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Abstract

This dissertation can be divided in two: image processing and sensor fusion, and was developed with the aim ofdesigning a sensor system that makes it possible to turn one of PSEM’s (Projecto de Sustentabilidade Energética Móvel)prototypes, GP17.Evo, into an autonomous race car. The sensors chosen for this system include a camera, a GNSSand IMU. The camera allows for relative positioning while the GNSS and IMU account for the global position of thecar as well as an estimation of its direction and speed. The data generated by the sensor system would subsequentlybe transferred into a control unit. The detection of the race track limits was accomplished through image processingtechniques, using OpenCV, and relying on footage from a race PSEM took part in. Then, two variations of the Kalmanfilter were implemented in order to determine the optimal choice in terms of sensor fusion. In a simulation environment,more specifically MATLAB, and based on a vehicle model of GP17.Evo, the Extended and Unscented Kalman filters wereused to try to combine all of the data provided by various sensors. This work is the first step towards a fully functioningautonomous GP17.Evo that will hopefully be able to race in a new Greenpower category.
Keywords: PSEM, Autonomous Car, Navigation system, Sensor fusion

1. IntroductionPSEM is a student group at Instituto Superior Técnicowhose goal is to build electric race cars so that they areas efficient as possible. PSEM represents the school at theGreenpower Challenge race where each competing team isfree to build their car as they see fit, as long as they com-ply with the rules established by the committee. Over theyears, PSEM has built several cars, but this work will focuson the upgrade of the 2017 prototype GP17.Evo.
1.1. MotivationFor PSEM, the overall weight of the car’s componentshighly influences the performance during the race. Thebiggest setback when it comes to this, though, is the factthat the pilot weighs about the same as the fully assembledempty car, which means that removing this extra weightwill allow it to reach higher speeds. At the moment, there isno category in the Greenpower Challenge for autonomouscars which means PSEM would be a pioneer in the com-petition. This is the main drive for the team as well as themain drive for this work, which will focus on the sensoryaspect of a self-driving race car.
1.2. ObjectivesThe goal of this work is to propose a low-cost, basic sen-sor system for the autonomous GP17.Evo; through imageprocessing, perform lane detection; and, lastly, implementtwo sensor fusion algorithms using a model of the car. Tothat end, a study on various sensors, namely a GNSS, IMUand a camera, will be conducted. Then, image process-ing techniques will be researched as well as sensor fusionmethods. Finally, tests will be done to assess the robust-ness of the implementation.
1.3. Proposed systemThe sensors chosen for the system include a GNSS, sup-plying position coordinates; an IMU, to extract parameterssuch as acceleration and an estimation of the heading; anda camera, allowing for relative positioning. A RaspberryPi is meant to perform all of the processing and establishthe connection to the camera and the Arduino, which is, inturn, connected to the GNSS/IMU module. All of the imageprocessing will be done using OpenCV. The optimization ofthe trajectory and control of the car will be done in an-

other work. In the end, the system proposed here will feedthe eventual Control Unit all the useful information on vari-ables such as position, speed and direction, in real-time,allowing the car to race autonomously.
2. State of the ArtMany of the techniques developed, especially those relatedto lane and obstacle detection, are a result of a need toincrease safety on the road. TEINVEIN (TEchnology andINnnovation for VEhicle INtelligence) incorporates ADASand is a project that puts a self-driving car on the roadwhile, in racing, there are now competitions such as Robo-race, Formula Student Driverless [1] and Indy AutonomousChallenge. As this work focuses exclusively on the sensoryfacet, we will explore their implementations as well as dif-ferent combinations of sensors and ways of merging them.
2.1. Sensor FusionAll of the recent studies done on this subject use a combi-nation of sensors to increase the number of variables re-trieved, with the GNSS being its most basic component.We will take the example of TEINVEIN [2] whose sys-tem includes a LIDAR, a camera, a GPS-RTK, two radars,wheel encoders and IMU on the car’s center of mass be-sides those integrated with the GPS. In a similar way, bothAMZ Driverless versions [3, 1] share most of the sensorsof TEINVEIN but positioned differently and making use ofROS.These are considerably complex systems but if we takea step back and look at something akin to [4] where onlya GNSS and IMU are utilized, we see that these work fairlywell if there are no failures of the GNSS for extended peri-ods of time. By introducing a camera into the equation [5],there is now the possibility of complementing data fromthe other two sensors, GNSS and IMU. Should we intro-duce two cameras, now stereo vision [6], depth can alsobe estimated.The approaches to sensor fusion are vast [7] and aim toestimate the state of a system given all of the informationgathered from the various devices. One of the most com-mon methods is the Kalman Filter and its variations such asits non linear version EKF [3]; an improvement on the EKF,the UKF (Unscented Kalman Filter) [2]; and the less com-
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putationally expensive while maintaining estimation accu-racy, Multi-State Constraint Kalman Filter (MSCKF) [8].
2.2. Image ProcessingOne of the most famous implementations of lane detectionis GOLD [9], which takes into account both lane and ob-stacle detection. They make use of the IPM technique toremove the perspective of the camera mounted on the carand make the lane lines parallel as if seen from a bird’s eyeview. Both GOLD and M. Aly in [10] define the image planeand the world space to create the transformation. In [11]after getting this bird’s eye view, boundary modeling [12]is done, fitting road boundaries to a geometric model, andthen lane detection. [13] applies the same concept but inreverse: first the lanes are detected and then for lane fol-lowing the model is created.In order to distinguish the road lines from everythingelse edge detection is often used. John Canny [14] de-veloped the Canny edge detector that effectively detectsedges based on variations of pixel intensity in the image[15, 16]. An alternative to this is to filter the image throughcolor [17], as we know lane markings are usually lighterthan the road (gray or black). The edge detection alone isnot enough to detect the lines that create the lane or thecurb so we must find a way to pinpoint them in each image.So, we can model the road and try to fit the edges foundto it or we can apply a feature extraction method such asthe Hough Transform [16] to detect the lines formed bythe edges of the lane. As the Hough transform may notbe enough, RANSAC (Random Sample Consensus) [10, 5]may follow it for a more robust detection.
3. SystemThis section will present, in a more detailed fashion, theelements that make up the system.
3.1. CameraA camera will act as the eyes of the car and be used to lo-cate it relative to the race track.OpenCV is a computer vi-sion library that was chosen for processing what was cap-tured by the camera as it has hundreds of algorithms forreal time image processing. These include face and objectrecognition, but, most importantly, functions for edge andcontour detection, as will be shown later.
3.1.1 PlacementThe options for the camera’s placement on the car are indi-cated in figure 1. Ideally, no structural changes should bemade in order to ensure the car still complies with Green-power’s rule book and thus, position A is the best optionas it is not obstructed by a pilot’s helmet and is the safestand most stable place for it.

Figure 1: Camera placement possibilities.
3.2. GNSS and IMUThe GNSS and IMU integrated into a single device, theNEO-M8U. This module was chosen and has a built-in

accelerometer and gyroscope and uses Untethered DeadReckoning (UDR), which processes the signals from theGNSS and IMU together in order to get an as accurate aspossible position when there is a poor GNSS signal. Someof the characteristics of this module include a horizontalaccuracy of 2.5 m; a velocity accuracy pf 0.05 m/s; 1° ofheading accuracy; and a refresh rate of 30Hz (at most).The NEO-M8U needs an antenna, so AA.160.301111 byTaoglas was chosen. This antenna is able to connect toGPS, GLONASS and Galileo and will be connected to theNEO-M8U module.
3.3. Raspberry PiThe Raspberry Pi will be the "on-board computer" of thecar. The model that will be used is the Raspberry Pi 4Bwith 8GB of RAM. The operating system installed on it isthe "Raspberry Pi OS", relatively similar to a Linux environ-ment. The headless Raspberry Pi has no need for periph-erals and the connection is made through SSH and VNC,making it possible to access the device without any addi-tional hardware.The Arduino Uno is a useful asset and will be connectedto the GNSS/IMU module, since the libraries for that deviceare already available in Arduino’s IDE through download.Accessing the data supplied by the NEO-M8U is thus mademuch easier. In order to be able to use this configuration,Arduino’s IDE has to be installed on the Raspberry Pi anda connection through USB between these two has to bemade.
3.4. Summary and limitations of the systemWe must safeguard the fact that the camera was lent toPSEM for this work while all the other elements were pur-chased, so the total cost is divided in two, one with and onewithout the camera. The price of acquisition is 242.39€without and 772.39€ with the camera.Because the system proposed is not a very complex one,it is not possible to accommodate a high number of vari-ables. Although the Greenpower Challenge is a race be-tween many teams of students, each participating withtheir own car, the detection of other vehicles will not betaken into account, with the system focusing only on therace track. The refresh rate is dependent mostly on thecamera and all processing associated with it as well as theRaspberry Pi’s computing power. If the refresh rate is low,the car will not be able to reach higher speeds becausedata will be lost during the time the system is still process-ing past events. As a result of these hindrances, the systemwould only work under a specific set of conditions: well lit,clear environments at low speeds.
4. MethodsThe system is summarized in figure 2, where we go fromthe gathering of data from the sensors to outputting vari-ables that describe the car’s movement and positioning.However, this section will concentrate solely on image pro-cessing and sensor fusion, using the term "Kalman Filter",in figure 2, to describe the EKF or UKF, as both have similaroperations.Many of the images shown in the following sections weretaken from a film made during a race in which PSEM com-peted in October of 2021 with GP19. From now on, thecolor space RGB will be referred to as BGR interchange-ably, as OpenCV performs all processing operations basedon the latter component order.Visual Studio 2019 with the 4.5.1 version of OpenCV forimage processing and MATLAB 2021a for sensor fusion
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Figure 2: System Diagram.
were used for testing on an AMD Ryzen 7 @ 2.30 GHz PC.
4.1. Image ProcessingThe image processing stage is summarized in figure 3where each new frame retrieved from the live video goesthrough a set of transformations. This section, and conse-quently section 5.1, where results are shown, are analyzedin a qualitative manner.

Figure 3: Image processing block diagram.
4.1.1 PreprocessingThe goal of preprocessing is to try to minimize the effectof noise and enhance the image’s features for it to followthrough to post-processing. Figure 4 describes the stepsof this process.

Figure 4: Preprocessing block diagram.
Region of InterestFirstly, each new frame is scaled down by a factor of twoand the ROI is defined, in this case, keeping its originalwidth as to not lose any area of visible road on the right andleft sides. The goal of the ROI is to focus only on the racetrack and attempt to eliminate as many unnecessary ele-ments present in the image as possible, while also makingthe complete process faster. Here, there must be a com-promise between trying to only see the race track and notmistakenly eliminating important features of it, especiallywhen the car is very close to the boundaries of the track.
Histogram Back ProjectionThis portion of the implementation is divided in two parts:the histogram and the back projection. The goal of the his-togram is to pinpoint the gray of the race track, from areference, in this case, a rectangle of this particular color,much like the one in figure 5, whose size can be adjustedas needed. Then, the back projection creates a mask ofthe original image taking the histogram as its input. Theseoperations can be done for a BGR or HSV image, but, aswill be shown later, the HSV color space is not very reliablewhen it comes to detecting the color gray.The function calcHist(), that calculates the histogram,analyses an input image (the rectangle of the race track)based on a quantization of each component of the colorspace given their ranges and creates a plot of the fre-quency of pixels with a given intensity. This plot is passedon to the calcBackProject() function so that it finds, inthe original frame, how many pixels fit the distribution ofthe histogram. Ideally, this will create a mask that showsonly the track in white and everything else in black andmakes the edge detection much easier.

Figure 5: Reference rectangle for the color gray.
Canny Edge DetectorEdge detection is a useful asset, especially after color seg-mentation, because we get to pinpoint where the intensityof the pixels changes. The stage where the Canny Edgedetection is applied is made up of four operations: a Gaus-sian Blur, the Canny detector itself, dilation and, finally,erosion. All of the operations that are not the Canny de-tector are used in order to strengthen the detection of theedges and ultimately of the lines formed by them in post-processing. The most important parameters are the kernelsizes for these operations, GaussianBlur(), erode() and
dilate(), and the thresholds of the Canny function.The Gaussian blur’s kernel size is ruled by the following:if it is too high, nothing will be discernible, but if it is toosmall everything will pass through making the Canny de-tect things that would normally be eliminated by the blur.Dilation and erosion are relatively similar and the sizes oftheir kernels reflect, much like the blur, how the pixels areinvolved in the calculations that make up the output. Thethresholds of Canny() are the inputs of the hysteresis per-formed and indicate which edges are considered real andwhich are not. The gradients calculated by the Canny edgedetector that fall between the two threshold values definedare only accepted if connected to a pixel above the higherthreshold.
4.1.2 Post-ProcessingNow that our image contains mostly elements that are rel-evant for further processing, the PHT will be applied.
Hough TransformMost lines will be straight or approximately straight andshould be seen on either side of the car. A good way to de-tect these lines is through the Hough transform. OpenCVoffers an implementation of the Probabilistic Hough trans-form, which detects line segments and will be appliedbased on the work developed in [18].The Hough transform can be manipulated bychanging its inputs, most importantly the threshold,
minLineLength and maxLineGap and outputs each linefound as a vector of four parameters: the x and ycoordinates of its start and end points.
Line SelectionFrom the Hough Transform, a set of valid lines is gatheredand we must filter them in order to determine the ones thatare effectively the real ones. The filtering is done in twostages: eliminating clearly invalid lines and then choosingbetween the ones left which is the line that is closest tothe center as it will match the edge of the track. The firststage eliminates detected lines that are features of the car(figure 6) through the bounds formed by the edges of thetrapezoid, i.e. everything inside that area is seen as in-valid. The helmet is not considered because the camerawas not placed in the center but shifted slightly to the leftin this footage. Lines that are nearly vertical (angles be-tween 89° and 91°) or nearly horizontal (angles between
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-1.1° and 1.1°) are also not accounted for as sometimestire marks, rails or other landmarks are present, althoughthis is a compromise that does not always pay off.

Figure 6: Trapezoid that eliminates features of the car.
The second stage makes use of the dot product. Figure7 shows a sketch of the road where C is the center of theimage; v⃗ is the vector from C to the line detected (in green,with orange for start and end points); and n⃗ is the normalvector of the line.

Figure 7: Sketch of the road and vectors for the line de-tected.
The goal is to determine the distance between the lineand C through the dot product.To try to fix the fact that sometimes there are no lineson both sides, two vectors of previous lines were cre-ated: previousLinesLeft and previousLinesRight. Bothof these store, for each frame, the line detected. If, for thecurrent frame, there is no line on one or both sides, wecheck these vectors and repeat the last found line.The FPS was also a crucial deciding factor as a lower FPSmeans a bigger delay between the evaluation of the trackand the decision making by the control unit.

4.2. Sensor FusionThe merging of the data gathered from the sensors will bedone using two techniques: the EKF and the UKF.
4.2.1 Extended Kalman FilterThe EKF [19] has two steps: the prediction, where we es-timate the state and update the error covariance matrix,and the correction, where predictions are corrected andthe covariance matrix is once again updated.Equation (1) introduces the state vector x as a functionof f , depending on the previous state of the system, aninput vector u, and w, the process noise.

xk = f(xk−1, uk−1, wk−1) (1)
The measurement vector, yk, is described in equation (2)as a function of h. This function receives as inputs the cur-rent state prediction, x, and the measurement noise, vk.

yk = h(xk, vk) (2)
As mentioned above, the variableswk and vk are the pro-cess and measurement noise, more specifically, a Gaussiannoise with zero mean and covariances Qk and Rk, respec-tively. F, W, H and V are the Jacobian matrices of f inrespect to xk, of f in respect to w, of h in respect to xk,and of h in respect to v.During the "Predict" stage, the algorithm tries to esti-mate the a priori state vector and error covariance, x̂−k inequation and P−

k given the a posteriori estimate from the

previous state, the control vector and estimate error co-variance.
Then, for the "Correct" portion of the implementation,we now calculate the Kalman gain, Kk, given the measure-ment, while also updating the error covariance.
In practice, the EKF and the UKF, will be implementedbased on the work developed in [20], where a con-troller for GP17.Evo is designed so that the car canrun on a racing simulator. First, the state vector x =[
vx vy ψ̇ eψ dy s ψ x y

]T , as partially definedby [20], contemplates the following variables: the longitu-dinal (vx [m/s]) and lateral (vy [m/s]) velocities, the yawrate (ψ̇ [rad/s]), heading error (eψ [rad]), lateral distanceerror (dy [m]) and a measure of progress (s [m]). Addition-ally, for this work, the car’s heading, ψ [rad], and position,
x [m] and y [m], will be appended. While vx, vy, ψ̇, ψ, x and
y are relatively straightforward, the remaining three vari-ables are specific to [20]. The error eψ and dy refer to thethe deviation of the heading angle to a previously plannedtrajectory and to the distance of the car to the middle ofthe track, and s corresponds to the distance the car hastravelled, denoted by perpendicular progress lines alongthe middle of the track.

The input vector u =
[
a δ

]T shows which variables con-trol the vehicle at every time step, in this case, a [m/s2], itslongitudinal acceleration, and δ [rad], the steering angle.

Figure 8: Diagram of the track and state variables.

Figure 8 is a representation of the car on the track andsome of the variables of the state vector. The progress linesin gray, s4, s5, s6 and so on, intersect the blue line that goesalong the middle of the track. The velocities vx and vy aredrawn in purple and dy, in red, shows the distance from thecar to the center of the track. Finally, eψ is the angle be-tween the green and the blue vectors, translating into thedifference in the value of the heading between the plannedtrajectory and the car’s actual direction. The coordinatesystem is also present in the lower left corner of the image.In order to be able to calculate x and y [21], the heading,
ψ, had to be added to the state vector and consequentlyto the state function. Given this, and after adding the lastthree expressions for these additional variables, function
f is complete, as evidenced by equation (3).
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f(x;u) =



ψ̇vy + a
Cαf+Cαr
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vy
vx

+
lfCαf−lrCαr

m
ψ̇
vx

− ψ̇vx − Cαf
m δ

lfCαf−lrCαr
Iz

vy
vx

+
l2fCαf+l

2
rCαr

Iz

ψ̇
vx

− lfCαf
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ψ̇ − vx cos eψ−vy sin eψ
1−dyC(s) C(s)

vx sin eψ + vy cos eψ
vx cos eψ−vy sin eψ

1−dyC(s)

ψ̇
vx cosψ − vy sinψ
vx sinψ + vy cosψ


(3)

Before moving on, we must safeguard the fact that, inthis model, there is a singularity for vx = 0. To overcomethis, whenever vx is close to zero, the input u forcibly feedsthe system an acceleration so that it never reaches thisvalue. In addition, the track is assumed to have a constantwidth. In y =
[
vx dy ψ x y

]T , the variables takenfrom the sensors are shown, creating the vector y. The firsttwo, x and y, would be retrieved from the GNSS, vx and ψcome from the IMU and dy would be given by the camera.The measurement function assumes that all the variablesare measured directly from the sensors.The definition of the noise covariance matrices Q and Rare in equations (4) and (5), respectively.
Q = diag (σ2

vx , σ
2
vy , σ

2
ψ̇
, σ2

eψ
, σ2

dy , σ
2
s , σ

2
ψ, σ

2
x, σ

2
y) (4)

R = diag (σ2
vx , σ2

dy , σ2
ψ, σ2

x, σ2
y) (5)

The Jacobian of f is shown in (6).

F =
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∂vx

∂f9
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(6)

Equation (7) defines H, the Jacobian of h.

H =


1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 (7)

4.2.2 Unscented Kalman FilterThe UKF [22] is overall quite similar to the EKF in the waythat it also estimates the state of a given system and then,at its correction stage, attempts to improve it based on areceived measurement. It is generally used for highly non-linear models and does not require the Jacobians F and H.Instead, the calculation of the sigma points and the scaledunscented transformation are at the center of this variationof the Kalman filter. All vectors, functions and matrices are

the same as those in section 4.2.1. The goal is to propa-gate x, of dimension nx through a function g, as shown inequation (8), outputting y, of dimension ny.
y = g(x) (8)

This variable x has mean x and covariance Px. To cal-culate the statistics of y one must create a set of 2nx + 1sigma points, χi, or weighted samples, that are chosen toget the true mean and covariance of the prior x.The variables λ = α2(nx + κ) − nx, κ and α are scalingparameters, while β is chosen to add knowledge of the pre-vious x. W (c)
i and W (m)

i denote the first and second orderweights of each point, respectively. Then, the propagationof the sigma points is done through equation (9).
Yi = g(χi) i = 0, . . . , 2nx (9)

And the mean and covariance of y are calculated as such:

y =

2nx∑
i=0

W
(m)
i Yi (10a)

Py =

2nx∑
i=0

W
(c)
i {Yi − y}{Yi − y}T (10b)

The UKF requires an initialization of the state vector, x,the error covariance, process and measurement noises,and now, α, κ and β, which, consequently, help calcu-late the first and second order weights. After initializingthese parameters, the next step is to calculate the sigmapoints followed by the state prediction update. Afterwards,we have the measurement update where the Kalman gainis calculated as well as Pỹỹ, the covariance matrix of thepredicted measurement, and Pxtyt , the cross-covariancematrix between the state vector and the measurement up-dates. Lastly, the actual update of x and P occurs giventhe measurement introduced in the filter.As a final remark, the values for α, β and κ must be cho-sen in such a way that they aid the filter [22]. It is advisedto have a κ ≥ 0 to make sure that the covariance matrixis positive semidefinite. By default, κ is often set to zero.Finally, the paramater β should be larger than or equal tozero, and α should have a small value, typically between 0and 1. For Gaussian distributions β = 2 is ideal.
5. ResultsThis section will present the results obtained by usingthe techniques shown in section 4. The final solution isachieved based on the most computationally efficient ap-proaches as well as the conditions the car will ideally racein.
5.1. Line DetectionThis section details the outcome of the experiments re-garding the image processing stage, whose first step in-cludes the definition of the ROI. Because we are not nec-essarily interested in eliminating any elements from eitherside, the width is kept and the length of each frame simplybecomes a given percentage of the original one. The fourdifferently sized ROI’s for a specific frame from the videoof the race were: 67% as proposed in [23], and then 55%,50% and 45%.A ROI at 67% is not ideal, since everything that is notrelevant for the line detection is still in frame. On the otherend of this, taking into account only 45% of the lengthmeans often not seeing the edge of the track, also making
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Figure 9: ROI at 50% for a slight curve left.

Figure 10: ROI at 50% in a straight.
it invalid. The ROI at 50% is slightly better because it re-moves the patch of gray on the right next to the grass andpart of the rail seen in the background. However, as statedbefore, this will always be a compromise, as evidenced byfigure 9. Here, the ROI is set at 50%, but it is not enoughto detect the lines that limit the track on both sides, as wecan only see the red and white curb on the left. The ROI infigure 10 though, which is also at 50%, fares well, as wesee more of the lines that define the limits.The last method is the histogram back projection, ap-plied given the selected area present in figure 5. The quan-tization of each channel (of HSV or BGR) divides the his-togram into intervals or bins and plays an important rolein the output of the back projection. Figures 11 and 12indicate the number of bins chosen for each trial.

Figure 11: HSV bins [10, 5, 5].

Figure 12: BGR bins [3, 3, 3].
Decreasing the number of bins for each channel of BGRand HSV results in a better output, although HSV has onlymarginally improved with this reduction. No matter howmuch one tries to change the number of bins of each chan-nel in the HSV color space, its output is always noisy, mak-ing BGR better suited for this task. It makes sense, overall,that the higher the number of bins, the worse the matchbetween the gray rectangle that creates the histogram andthe original image, as less bins envelop a higher number of"different colors", in this case, shades of gray.After having the limits of the track highlighted in terms ofcolor, we move on to the Canny edge detector stage, madeup of the blur, Canny, dilation and erosion. For a kernel of3x3, the output is only slightly noisy, while for a kernel of5 there are few distinguishable features in the image, aseverything else looks like a random combination of lines.This means that if it is impossible to remove any noise fromthe image before applying the edge detection, we will pre-fer a smaller sized kernel. Applying the Canny after havingblurred the image is an improvement, as some of the edgesdetected on the road that were just noise have disappearedand the line is much clearer. The dilation and erosion serveto close the gaps left open by the Canny. This stage’s in-

fluence, especially that of Canny, dilation and erosion, isbetter understood after applying the PHT as, only then, arewe able to see how their presence, thresholds and kernelsizes affect the final line detection.
5.1.1 Probabilistic Hough TransformThe PHT is ready to be put into action and must be per-formed on a binary image. The BGR histogram back pro-jection is fast and eliminates noise before any other im-age processing technique is applied. On the other hand,the inverse mask for red and white in HSV is also a strongcontender, even though it is too slow, especially when wecreate two separate masks, as the lines (or curb) might bewhite only or red and white. Their main advantage is thefact that they are able to clearly define the edges of thetrack. All of the tests were carried out by trial and error, asthere is no sure way to know which parameters work bestbeforehand and each specific technique requires its ownset of values.
5.1.2 SolutionThe complete image processing stage, as was imple-mented, will be presented here and will follow the stepsshown in section 4.1. First, the ROI will be set at 50% toeliminate unwanted objects in the distance but still allowus to see the foreground which contains the race track fol-lowed by the BGR histogram back projection. As we knowthat further ahead, when performing the Canny edge de-tection, and, consequently, the PHT, the lines created bythe shape of the car and its different contrasting colors willbe highlighted, a trapezoid is defined, as explained in sub-section 4.1.2. This trapezoid constitutes the elimination ofinvalid lines in two stages: first, it is painted black, so thatthe algorithm does not see the car itself, and then throughthe equations that describe the trapezoid’s bounds, thelines detected here are excluded. Ideally, the camera isplaced in the middle of the roll bar and not on its left side,which means that the trapezoid will cover both the car andthe helmet. Obviously, in the future, the size of the areathat hides the car must be adjusted to fit the new cameraplacement.The histogram back projection is the next step in the pro-cess, which requires first the definition of the rectangle,150 by 25 pixels, that selects an area of the track and doesnot encompass any other element present there. Figure 13shows the outcome of the histogram back projection forthe BGR color space.

Figure 13: Histogram back projection for BGR.
It was established that the goal would be to have asfew lines as possible in order to make line filtering eas-ier. So, the Canny and the PHT parameters were chosentogether and with this in mind. The blur has a kernel of5x5, dilation and erosion of 3x3. The Canny has as alower threshold of 200, upper threshold of 600 and ker-nel size of 3. Lastly, the PHT’s (figure 14) parameters are

[rho, theta, threshold, minLineLength, maxLineGap] =
[2, π/180, 40, 100, 10]. As we can see, in the last figure,the rails in the background are detected and there are acouple of lines belonging to their edges in the outcome ofthe PHT.To make sure the algorithm only sees the track limits,
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Figure 14: Probabilistic Hough transform.
line filtering now takes place. Implementing this meansthat the output now looks like the one in figure 15 wherethere is only one line on the right side and one line on theleft side.

Figure 15: After line filtering.
For the left and right sides of the image, a reference dis-tance and index are created to save the smallest distancefrom the line to the center and its corresponding position ina vector, which holds all the objects of class "Line". A "forloop" goes through all the results of the PHT, which dis-cards the invalid lines and puts the remaining ones througha filter function. Here, the distance to the center is evalu-ated and at the end of each frame there is a chosen line foreach side of the image. If nothing is detected in the cur-rent frame for either side, the last detected line is repeated.Part of the reason for this last part is tied to the fact that,as the camera oscillates, sometimes a line that is still vis-ible stops being detected as its edges become smaller orbigger, but we still want to see it. On the other hand, if, infact, it does not exist, the algorithm will assume that thereis an edge present anyway.

5.1.3 ExceptionsSometimes the solution presented earlier did not work asexpected and, ultimately, failed. Figure 16’s right side linedoes not exactly match the line of the track. This happensthroughout a lot of the frames, because the histogram backprojection is noisy near the edges and when the Canny isapplied this noise is considered instead, even though it isslightly off the real position of the line. Other exceptionsinclude when both lines detected belong to the startinggrid marked on the road; when there is no line on eitherside of the image and the last detected is replicated in thewrong place; lastly, sometimes the shade of gray of thetrack changes abruptly and this causes the algorithm toassume a line where there is none.

Figure 16: Wrong detection.
5.2. Variations of the Kalman FilterThis section will focus on the implementation of the Ex-tended and Unscented Kalman filters, making use of thealready existing car model and controller for GP17.Evo.The initial state estimate, for both the EKF and the UKF,
x0, is usually zero for all the state variables, but, due to thesingularity for vx = 0 m/s, as mentioned above in section4.2.1, the longitudinal velocity will be the only parameterwith a value other than 0. The initial values for x, P, Qand R are given in equations (11) to (14). P is set at a

low value for each variable because we have great confi-dence in the initial estimate given to the system. The pro-cess noise, Q, is not calculated, but arrived at through trialand error. The first Q to be tested will be the one from [24]for vx, vy, ψ̇, ψ, x and y. The remaining eψ, dy and s werebased on these previous values, with s set higher due to itsrange. The measurement noise, R, comes from the sen-sors’ accuracy and, because of this, will not be changed.
x0 =

[
5 0 0 0 0 0 0 0 0

]T (11)
P0 = diag (10−3, 10−3, 10−3, 10−3, 10−3, 10−3,

10−3, 10−3, 10−3) (12)
Q0 = diag (0.52, 0.52, 0.0012, 0.0012, 0.52, 32,

0.0012, 0.52, 0.52) (13)
R0 = diag (0.052, 2.52, 0.01752, 2.52, 2.52) (14)

The work of [20] replicates the behavior of the car forfour different maximum values of vx, which are 25, 50, 75,and 100 Km/h. The trials described in the following sec-tions will be performed and tuned for the vx = 100 Km/hcase.The metric used to compare the results obtained is theRMS, as in equation (15), where xprediction is the filter’s es-timate for each element of x and xtrue is the state variable’strue value.
RMS =

√√√√ 1

N

N∑
i=1

(xprediction − xtrue)2 (15)
Tables 2 and 3 present each trial done for the EKF andUKF, respectively. Every state variable has an RMS valueand a matching value in the process noise covariance ma-trix Q, both in its unit. The error covariance, P, is alreadysquared in equation 12 and both tables. The first trialwas conducted using the vectors and matrices of equa-tions (11) to (14), which are kept through during the fol-lowing runs unless specified otherwise. Furthermore, theestimate output by the filter is in red, the true value ofeach given variable is in blue, and the measurements arein green, in the figures illustrating the results of the sim-ulations in the following sections. The less relevant trialswere removed.

5.2.1 Value RangeHere, we present the interval of values of each state vari-able in the case of vx = 100 Km/h. The "Maximum" and"Minimum" rows of table 1 are the true values of the vari-ables obtained through the simulations performed.
5.2.2 Extended Kalman FilterGiven the initial parameters defined above, the filter wasrun. The fact that the variables without a measurementperform worse than the rest stands out immediately and isexpected exactly because of that. However, even if somedeviation from the true value was anticipated, the filtermust be tuned so that it does not output results that arecompletely unreasonable. For example, vy goes from about0 to about 150 m/s throughout the run. Meanwhile, whenperforming a complete lap, the true vy is not only alwayslower than 4 m/s (in absolute value) but it varies less thanthe same amount. Both these observations are evidencedin table 2 through the RMS value. The most striking fail-ures of this first trial, besides vy, are ψ̇, s and eψ. All othervariables, vx, dy, ψ, x and y have acceptable errors.
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Table 1: Maximum and minimum values for the state variables.
vx vy ψ̇ eψ dy s ψ x y

Maximum 28 3.5 0.72 0.49 9.7 1936 7.55 293 474
Minimum 0.1 -3.8 -0.84 -0.5 -9.72 10−4 -0.02 -98 0

Table 2: EKF trials for 100 Km/h.
Trial vx vy ψ̇ eψ dy s ψ x y[m/s] [m/s] [rad/s] [rad] [m] [m] [rad] [m] [m]

1 P 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

Q 0.5 0.5 0.001 0.001 0.5 3 0.001 0.5 0.5RMS 0.266 85.434 21.678 0.749 5.509 699.786 0.108 7.196 6.424
3 P 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

Q 0.01 10−4 10−5 10−4 0.001 0.1 0.001 0.1 0.1RMS 0.618 110.65 30.833 2.266 41.602 726.71 0.343 30.251 46.970
4 P 10−3 1 1 10−3 10−3 10−3 10−3 10−3 10−3

Q 0.5 0.001 10−5 0.001 0.5 0.5 0.5 0.5 0.5RMS 0.268 113.109 33.477 2.722 2.250 1×103 0.023 2.004 1.912
5 P 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

Q 0.05 0.001 0.001 0.001 0.5 0.05 0.5 0.5 0.5RMS 0.237 89.248 27.421 1.449 2.844 670.33 0.023 1.966 2.632

Trial 3 has a process covariance matrix, Q, with evensmaller values than before across its diagonal and is also afailure. All variables performed worse than in trial 1. The Qchosen for trial 4 translates into a very unstable vy and ψ̇ atthe start of the simulation. They are also further away from
xtrue and from the initial estimate given. To fix this, theirvalue in P0 was increased to 1, as evidenced in table 2.This helped to fix some of the flaws in trial 1, such as dy, ψ,
x, and y. On the other hand, s now has an error of an evengreater order of magnitude, 103, vy and eψ have suffered asignificant increase, and the same goes for ψ̇. So, not onlydid trial 4 fail, but reducing P did not prove to be efficient.Finally, trial 5 is an attempt at combining all the previoustrials in order to find the best solution. It is also the last tryfor the EKF as adjusting the values of Q any further leadsnowhere. One always ends up having to relinquish somestate variables in favor of others, since, as function f inequation (3) shows, most of them are dependent on eachother. This trial has the lowest RMS for vx, s, ψ and x andranks second for dy and y and third for vy, ψ̇ and eψ. Still,none of these is very far from their respective lowest RMSfound in other trials. The greatest adversity encounteredwas maintaining a stable s, or at the very least one thatdid not deviate too much from the true value. The sameapplies to vy, ψ̇ and eψ.

The graphs in figure 17 also give good insight to theshortcomings of the EKF mentioned earlier. It is clear ata first glance that vy, ψ̇, eψ and s did not do very well.Both vy and ψ̇ begin by increasing their distance from thereal value, eventually getting closer to it, but quickly fallingoff shortly after. At first, eψ is close to xtrue, but, as timepasses, it begins to continuously move further away. In thesame way, s becomes constant at about t = 30 s with theoccasional increase or decrease, despite having started offwell. Finally, dy follows the blue line all the way through tothe end, but is not very consistent, especially between t =10 s and t = 40 s and then again between t = 65 s and t =80 s.

5.2.3 Unscented Kalman Filter
The first step of the UKF, as stated before, is also the initial-ization. As default values, κwill be set at 0, α at 10−3 and βat 2 [25]. The state vector is defined by equation (11) andthe same goes for the error covariance matrix, equation(12), process noise covariance, equation (13) and mea-surement noise covariance, equation (14).

There is an issue with the implementation of the UKFduring the computation of the sigma points. Part of thisprocess makes use of the Cholesky decomposition whichrequires a positive semidefinite covariance matrix, P. How-ever, after the first 7 iterations of the filter, this matrixceases to meet the requirements of the decomposition, asin, it is no longer positive semidefinite. To fix this, simplemodifications, such as changing the values of κ, α and βor replacing P by Pchol = P+PT

2 , were put in place butdid not work, so the SRUKF [26] will be implemented, as itguarantees the positive semidefiniteness of P.
This solution, however, does not work for the vectors andmatrices used in trial 1, equations (11) to (14), so vx inmatrix Q was changed to 0.1 m/s. Table 3 lists all of thetrials conducted for the UKF. The first trial, with the excep-tion of vx, is exactly the same the one in table 2 and is notsatisfactory. Four out of nine variables have an RMS of 106

or higher, which is completely unacceptable. Despite this,the remaining vx, dy, ψ, x and y, at least in comparison tothe EKF, are decent but could be improved upon. In trial 3,unlike what happened in the EKF, lowering Q for the mostproblematic variables (vy, ψ̇, eψ and s) improves the re-sults significantly. In any case, these four state variables,given table 1, will still introduce an error into the systemthat should be mitigated. Similarly to what happened inthe fourth trial of the EKF, as shown in figure 18(a), both
vy and ψ̇ are unstable in the beginning of the simulation.So, for trial 4 of the UKF their values in P0 were increasedto 1. This made vx marginally better, and kept ψ the same.In comparison to trial 3, while most variables experiencedan increase to their RMS, it was not very significant withthe exception of vy, ψ̇ and dy, all of which nearly doubled.
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(a) Output of variables vx, vy and ψ̇.

(b) Output of variables eψ , dy and s.

(c) Output of variables ψ, x and y.
Figure 17: Trial 5 - EKF output for 100 Km/h.

Other combinations not listed here were tried, but none ofthem succeeded in outperforming trial 3.
The UKF’s weakness in trial 3 is also s, but, this time, itserror is about 40 times smaller, which is a huge improve-ment. The estimate of s seems to follow the true value (blueline) quite faithfully most of the time. The lateral velocityalso has a high error considering the fact that the high-est true vy is slightly below 3 m/s (in absolute value). Onthe other hand, in the beginning, vy oscillates consider-ably, as does ψ̇, contributing to their high error, but boththese variables then stabilize and are close to the the blueline throughout. eψ is quite unstable, even having a peakright before t = 25 s while xtrue remains approximatelyconstant. It fluctuates until t ≈ 30 s, after which it be-comes more faithful to its true value. dy is almost alwaysslightly off, and like eψ deviates considerably in the intervalof 20 < t < 30 s. The last three state variables, ψ, x and

y, have a small error, and are generally always close to thereal value.
We should note that, despite the fact that the SRUKF wasimplemented, there were times when the filter failed to runbecause P stopped being positive semidefinite. As before,this happened mostly at the start after very few iterations.

(a) Output of variables vx, vy and ψ̇.

(b) Output of variable3 eψ , dy and s.

(c) Output of variables ψ, x and y.
Figure 18: Trial 3 - UKF output for 100 Km/h.

5.2.4 SummaryThe two filters had different performances throughout thetrials, but, as expected, once both had been tuned, the UKFwas more accurate when it comes to estimating the sys-tem’s state. If we analyse trials 5 (Table 2 for the EKF) and3 (Table 3 for the UKF), we can conclude that for most ofthe variables, in this case vx, dy, ψ, x and y, there is only amarginal difference between the errors of both filters. TheUKF actually performs worse for vx and x, but, again, thedifference is not very significant. On the other hand, whenthe EKF is the one to do worse, it is usually by one or moreorders of magnitude, as happens with vy, ψ̇, eψ and s. Thisis also visible in figures 17 and 18 when it comes to theselast few that were not properly estimated, as well as in theclose up of the remaining variables.When applying the same parameters for both filters withonly a limited number of measurements, the UKF is clearlythe weaker algorithm, as is evident from trials 1 and 2 intables 2 and 3. This means that tuning plays an impor-tant part in the performance of the filters and here neitherof them have been tuned. On the flip side, this trial hasa measurement associated with every variable and doesnot leave any to be estimated solely on the basis of all theothers, thus decreasing the propagation of errors amongthem. All in all, both filters perform similarly and well.
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Table 3: UKF trials for 100 Km/h.
Trial vx vy ψ̇ eψ dy s ψ x y[m/s] [m/s] [rad/s] [rad] [m] [m] [rad] [m] [m]

1 P 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

Q 0.1 0.5 0.001 0.001 0.5 3 0.001 0.5 0.5RMS 0.321 4×106 4×106 1×107 4.074 2×107 0.023 4.959 8.103
3 P 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

Q 0.01 10−4 10−4 10−4 0.005 0.05 0.5 0.5 0.5RMS 0.292 2.401 0.850 0.069 1.730 17.603 0.019 2.527 2.532
4 Q 0.01 10−4 10−4 10−4 0.005 0.05 0.5 0.5 0.5

P 10−3 1 1 10−3 10−3 10−3 10−3 10−3 10−3RMS 0.287 4.984 1.873 0.081 2.123 20.554 0.019 2.693 2.548

To conclude, if we were to choose a filter to estimate thestate of the system, the UKF is the logical choice. The onlysetback is the fact that oftentimes it fails because the er-ror covariance matrix, P, stops being positive semidefinite.The UKF simply has a better performance and the EKF doesnot output accurate enough results to relay to a controlunit.
6. ConclusionsThe objectives of this work defined in section 1 were theproposal of a cheap and simple system for GP17.Evo, whichincludes a GNSS, IMU and a camera; the creation of aline detection algorithm to pinpoint race track limits; andthe implementation of two sensor fusion methods, bothvariations of the Kalman filter. If we take into accountthe results obtained, we can conclude that the objectiveswere achieved although all present some limitations. De-spite these, this work is a starting point for PSEM to turnGP17.Evo into an autonomous car.The work developed in this dissertation is far from overand improvements on what has been accomplished as wellas new additions will be suggested in this section. Thesystem proposed in section 3 is relatively simple, as wasthe goal, but, should the opportunity arise, more sensorscould be added to the original setup. When it comes to linedetection, detecting curved lines with accuracy is not im-plemented yet. This could be done by applying RANSAC[10] or creating a line model [13] to follow curved lanelimits. Sensor fusion can also be improved upon, namely,in the tuning of the parameters P and Q of the EKF andUKF through the analysis of the model of the car. The in-troduction of more or better sensors will also influence theperformance of the filters, through the matrix R, making itmore accurate and reliable in the event of a sensor failure.In the future, the goal is to actually have an autonomousGP17.Evo by combining the sensor system with the controland planning unit and have the car race in real conditions.
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