" state once the BitWarden vault is unlocked. To
reach this state, the user must successfully authenticate by
entering a valid e-mail and MP.

In this state, the MP is no longer necessary to be in memory
as we will discuss in section 2.3.1 and as such, should no
longer be in memory.

2.2.3 Locked (and running)

We define the BitWarden PM to be in the "Locked (and run-
ning)" state when (a) the vault is locked manually; or (b) when
the session is terminated. For this project however, we only
considered (b) in our testing. Continuing from the unlocked
(and running) state, the MP should not be in memory as well.

2.3 BitWarden
BitWarden is a PM available for different platforms, desktop,
mobile, browser extensions and even online. As expected
from a PM, it manages account information like usernames
and passwords in a vault.

2.3.1 BitWarden’s Login Authentication

Figure 1 is an overview of how BitWarden’s login authen-
tication works. When the user provides the e-mail address
and MP, BitWarden uses Password-Based Key Derivation
Function 2 (PBKDF2)[24] with a 100,000 iteration rounds to
stretch the MP, using the e-mail address as salt. The generated
value is a 256 bit Master Key. This Master Key is used in
conjugation with the MP as salt to create the Master Password
Hash which is sent to the BitWarden server upon account
creation and login, and used to authenticate the user account.
Once the Master Key and the Master Password Hash have
been generated, the MP is no longer required to be in memory,
as the application has everything it needs to authenticate the
user.

BitWarden mentions that in their client application they do
not store the MP locally or in memory and that they do their
best to ensure that any data that may be in the application
to function is only held in memory for as long as needed[6].
Ideally, the BitWarden extension for Chrome would follow
these principles.

Figure 1: Control flow of logging into BitWarden

2.4 Security issues of keeping secrets in mem-
ory for longer than necessary

Keeping secrets longer than necessary is dangerous, as it is
quite possible for passwords to remain in memory even after
an hour after the program was terminated [25]. An attacker
that can obtain a memory dump of the computer could poten-
tially obtain secrets this way, use them to breach the user’s
vault, steal all the information in it and proceed to breach
accounts for other services that were stored in the vault.

2.5 Layers of abstraction

The application we are studying runs on top of several other
layers of abstraction. Namely the application is written in
Typescript with the Angular framework. This Typescript code
is then transpiled to JavaScript (JS) using Angular’s transpiler.
The JS resulted from this transpilation is then interpreted by
browser (in our case, Chrome) using the browser’s built-in JS
interpreter. In Chrome’s case, it uses the V8 JS engine[36] and
the Blink[7] rendering engine. These two communicate with
each other to interpret and display the page. Since Chrome is
written in C++, it interfaces with the standard C++ runtime
libraries and any other libraries necessary by Chrome’s code.
Lastly, Chrome also has to interface with the operating system
(OS).

Our project focuses only the application layer as it would
be unfeasible to modify everything in the pipeline.

2.6 Password retention risks

2.6.1 Application sent to background

Modern OSes implement Virtual Memory which, amongst
other things, can allow for secondary memory to act as main
memory. This allows applications to swap memory in RAM
to the disk when system resources are low. This poses a
significant risk as a secret could be the memory of a process
when its memory gets written into the disk, prolonging the
amount of time a secret is exposed. An attacker could then
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Figure 2: The different layers of abstraction

steal the secondary memory storage medium (a solid-state
drive, hard-disk drive, etc...) and analyse the paging files to
extract secrets that were written to the medium through virtual
memory.

2.6.2 Crash dumps

If the computer crashes while the application contains a secret
in its memory those secrets could be written to the crash dump
file, exposing them. For example, Windows[18] and Ubuntu
[26] (if the kernel crash dump utility is installed) dump the
contents of RAM at the point of crash into a file.

2.6.3 Delayed garbage collection

The memory of JS applications are managed by a garbage col-
lector (GC). When a piece of memory is no longer referenced
by any variable it will remain in memory until the GC decides
to reuse it. The amount of time that it takes until that piece
is reused by the GC is undefined. It can be minutes or even
hours [25], depending on the algorithm used and the system’s
resources and workload. This comes into play when we take
immutable types in JS into consideration. The primitive type
String in JS is immutable and thus can not be overwritten
manually by the developers, leaving the deletion up to the GC
when it eventually reuses the piece of memory that contained
the String object and overwrites it with some other value.
This is a known problem when using immutable data types
for sensitive information, such that even Java’s Cryptographic
Architecture recommends using mutable data structure types
[23] for passwords and secret data.

2.6.4 Different layers of abstraction and lack of secure
API

Since the BitWarden extension runs on top of other layers,
any communication between these layers has the possibility
of creating buffer copies of sensitive data and having that
data retained for a period of time, outside of the control of
the application itself. Without any options of a secure API
between layers, the application developers have no control
over how the layers that the application interacts with treat
the data.

2.6.5 Function Arguments Copies

Whenever a primitive type is passed to a JS function, a new
copy of it is made[17]. This presents a problem because if a
secret is passed to a function using a String data type, then a
new immutable copy of the secret is created hence increasing
the amount of copies of it in memory. Numerous copies of
the secrets in memory means that it is harder for the GC to
delete and reuse those memory pieces in a timely manner, as
discussed in subsection 2.6.3.

3 Password retention on the BitWarden exten-
sion

3.1 Threat model
Our work assumes an attacker has access to a snapshot of
the memory of the computer through a memory disclosure
attack or through a memory dump of the system. This could
be from a crash dump file, like we discussed in section 2.6.2
or through a cold boot attack[22].

3.2 Memory Dump Analysis
We performed several tests on the BitWarden extension for
the Chrome browser by dumping the memory of the Chrome
process responsible for running the BitWarden Extension.
These memory dumps were done several times at different
points in time, throughout the use of the extension.

3.2.1 Test steps

The points of time in which we perform a memory dump will
be referred to as a "test step" in the testing procedure. As such,
the following is an overview when the process’ memory is
dumped:

• Step 0 - After typing the e-mail in the e-mail field, but
before typing the MP into the password box;

• Step 1 - After half the MP was typed into the password
box;

• Step 2 - After the MP was fulled typed;
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• Step 3 - After logging in and unlocking the BitWarden
Vault;

• Step 4 - After simulating a task;

• Step 5 - After terminating the BitWarden session.

A more in-depth look at the testing procedure will be pre-
sented in section 5.

3.3 Results and observations

In the memory dumps, we refer to both a partial MP and a
full MP. A full MP is the set of characters that compose the
entirety of the MP, whether they be encoded in 8-bit (UTF-
8/ASCII) or 16-bit (UTF-16) encoding. Given a full MP p of
length i, a partial MP is defined by the subset p j, j ∈{ i

2 , ..., i−
1}. This applies to both UTF-8/ASCII encodings and UTF-16
encoding.
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Figure 3: Number of partial and full master password occur-
rences in memory in the original BitWarden extension by test
step

In fig. 3, we can see the results of the testing procedure
performed on the original BitWarden extension. In Step 0,
there are no occurrences of the MP in memory. This is to be
expected, since nothing of MP has been typed yet. Also, the
memory given to the process is zeroed out by Linux’s virtual
memory manager before making it available[20] to the pro-
cess. This means that even if the process was given an address
of memory that previously stored the MP from a previous
test, it would not interfere with the results of the current test,
since the memory give would be wiped beforehand. In step
1 and 2, as the user is typing the MP we see the number of
occurrences rise. We mainly see occurrences of the partial
and full MP encoded in UTF-16. This is because Chrome’s
JS engine, the V8 JS engine, implements the ECMAScript
standard which states that the primitive string type is to be
encoded in UTF-16[14].

As mentioned in section 2.2, it would be ideal if after the
vault is unlocked (step 3), the MP would no longer be accessi-
ble in memory. However, our findings show that is not the case.
There are still occurrences of the full MP and occurrences of
the partial MP after logging in and unlocking the vault. Even
after simulating a simple task, with the intention of increasing
the system’s load and resource usage to promote memory
clean up by the GC, not all occurrences were cleared. Termi-
nating the session and logging out decreases the occurrences
but does not completely erase everything. This means the MP
can be obtained from memory, for an indefinite amount of
time as we mentioned in section 2.6.3, even after the the user
closes the BitWarden vault.

3.3.1 Observation #1: Prefixes of the Master Password
in Memory

The underlying data structure responsible for storing the MP
as it is being typed, is an immutable string. Since we can not
modify immutable data types, a new object has to be created.
So given a password p with length i, when a new character c
is added a new string object is created with the result of pi+c.
Likewise, when a character is removed, a new object is created
with the value of pi−1. The previous memory addresses are no
longer referred to and cleanup is left up to the GC system. As
shown in fig. 3, we were able to identify memory addresses
that contained prefixes of the full MP.

3.3.2 Observation #2: Prefixes stay longer in memory if
the input is left untouched

As discussed in subsection 3.3.1, new string objects are cre-
ated whenever the user types or deletes characters while
typing the MP. In our testing, we discovered that if the
MP is typed relatively quickly without much delay between
keystrokes (around a second or so), the amount of prefixes in
memory would decrease compared to when the user types a
portion of the MP, leaves it untouched for more than a second
or two and then continues typing the rest of the MP.

3.3.3 Observation #3: Unlocking the vault does not clear
the master password

After unlocking the vault, the MP is no longer required to be
in memory as mentioned in section 2.3.1, but continues to be,
even after the user locks the vault and terminates the session.

3.4 List of problems

While analysing the BitWarden’s extension source code of the
login process we compiled a list of problems within it. Lee et
al.[28] found similar issues in Android applications and were
able to eliminate leftover passwords from memory by solving
them.
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3.4.1 Problem #1: Use of immutable data types to hold
the master password

In the login component of BitWarden, the MP is stored in
an immutable String. Like we mentioned in section 2.6.3,
application has no way to erase the content of that String,
leaving the deletion of the secret up to the GC.

3.4.2 Problem #2: No zeroization of the master password

Due to the problem mentioned above, BitWarden does not
go through the effort to try and zero out the content of the
variable that holds the MP.

3.4.3 Problem #3: Use of String to communicate master
password from interface to component

In an Angular application, the application can access the in-
formation in a native element of the DOM through a Control
Value Accessor[10]. In our case, BitWarden interacts with
the input field responsible for the MP in the login page to
receive the MP written by the user into the login component
to perform the login process. Unfortunately, Angular only
provides the DefaultValueAccessor[11] in input fields of type
text. This accessor provides whatever is written into the input
field to the application, as a String type.

Since we decided for this project to focus only on changes
that could be done at the application layer, we have to use
what Angular provides. However, in section 4.2 we present
how we tried to mitigate this problem.

4 Our solution

In this section, we will describe the fixes we implemented at
an application-level in the BitWarden Chrome Extension to
try and reduce the amount of MP copies found after logging
into the BitWarden Vault.

Two versions of the program were created with one funda-
mental difference: one uses a separate Angular component
that deals with the input of the MP and communicates with the
login parent component, while the other version has the login
component deal with the MP input directly, without using a
separate Angular component. This way, we can compare if
the Angular communication between components is a factor
that could lead to password leakage in our program. Each of
these versions also has a variation where we inlined a func-
tion in a critical area to see how it would affect the amount of
occurrences of the MP in the memory of the process.

This gives us four different versions in total: (a) Child
component; (b) Child component - inlined; (c) No child com-
ponent; and (d) No child component - inlined.

4.1 Common changes between all versions
The login component performs a few steps with the MP to
complete the login process. First, it checks if the MP is not
empty and then delegates the login to the authentication ser-
vice, passing the e-mail and MP of the user. The authentica-
tion service then passes the MP and other information to the
crypto service for (a) making the Master Key (makeKey); and
(b) making the Master Password Hash (hashPassword). Once
the Master Password Hash is complete, it uses it and the e-
mail to perform the login and the login component receives a
form response and proceeds with the rest of the login process.

login component authentication 
service

Master Password

Form response

crypto service

makeKey(Master Password) 
and 

hashPassword(Master Password)

Master Password Hash

Master Key

Figure 4: Flowchart of how the master password is used in
the login component

The first change we implemented was to change the im-
mutable variable type of the MP (string) in the LoginCompo-
nent to a mutable data structure.

In our case, we decided to use a JS ArrayBuffer [3] for a
few reasons. First of all, it is a mutable data type fixing the
problems specified in Problem #1 (section 3.4.1) and giving
us an opportunity to address Problem #2 (section 3.4.2) as
well. Secondly, BitWarden’s login code flow makes a few
calls to services of the application with the MP, those being
the authentication and cryptographic service as discussed
above. All of these function calls already have support for
the ArrayBuffer data structure. This allowed us to change
the function parameters of the functions calls to accept an
ArrayBuffer data type instead of the previously used string.
Since we are no longer passing a primitive JS type (string) to
several functions, but instead a reference type (ArrayBuffer),
JS will instead pass the argument (in this case the MP) by
sharing (call by sharing). This avoids making extra copies of
the MP when it is passed down to a function. This addresses
Problem #3 discussed in section 3.4.3. We replicated these
changes in the crypto service as well.

After BitWarden performs the login process, Problem #2
is addressed as the MP is no longer required to be in mem-
ory. To do so, the ArrayBuffer containing the MP is manually
overwritten before the variable is set to null to help it being
marked for garbage collection. Because JS’s memory man-
agement is automatic it will either be reused throughout the
execution of the program or freed up and used elsewhere, like
another process running on the computer. This process might
take a while, but since we cleared the buffer previously, the
MP contained is no longer there.

The next change we had to implement was due to how
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Angular/JavaScript reads the MP from the Document Ob-
ject Model (DOM). The two different approaches (both the
one using a child component and one without using one) are
explained below.

4.2 Implementation with a login child compo-
nent - Child component

To try and receive the MP in a more secure manner, we de-
vised a new component responsible solely on bridging the
communication between the native input element in the DOM
and the login Angular Form. To do this, we implemented An-
gular’s Control Value Accessor interface on the component to
change the default behaviour. Later on, the login component
of Angular receives the ArrayBuffer with the full MP from
this child component and proceeds to perform the login.

4.2.1 MasterPasswordCustomInputComponent

This component is responsible for listening to input changes
from the password input field coming from the DOM. Our
approach consists of receiving the input through a function,
and storing it in an ArrayBuffer. We also take the care to zero
out the data of the previous ArrayBuffer, which contained the
previous password input.

Unfortunately, the application is forced to receive the input
from the DOM as a string, as it is the only text format that
Angular supports. Like we said previously, this creates a copy
of the input and it is also immutable, leaving the deletion up
to the GC. To mitigate further damage, we do not store the
input in the function and only use it when we absolutely must,
to transform the input information to the ArrayBuffer.

After the user types the entire MP and clicks the login
button, the child component sends the ArrayBuffer with the
full MP to the login component. The login component then
performs the login process as usual.

4.3 Implementation with a login child compo-
nent - inlined

We use a function (Utils.fromUtf8ToArray) to convert the
string input to an ArrayBuffer. This means we are passing a
string into the function which creates an additional copy of
the argument as discussed in section 2.6.5. Since this function
is called every time the input field changes (whenever a new
character is added or deleted), this could lead to potentially
even more copies of the input being created.

We made an extension, called the child component inlined,
where we inlined the Utils.fromUtf8ToArray function to see
if it would make a significant difference in the amount of
password leakage.

4.4 Implementation without a login child com-
ponent

As a way to understand if the communication between An-
gular components could produce extra copies of the MP in
memory, we also devised a version without an extra compo-
nent, where the login component deals with the input of the
MP. In this version, the Control Value Accessor interface was
directly implemented in the login component.

4.5 Implementation without a login child com-
ponent - inlined

Similarly to what we did in the child component inlined exten-
sion, we simply inlined the Utils.fromUtf8ToArray function.

5 Evaluation

5.1 Preparing the testing environment

A Vagrantbox was created that runs Linux Ubuntu containing
Chrome, the official BitWarden extension for Chrome, our
modified extensions, all the required packages for running
the Python scripts and all the required packages to create a
local BitWarden server. Additionally, it also sets up the local
BitWarden server and starts it in preparation for the testing
procedure. We originally performed tests using BitWarden’s
servers, however, once we automated the testing procedure
we started performing the tests on our own locally hosted
BitWarden server for several reasons: (a) the traffic and usage
patterns performed in the testing procedure violate BitWar-
den’s Terms of Service; (b) logging into BitWarden does not
require captchas to be solved when the server is locally hosted
which simplifies our testing procedure; (c) no need to create a
BitWarden account in BitWarden’s hosted servers; and (d) the
testing procedure is no longer dependent on the availability
of BitWarden’s services.

Table 1 shows the relevant software and versions used in
our testing.

Name Version
Linux Ubuntu 20.04.4 LTS
Oracle VM VirtualBox 6.1.32r149290
Google Chrome 9.0.4844.51-1
BitWarden Google Chrome Extension 1.55.0, 8 Dec 2021
PyAutoGui 0.9.53

Table 1: Versions of the software used in the testing procedure
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5.2 Automatic testing using Python and PyAu-
toGUI

To check the differences in password leakage between the
normal BitWarden extension and our modified extensions, we
devised a script using Python and PyAutoGui[32] to automati-
cally perform a testing procedure to replicate a use case of the
application. Automating the testing procedure made testing
the different extensions easier and made the tests across the
different extensions more consistent with each other, giving us
more confidence over the results. We also have the advantage
of being able to perform a large number of tests per extension
this way, giving us more statistical relevance. Lastly, repli-
cating how a user interacts with the graphics user interface
(GUI) of the extension made the test closer to in behaviour
to how a user perform a task in a use case in the BitWarden
extension, as well as replicating any type of memory pattern
that might happen from such behaviour, leading us to more
accurate results.

The script uses PyAutoGui to perform several GUI inter-
actions with the OS, Chrome and the BitWarden extensions
(both the official one and our modified ones). The following
is a summary of what the program does:

• Resets Chrome’s settings to a default known state

• Opens Chrome and points the BitWarden extension to
use the locally hosted server

• Closes Chrome (this is to avoid having multiple pro-
cesses with the BitWarden name which breaks our script)

• Opens Chrome again

• Clicks on the extensions icon and then the BitWarden
extension

• Clicks on the log in button and types the e-mail in the
e-mail field

• Test step 0: Performs a memory dump before writing
the MP in the login page

• Test step 1: Types half of the MP and performs a mem-
ory dump

• Test step 2: Types the second half of the MP (now com-
plete) and performs a memory dump

• Test step 3: Unlocks the vault and performs a memory
dump once it is open

• To simulate a task, the script opens up a new tab, and
plays a video on Vimeo[37] for around a minute

• Test step 4: After a minute has passed, it performs a
memory dump again

• Clicks on the extensions icon and then the BitWarden
extension

• Goes to the settings tab

• Test step 5: Finally, it terminates the session on the
BitWarden extension, performs a memory dump and
proceeds to close Chrome

5.3 Analysing the created memory dumps
To facilitate the analysis of the memory dumps, a Python
script was also made, responsible for going through all the
memory dumps created at the different steps of the testing
procedure. It opens the memory dumps in binary mode and
simply reads the memory into the program and scans the
memory dump for four different things:

1. The first half of the MP in 8-bit encoding (UTF-8/ASCII)
and 16-bit encoding (UTF-16)

2. The full MP in 8-bit encoding and 16-bit encoding as
well

To calculate the number of partial MP occurrences, we
count the amount of times the first half of the MP has appeared
in memory and subtract it with the number of times the full
MP was in memory as well, since the partial MP is a prefix
of the full MP.

It then creates a CSV file with the results, ordered by test
number. The file contains the number of occurrences of the
partial and full MP, in both encodings, at the different steps
of the testing procedure.

5.4 Results
What test step corresponds to which phase of the testing proce-
dure is in section 5.2. The total number of occurrences of the
full MP was calculated by summing the occurrences of the full
MP in both UTF-8/ASCII encodings and UTF-16 encoding.
Likewise, the same process was done for calculating the total
number of partial MP occurrences, by summing the partial
MP occurrences in both encodings described previously.

5.4.1 Full master password

The results of our extensions against the original BitWarden
extension are shown in fig. 5.

In test step 0 and 1, the full MP is not in memory, as it
has not been fully typed yet. In test step 2, when we finish
typing the full MP, our extensions have more copies of the
full MP in memory. However as we said in section 2.2, we
concede that the MP can be in memory while the user has not
performed the login process. In test step 3, when we perform
the login and unlock the vault, our extensions are able to
reduce the copies present in memory when compared to the
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original extension. We see this trend in later steps for the other
extensions as well, except in test step 4 and 5, where the no
child component extension is slightly worse when compared
to the original one.

The child component inlined extension is the one that per-
formed the best right after step 3, having less full MP occur-
rences than the rest, but performed slightly worse than others
in step 4 and 5.

0 1 2 3 4 5
Test step

0

2

4

6

8

10

12

Nu
m

be
r o

f (
fu

ll)
 m

as
te

r p
as

sw
or

d 
oc

cu
rre

nc
es

 (U
TF

-8
 &

 U
TF

-1
6)

Original
Child component
Child component inlined
No child component
No child component inlined

Figure 5: The number of occurrences of the full MP in mem-
ory per test step

5.4.2 Partial master password

The results of our extensions against the original BitWarden
extension are shown in fig. 6

In test step 0, we see no references as the MP has not been
typed yet. In test step 1, when the first half of the MP has
been typed, we see similar results to the original BitWarden
extensions. The rest of the test steps almost mimic the results
obtained in section 5.4.1. We have an increase in occurrences
in step 2 but after logging in and unlocking the vault in step 3,
we see a reduction of copies in memory over all extensions,
except the no child component extension. It stands to note
that the no child component extension performs worse when
compared to the original BitWarden extensions across the
board, when it comes to the partial MP.

The child component and child component inlined exten-
sions performed very similarly, with the child component
inlined extension being slightly better in steps 4 and 5 com-
pared to the child component extension.

5.4.3 Child component and no child component

Our no child component extension compares worse than the
rest of our extensions and even BitWarden’s original extension
in some cases. We find this behaviour odd, as the results
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Figure 6: The number of occurrences of the partial MP in
memory per test step

between the no child inlined component (where the difference
between it and the no child component is simply a function
being inlined) and the child component extensions (both the
normal and inlined version) are much similar between each
other. Without access to external tools, it is hard to say what
causes this discrepancy.

6 Conclusion and Next Steps

In conclusion, even though our modified extensions were able
to reduce the occurrences of the full MP in memory after
logging in and unlocking the vault, they were unable to com-
pletely remove every trace of the MP, even after performing
tasks on the system. As such, an attacker that gains a snapshot
of memory after the vault was unlocked, is likely to able to
successfully retrieve the MP of the user.

This shows that changes in the application layer are not
enough to completely eliminate leftover MPs references in
the memory of the process, and efforts must be made in every
step of the stack to ensure that sensitive data is dealt with
and properly disposed of to ensure the desired data security
properties.

6.1 Future work

Modifying the Angular framework to create a new, more se-
cure way to bridge communication from the native DOM to
application would be something to work on. On the browser
side, while Chrome is closed-source, there are open-source
alternatives (like Chromium[35] and Firefox[16]) that could
be changed to introduce a secure API to deal with sensitive
data on the DOM so communication with web applications

9



could be more secure. Finally, one could change the OS in
which the application is running, to ensure that communica-
tion between the OS and the other layers would follow the
same secure API protocols that we desire.
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