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Resumo

Esta dissertacdo pode ser dividida em duas partes: processamento de imagem e fusao de sensores,
e foi desenvolvida com o objectivo de desenhar um sistema de sensores que permita ao protétipo
do PSEM (Projecto de Sustentabilidade Energética Mével), GP17.Evo, tornar-se num carro de corrida
auténomo.

Os sensores escolhidos para este sistema incluem uma cadmara, um GNSS e IMU. A cAmara servira
para o posicionamento relativo enquanto que o GNSS e IMU fornecem uma posi¢éo global do carro
bem como uma estimativa da sua direcéo e velocidade. Toda a informacéo fornecida pelo sistema de
sensores sera eventualmente mandada para uma unidade de controlo.

A deteccéo dos limites da pista foi conseguida através de técnicas de processamento de imagem,
usando o OpenCV, e com base num video de uma corrida na qual o PSEM participou. Seguidamente,
duas variantes do filtro de Kalman foram implementadas de forma a determinar qual a mais eficiente
em termos de fusdo de sensores. Em ambiente de simula¢é@o, mais especificamente MATLAB, e com
base no modelo do carro do GP17.Evo, os filtros de Kalman, Extended e Unscented, foram usados para
fundir a informagao proveninente de varios sensores.

O trabalho desenvolvido nesta dissertacao € o primeiro passo em dire¢cdo a um GP17.Evo autbnomo

que se espera que possa competir numa nova categoria da Greenpower.

Palavras-chave: psem, carro Auténomo, Sistema de Navegacdo, Fuséo de sensores
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Abstract

This dissertation can be divided in two: image processing and sensor fusion, and was developed
with the aim of designing a sensor system that makes it possible to turn one of PSEM’s (Projecto de
Sustentabilidade Energética Mével) prototypes, GP17.Evo, into an autonomous race catr.

The sensors chosen for this system include a camera, a GNSS and IMU. The camera allows for
relative positioning while the GNSS and IMU account for the global position of the car as well as an
estimation of its direction and speed. The data generated by the sensor system would subsequently be
transferred into a control unit. The detection of the race track limits was accomplished through image
processing techniques, using OpenCV, and relying on footage from a race PSEM took part in. Then, two
variations of the Kalman filter were implemented in order to determine the optimal choice in terms of
sensor fusion. In a simulation environment, more specifically MATLAB, and based on a vehicle model
of GP17.Evo, the Extended and Unscented Kalman filters were used to try to combine all of the data
provided by various sensors.

This work is the first step towards a fully functioning autonomous GP17.Evo that will hopefully be

able to race in a new Greenpower category.

Keywords: PSEM, Autonomous Car, Navigation system, Sensor fusion
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Chapter 1

Introduction

Projecto de Sustentabilidade Energética Mével (PSEM)! is a student group at Instituto Superior
Técnico, created in 2013, whose goal is to build electric race cars so that they are as e cient as
possible in all aspects of the construction and racing. PSEM's establishment was done at the request
of Siemens? who wanted to have a team representing the school at Greenpower 3.

The Greenpower Education Trust is a charity organization based in the United Kingdom that hosts
the Greenpower Challenge every year, in which PSEM participates in the F24+ class. This class includes
teams made up of high-school and university students. The competition has everyone working from
the same starting point, which consists of an electric motor and two 12 Volt batteries. After this,
each team is free to build their car as they see t as long as they comply with the rules established
by Greenpower. The goal of the race is to cover the longest distance on the track (as many laps as
possible) in one hour and to accomplish this, the car must be light, aerodynamically e cient and have
good battery management.

Over the years, PSEM has built several cars, always aiming for the improvement of earlier prototypes.
Figure 1.1 shows GP14, GP17.Evo and GP19, from left to right, named after Greenpower (GP) and their

year of construction. This work will focus on the upgrade of GP17, GP17.Evo.

Figure 1.1: PSEM's cars GP14, GP17 and GP19.

Lhttps://psem.tecnico.ulisboa.pt
2https://new.siemens.com/pt/pt.html
3https://ww.greenpower.co.uk



1.1 Motivation

For PSEM, the weight of the car and everything from the materials used during construction to the
lead batteries that must be mounted inside in uence the performance during the race. The biggest set-
back when it comes to this, though, is the driver. A pilot weighs about the same as the fully assembled
empty car, which means that removing this extra weight will allow it to increase its overall performance
as well as reach higher speeds.

Autonomous cars are part of a rapidly growing industry. So far, there is no fully functioning im-
plementation of a self-driving car for the road, but research is always underway to achieve this goal.
When it comes to racing, autonomous cars are in their early development stages. However, room for
innovation is much larger since, if done complying with basic safety measures, they can race alone
without meddling with human life or a large number of people directly. At the moment, there is no
category in the Greenpower Challenge for autonomous cars which means PSEM would be a pioneer in
the competition. This is the main drive for the team as well as the main drive for this work, which will

focus on the sensory aspect of a self-driving race car.

1.2 Objectives

The goal of this work is to propose a low-cost, basic sensor system for the autonomous GP17.Evo;
through image processing, perform lane detection; and, lastly, implement two sensor fusion algorithms
using a model of the car. To that end, a study on various sensors, namely a Global Navigation Satellite
System (GNSS), Inertial Measurement Unit (IMU) and a camera, will be conducted. Then, image pro-
cessing techniques will be researched as well as sensor fusion methods. Finally, tests will be done to

assess the robustness of the implementation.

1.3 Proposed system

As mentioned earlier, the combination of sensors for the set up includes a GNSS, responsible for
supplying position coordinates; an IMU, used to extract parameters such as acceleration and an esti-
mation of the heading of the car; and a camera, which will allow for positioning relative to the edges of
the track. A Raspberry Pi* is meant to perform all of the processing and establish the connection to the
camera and the Arduino °, which is, in turn, connected to the GNSS and IMU modules. All of the image
processing necessary will be done using Open Source Computer Vision Library (OpenCV)®. Chapter 3
will describe in depth each element of the system.

The optimization of the trajectory and control of the car will be done by another member of PSEM,

for their Master's Thesis. In the end, the system proposed in this work will feed the eventual Control

4https://www.raspberrypi.org
Shttps://www.arduino.cc/
Shttps://opencv.org



Unit all the useful information on the estimation of variables such as position, speed and direction, in

real-time, allowing the car to race autonomously.

1.4 Thesis Outline

This work is divided into six chapters structured as follows. Chapter 2 will present a literature
review that summarizes di erent approaches to the problem at hand. In Chapter 3, the elements of the
proposed system and their properties are introduced and Chapter 4 covers the experiment itself and
the techniques employed. Lastly, the results obtained are shown in Chapter 5 followed by conclusions

and suggestions for future work in Chapter 6.






Chapter 2

State of the Art

Many of the techniques developed, especially those related to lane and obstacle detection, are a
result of a need to increase safety on the road. ADAS ! (Advanced driver-assistance system) includes
tools such as FCW (Forward Collision Warning), ACC (Adaptive Cruise Control) and LDWS (Lane Depar-
ture Warning System), many of which are already incorporated into commercial vehicles. These have
been the driving force behind a lot of the breakthroughs we see today in autonomous cars. TEINVEIN
(TEchnology and INnnovation for VEhicle INtelligence) ? incorporates ADAS and is a project that puts
a self-driving car on the road while, in racing, there are now competitions such as Roborace 2, Formula
Student Driverless [1][2] and Indy Autonomous Challenge “. All of them, much like the Greenpower
Challenge, have each team work on the same prototype but with freedom to implement their own so-
lutions. As this work focuses exclusively on the sensory facet, we will explore their implementations as
well as di erent combinations of sensors and ways of merging them.

At this point, there must be a de nition of which variables are to be the output of the system. Ideally,
we would like to have access to the car's position, its speed and direction, and, related to this, we may

want to measure the distance to the middle or edges of the track.

2.1 Sensor Fusion

In essence, all of the recent studies done on this subject use a combination of sensors to increase
the number of variables retrieved [3, 4], with the GNSS being its most basic component. The systems
incorporate a GNSS in order to get an absolute position of the car and often IMU's, radars.

The extra sensor that most implementations have that is worth mentioning is a Light Detection and
Ranging (LIDAR). The LIDAR is mostly used for object detection and distance estimation [5, 6]. One of
its advantages is the fact that it can discern intensity as well as determine distance and is not in uenced

by natural light [7], unlike a camera. This is a very useful asset, but the price of this sensor is generally

Lhttps://www.volvocars.com/intl/v/car-safety/driver-assistance

2https://openinnovation.regione.lombardia.it/en/success-cases/research-and-innovation-agreements/
teinvein

3https://roborace.com

4https://www.indyautonomouschallenge.com
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